
J. LOGIC PROGRAMMING 19X4:3:225-240 225

MAKING PROLOG MORE EXPRESSIVE

J. W. LLOYD AND R. W. TOPOR

D This paper introduces extended programs and extended goals for logic
programming. A clause in an extended program can have an arbitrary
first-order formula as its body. Similarly, an extended goal can have an
arbitrary first-order formula as its body. The main results of the paper are
the soundness of the negation as failure rule and SLDNF-resolution for
extended programs and goals. We show how the increased expressibility of
extended programs and goals can be easily implemented in any PROLOG
system which has a sound implementation of the negation as failure rule.
We also show how these ideas can be used to implement first-order logic as
a query language in a deductive database system. An application to integrity
constraints in deductive database systems is also given. a

1. INTRODUCTION
This paper introduces extended programs and goals for logic programming. A clause
in an extended program can have an arbitrary first-order formula as its body.
Similarly, an extended goal can have an arbitrary first-order formula as its body. If
the body of an extended clause or goal is simply a conjunction of literals, we obtain
the special case allowed by current PROLOG systems. We argue that PROLOG
systems should allow the increased expressibility of extended programs and goals as
a standard feature. The only requirement for implementing such a feature is a sound
form of the negation as failure rule.

In Section 2, we prove the soundness of the negation as failure rule and
SLDNF-resolution rule for extended programs and goals. These results are proved
by first transforming an extended program and goal into a program and goal with
the property that the body of the goal and the body of each clause in the program is
a conjunction of literals. We then use the fact that the negation as failure rule and

Address correspondence to John W. Lloyd, The University of Melbourne, Department of Computer
Science, Parkville, Victoria, 3052, Australia.

QElsevier Science Publishing Co., Inc., 1984
52 Vanderbilt Ave., New York, NY 10017 0743-1066/84/$03.00

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82550631?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

226 J. W. LLOYD AND R. W. TOPOR

SLDNF-resolution are known to be sound in this case [2, 81. This transformation
technique can be used to give a straightforward implementation of the extended
syntax.

Section 3 contains several applications of extended programs. As well as the
direct application to PROLOG systems, we give applications to deductive database
systems. In particular, we show how typed first-order formulas can be used to
express queries and integrity constraints. This provides a formal justification for the
deductive database tools employed in [lo].

This paper assumes some knowledge of the theoretical foundations of the
negation as failure rule and SLDNF-resolution. Discussions of these matters can be
found in [2] or [8]. The terminology and notation of this paper is consistent with [8].

2. SOUNDNESS RESULTS FOR EXTENDED PROGRAMS

In this section, we define extended programs and goals. The main results of the
section are the soundness of the negation as failure rule and the soundness of
SLDNF-resolution for extended programs and goals. Throughout, we consider
first-order formulas involving V, 3, A, V, - , and +- . The universal closure of a
formula F is denoted by V(F).

De$nition. An extended program clause is a first-order formula of the form

A+W
where A is an atom and W is a (not necessarily closed) first-order formula. The
formula\W may be absent. Any variables in A and any free variables in W are
assumed to be universally quantified at the front of the program clause.

A is called the head of the clause and W is called the body of the clause.

Note that, strictly speaking, an extended program clause is not necessarily a
clause at all. However, we will find this terminology convenient. Throughout, we
make the assumption, as we may, that distinct bound variables have distinct names.

Definition. An extended program is a finite set of extended program clauses.

DeJnition. An extended goal is a first-order formula of the form

+W
where W is a (not necessarily closed) first-order formula. Any free variables in W
are assumed to be universally quantified at the front of the goal.

PROLOG systems normally only allow program clauses of the form A +- W,
where W is a conjunction of literals. Such clauses are called general program clauses
in [8]. Similarly, a general goal is one of the form + W, where W is a conjunction of
literals. The main contribution of this paper is to show how a PROLOG system can
be adapted to handle extended programs and extended goals. The latter are
particularly useful as a query language since the full first order syntax is available for
expressing queries.

Next we define the completion of an extended program P. Throughout, we
assume = is a predicate not appearing in P.

MAKIN’ PROLOG MORE EXPRESSIVE 221

Dejinition. The dejinition of a predicate p appearing in an extended program P is
the set of all extended program clauses in P which have p in their head.

Dejinition. Suppose the definition of an n-ary predicate p in an extended program is

Ai+- w,
. . .

A!i’Wk

Then the completed dejinition of p is the formula

vdx I...vxn(p(xl ,..., X,)++E,V . ..VE.)

where E, is 3y,... 3~~ ((x1 = [,)A . A(s,,=z,,)A w,). A, is p(t ,...., t,,),
y,, . , y, are the variables in A, and the free variables in W,, and x,, . , x,, are
variables not appearing anywhere in the definition of p.

Dejinition. Suppose the predicate p appears in an extended program P, but not in
the head of any extended program clause in P. Then the completed dejnition of p
is the formula

Vxr...Vx, -p(xr,....x,,)

Example. Let the definition of p be

P(Y) + 4(Y) AVz(r(Y, z> +- 4(z))

p(f(z)) +- - q(z)

Then the completed definition of p is

~x(p(x)tt(3y((x=y)Aq(p)A~z(r(y.,-)tq(z)))

V3zUx =f(z)) A - q(z)))

We will also require the usual equality theory given by the following axioms:

1.
2.
3.
4.
5.

6.
7.

8.

c f d, for all pairs c, d of distinct constants.
V(f(Xi,. . .1 x,,) f g(y,, , y,,)), for all pairs f, g of distinct functions.
V(f(xi, . . , x,) # c), for each constant c and function f.
V(t [x] # x), for each nonvariable term t [x] containing x.
V((xi fy,)V . . . V(x,,#??,,)~f(x,,...,x,,)#t(.c,.Y,,)). for each func-
tion f.
V(x = x).
V((xr =yl)A . . . ~(x,,=yw)-f(xl>..., x,~) =f(yl, y,,)). for each func-
tion f.
V((xl = yl) A . . . ~(x,,=y,,)+(p(x, ,..., x,,)-tp(.v ,..... y,,))),foreachpredi-
cate p (including =).

Dejinition. Let P be an extended program. The completion of P, denoted comp(P),
is the collection of completed definitions for each predicate in P together with the
equality theory.

Next we introduce the declarative concept of a correct answer substitution for
extended programs and goals. In this definition, if W is a formula and 0 is a

228 J. W.LLOYDANDR.W.TOPOR

substitution for some of the free variables in W, then Wd is the formula obtained by
simultaneously replacing each such variable by its binding in 8. For example, if W is
Vx3y(p(z,f(x))+q(y)) and 0 is {z/g(w)}, then W6’ is V~~~(P(R(W),./(X))+
q(y)). Note that it may be necessary to rename some bound variables in W before
applying 0 to avoid clashes with the variables in the terms of the bindings of 8.

Definition. Let P be an extended program and G an extended goal + W. An
answer substitution is a substitution for free variables in W.

Dejnition. Let P be an extended program and G an extended goal + W. A correct
answer substitution for comp(P) U {G} IS an answer substitution 0 such that
V(W/3) is a logical consequence of comp(P).

This definition, which generalizes the usual definition of correct answer substitu-
tion [8], provides the appropriate declarative understanding of the output from an
extended program and goal. The next step is to give the definition of the procedural
concept of a computed answer substitution. This gives the implementation of the
concept of a correct answer substitution. The implementation involves transforming
the extended program and goal to a general program and goal, and then using
SLDNF-resolution. SLDNF-resolution is just SLD-resolution augmented with the
negation as failure rule. Background material on SLDNF-resolution is available in
[8, chap. 31.

The first lemma justifies the transformation of an extended goal to a general goal.
Suppose P is an extended program and G is an extended goal. Let G have the form
+-- W, where W has free variables x,, . . . , x,,. Suppose answer is an n-ary predicate
not appearing in P or G. The transformation replaces G by the general goal

f-answer(x,,...,x,)

and adds the extended program clause

answer(x,,...,x,)+ W

to the extended program P.

Lemma 1. Let P be an extended program, G an extended goal, and 0 an answer
substitution. Assume G has the form +- W, where W has free variables x1,. . . , x,
and answer is an n-sty predicate not appearing in P or G. Then we have
(a) G is a logical consequence of comp(P) ifs + answer(x,, . . . , x,) is a logical
consequenceofcomp(P’), where P’is PU {answer(x,,...,x,)+ W}.
(b) V(WS) is a logical consequence ofcomp(P) 1j,7- V(answer(x,,...,x,)e) is a
logical consequence of camp (P ‘).

PROOF. Note that in the presence of equality axioms 6, 7, and 8

VZ 1.. .tfz, (answer(zt,. . . , zn)

4x1...3x,((z1=x1)A . . . A(Zn=X,,)A w)))

is logically equivalent to

Vx, . . Vx, (answer(x1,. . . , x,) +9 W)

MAKING PROLOG MORE EXPRESSIVE 229

Hence we can assume that comp(P’) is simply camp(P) together with the latter
formula (and an equality axiom 8 for the predicate answer). Both parts of the lemma
now follow easily from this. 0

The next step is to transform an extended program P into a general program P’.
called a genera/form of P, by means of the following transformations.

(a)ReplaceAcW,r\...r\W~,~-(Vr\W)r\W,,,A.../\W,,

by A + W, A . . A W,_, A - VA W,_, A . . . A W,,
and A+W,A...AW,_,A - WA W,+,A...AW~,

(b) Replace A+- W, A . . . A W, ,AVx,...Vx,,WA W,+l A . A W,,

by A+W,A...AW, ,A -3x ,... 3x,,- WA W,+lA...AW,,

(c) Replace A + W, A . . A W,_, A - v’u,. . .Vx,,W A W,,, A . . . A W,

by A+ WIA . ..AW.~_,A~x,...!kx,,- WA yflr\ . ..AW.,,

(d)ReplaceA+-W,A...AW,_,A(V+W)AW,+,A...AW,,,

by A + W, A . . . A W, ~, A V A W, _ I A . . A W,,
and A+W,A...AW,_,A-WAW,.+,A...AW,,

(e) Replace A+- W~A . ..A W,_,A -(V+ W)A~+, A... A W,,

by A+-W,A...AW, ,AWA-VAU/;,,A...AW,,,

(f) Replace A+ WI”...~W, ,A(VV W)AW,+,A...AW,,,

by A +- W, A . . . A W, , A V A W, + I A . . A W,,,
and A +- W, A . . A W, , A W A w, + I A . . A W,,,

(g) ReplaceA+W,A...AW, IA-(VVW)AW,+,A...~W,,

‘w A + W, A . . . A w, , A - VA - WA W,+, A . . . A W,,,

(h)ReplaceA+W,A...AW, I~--W~W,+,~...~W,,

by A +- W, A . A W, , A W A W, r 1 A . . A W,,

(i) Replace A + W, A . . A W, , A 3.x, .3x,,W A W, + 1 A . A W,,,

by A+ W,A...A\ ,A WA W,+l~...~Wn,

(j) Replace A + W, A . . A W, , A - 3s ,... jx,,WA W,, I A . A W,,

‘w A+ W, A . A W, , A -p(>‘,,..., yk)A W,+, A A W,,
and p(y ,,...,, L’k)+!LX ,... 3X,,W
where y,...., yk are the free variables in 3x,. . .3x,,W and p is a new
predicate not already appearing in the program.

Note that from a logical viewpoint, the various transformations for negation
could be replaced by a single all-encompassing transformation for negation similar
to (j). However, the transformations for negation have been presented as above to
try to overcome the limitations of the negation as failure rule. For example, without
(h), a subgoal of the form - - A will delay permanently if A contains any variables.
This problem disappears once the subgoal is transformed to A. Similar problems can
be overcome by (a), (c), (e). and (8).

We apply transformations (a). .tj) until no more such transformations are
possible. The proposition below shows that this process terminates after a finite
number of steps and that the resulting general form of the original extended
program is indeed a general program. The general form of an extended program is
unique modulo the choice of predicates introduced by transformation (j).

Proposition 1. Let P be un extended program. Then the process of continually upp&inCg
trunsformutions (a), . . . , (j) to P terminutes ufter ujnite number of steps and results
in a general program.

230 J.W.LLOYDANDR.W.TOPOR

PROOF. The basic idea of the proof is to define a termination function ~1 from
extended programs into the set of all finite multisets of non-negative integers [4]. If
M and M’ are finite multisets of non-negative integers, then we define M’ < M if M’
can be obtained from M by replacing one or more elements in M by any finite
number of non-negative integers, each of which is smaller than one of the replaced
elements. It is shown in [4] that the set of all finite multisets of non-negative integers
under -C is a well-founded set.

Inductively define the mapping p as follows:

p(atom) = 1

P(VA V=P(V+P(W

j.&(- W)=~(3xW)=~(W)+l

P(V+- IV = P(V + P(W) + 1

P(VV W=P(V+P(w)+2

~(VxW)=~(W)+4

p(extended program P) = { p(W)jA +- W is a clause in P)

It now suffices to remark that if Q’ is obtained from an extended program Q by a
single transformation (a) or . . . or (j), then p(Q’) < p(Q), so the process terminates.
Furthermore, the resulting program is a general program since, otherwise, some
transformation would be possible. 0

Lemma 2. Let P be an extended program and let Q be the extended program which
results from a single transformation (a) or . . . or (i). Then P and Q are logically
equivalent and also comp(P) and camp(Q) are logically equivalent.

PROOF. Straightforward. 0

The corresponding result for transformation (j) is more complicated, as the
following lemma shows.

Lemma 3. Let P be an extended program and P’ a general form of P. If U is a closed
formula which is a logical consequence of comp(P’) and U only contains predicates
which appear in P, then U is a logical consequence of camp (P).

PROOF. It follows from lemma 2 that we only have to prove the lemma for a single
application of transformation (j). Suppose that P contains the extended program
clause

A + W, A . . . A W,_, A - WA W+l A .,. A W,

and we apply transformation (j) to obtain

A+ W1r\ . . . r\W’_, A -p(xl ,..., x,)A F+lA . . Aw,

P(+-.,qJ+ w

where xi,. . , x, are the free variables of W and W has the form 3y,. . .3y,V. Let Q
be the extended program obtained from P by replacing the clause to which the
transformation was applied by these two clauses.

MAKING PROLOG MORE EXPRESSIVE 231

Now camp(Q) contains the formula

V’z,. .vz,(Ph. .., z,,)

4x1...3x,((z,=x,)A . . . A(z,=x,)A Iv)))

As in the proof of lemma 1, we can assume that the latter formula is replaced in
camp(Q) by the formula

Vxl...Vx,(p(x, ,...) X,,)” IV)

It follows easily from this that if U is a closed formula which is a logical
consequence of camp(Q) and U contains only predicates which appear in P, then U
is a logical consequence of comp(P). 0

Now we are in a position to define R-computed answer substitutions for extended
programs and goals, and to show that R-computed answer substitutions are correct.
For this, we require the concept of a safe computation rule [8].

Dejinition. A computation rule R (for SLDNF-resolution) is safe if the following
conditions are satisfied: (a) R only selects negative literals which are ground. (b)
Having selected a ground negative literal - A in some general goal, R attempts
to finish the construction of a finitely failed SLDNF-tree with root +-A before
continuing with the remainder of the computation.

There are no restrictions at all on the selection of positive literals. This safeness
condition is the usual condition that is applied to assure a sound implementation of
the negation as failure rule [2, 81. A safe computation rule can be implemented by
delaying selected negative literals until they have become ground.

Definition. Let P be an extended program and G an extended goal * W. A general
form of P U {G} is the general program and goal P’ U {G’}, where G’ is
+- answer(xi, . . . , xJ and P’ is a general form of P U {answer(x,, . . . , x,) + W}.

Definition. Let P be an extended program, G an extended goal, and R a safe
computation rule. An SLDNF-refutation of P U {G} via R is an SLDNF-refuta-
tion [8] of P’ U {G’} via R, where P’ U {G’} is a general form of P U { G }. An
R-computed answer substitution for P U {G} is an R-computed answer substitu-
tion [8] for P’ U {G’}.

DeJinition. Let P be an extended program, G an extended goal, and R a safe
computation rule. An SLDNF-tree for P U {G} via R is an SLDNF-tree [8] for
P’ U {G’} via R, where P’ U {G’} is a general form for P U {G}. This tree is
finitely failed if the one for P’ U {G’} is finitely failed [8].

Finally, we present the main results,

Theorem 1. (Soundness of the negation as failure rule for extended programs) Let P be
an extended program, G an extended goal, and R a safe computation rule. If
P u {G} has a$nitely failed SLDNF-tree via R, then G is a logical consequence of
comp(P).

232 J. W. LLOYD AND R. W TOPOR

PROOF. Note first that the result is known to hold when P is a general program and
G is a general goal [2, 81. Suppose G is the extended goal + W, where W has free
variables xi,. . . , x,. Let P” be PU {answer(x,,...,x,)+ W}. Suppose PU (G}
has a finitely failed SLDNF-tree via R. By definition, P’ U {G’} has a finitely failed
SLDNF-tree via R, where G’ is + answer(x,, . . . , xn) and P’ is a general form of
P”. Thus, G’ is a logical consequence of comp(P’). By lemma 3, G’ is a logical
consequence of comp(P”). Thus, by lemma la, G is a logical consequence of
camp(P). Cl

Theorem 2. (Soundness of SLDNF-resolution for extended programs) Let P he an
extended program, G an extended goal, and R a safe computation rule. Then eoery
R-computed answer substitution for P u (G) is a correct answer substitution for
comp(P)U {G}.

PROOF. Note first that the result is known to hold when P is a general program and
G is a general goal [8]. Suppose G is the extended goal + W, where W has free
variables xi,. . . , x,. Let P” be P U {answer(x,, . . . , x,) * W} and 0 be an R-com-
puted answer substitution for P U {G}. By definition, 8 is an R-computed answer
substitution for P’ U {G’}, where G’ is + answer(x,, . . . , x,) and P’ is a general
form of P”. Hence, 0 is a correct answer substitution for comp(P’) u {G’}. By
lemma 3, V(answer(x,, . . . , x,)6’) is a logical consequence of comp(P”). Thus, by
lemma lb, V(WB) is a logical consequence of comp(P). That is, B is a correct answer
substitution for comp(P) U {G }. 0

3. APPLICATIONS OF EXTENDED PROGRAMS

In this section, we describe the application of extended programs to general
programming problems and to typed deductive database systems.

The first application of extended programs is to allow the solution of many
problems to be expressed in a form similar to the specification of the problem. This
simplifies the task of proving that the proposed solution satisfies the specification of
the problem. The extended program is usually clearer and simpler than a corre-
sponding solution using only a general program.

Example. Consider the extended program clause

A + Vx,...tlx,(3y,...3y,Wt w, A .d. A w,)

Many useful extended program clauses are of this form. Typically, W, W,, . . . , W,
are atoms and the y, are absent. If ui,. . . , u, are the free variables in the body and
wi, . . . , wd are the free variables in 3y,. . . 3y,W, then the above extended program
clause can be transformed to

A + -p(ul,...,us)

P@ I,‘.., u,)+ WI/\ . ..AW.A -q(w,)...) WJ

q(w1,...,w+ W

Several examples of this kind of extended program clause were given by Kowalski [7,
p. 203, 2191. Clark [2, pp. 299-3001 has also discussed this particular transformation
and a version of it has been implemented in micro-PROLOG [3].

MAKING PROLOG MORE EXPRESSIVE 233

Example. [7, p. 2191 The subset predicate (c) can be defined by the extended
program clause

x~y+vdu(uEy+uEx)

A general form of this program clause is

XSY + -p(x, Y)

p(x,y>+ -hEYhEx
It is essential that a safe computation rule be used to evaluate (general forms of)

extended programs; otherwise, incorrect answers can be computed.

Example. Consider the extended program P

p(a) +
and the extended goal

+- Vxp(x>
whose general form is

4- answer0

where

answer0 +- - q()

40 + -p(x)
A system with an unsafe computation rule will answer “yes”. However, Vxp(x) is
not a logical consequence of comp(P).

Note that, with a safe computation rule, goals may delay permanently if they
contain nonground negative literals. For example, evaluation of the above extended
goal + Vxp(x) will be permanently delayed when the subgoal - p(x) is encoun-
tered. This behavior is reasonable as the PROLOG system does not know the
domain of x in Vxp(x).

Example. Consider the extended program P

p(a, a) +

q@, Y) +

da) +vy(q(x, y) f-p(x, Y))
and the extended goal

+- 44
A system with an unsafe computation rule will answer “no”. In fact, r(a) is a logical
consequence of comp(P).

The benefits of programming with extended programs and goals are, of course,
also available in the nonclausal logic programming systems of [l] and [6]. The main
advantage of the approach in this paper is the ease and efficiency of the implementa-
tion. On the other hand, the more general approaches of [l] and [6] allow programs
to be written in even larger subsets of logic than we allow.

234 J. W. LLOYD AND R. W. TOPOR

The second application of extended programs and goals is to deductive database
systems. A deductive database is an extended program such that all the extended
program clauses are typed. Similarly, a query is a typed extended goal. We make the
usual restriction that databases and queries do not contain any functions. This
restriction is not essential, but it does greatly simplify the proof of the key lemma 4
below. We will prove a soundness result for an implementation of correct answer
substitutions for deductive databases.

Every predicate in a deductive database or query must have a type associated with
each of its argument positions. Each constant and variable is also typed. We use the
notation VX/TW and 3x/rW to indicate that the bound variable x of the quantifier
is of type 7. The concepts of interpretation, model, logical consequence, and so on,
are defined in the natural way for typed first-order logic (also called many-sorted
first-order logic). Background material on types is contained in [5].

Dejinition. A database clause is a typed function-free first-order formula of the form

At-W
where A is an atom and W is a typed first-order formula. The formula W may be
absent. Any variables in A and any free variables in W are assumed to be
universally quantified at the front of the clause.

DeJinition. A database is a finite set of database clauses.

DeJnition. A query is a typed function-free first-order formula of the form

+-W
where W is a typed first-order formula and any free variables of W are assumed
to be universally quantified at the front of the query. If xi,. . . , x, are the free
variables of W and pi,.. ., 7m are their types, we write such a query as
Xi/?i, . . .) x,/r, : w.

Example. Consider a supplier-part-job database, whose predicates have types
associated with them as follows:

supplier (snum, sname, city)

local_supplier (snum)

major-supplier (snum)

part (pnum, pname, colour, weight)

job (jnum, jname, city)

spj (snum, pnum, jnum, quantity)

In a typical state, the database may contain the following clauses:

supplier(S1, Smith, Carlton) +

supplier(S2, Jones, Sydney) +

supplier(S3, Jones, Perth) +-

local_supplier(Sl) +

local_supplier(s) + supplier(s,_,Melbourne)

MAKING PROLOG MORE EXPRESSIVE 235

major_supplier(s) + Vj/jnum 3q/quantity (spj(s,_,j,q) A q 2 100)

part(P1, Screw, White, 10) +

part(P2, Nut, Black, 20) +

job(J1, Build, Melbourne) +

job(J2, Repair, Sydney) +

spj(S1, Pl, Jl, 100)~

spj(S2, P2, 53, 200) +

In these database clauses and in subsequent queries and integrity constraints, each
underscore (“_“) represents a unique variable existentially quantified immediately
before the atom containing it. Some possible queries that may be asked of this
database are the following:

(1)

(2)

(3)

Find all suppliers who supply the same part to all jobs in Perth:

s/snum: Yp/pnumVj/jnum (spj(s,p,j,_) +- job(j,_,Perth))

Find all parts and jobs supplied by all suppliers who supply some red par1

p/pnum, j/jnum:

Vs/snum (spj(s,p,j,_) +- 3pI/pnum(spj(s,pl,_,_) A part(pl,_.Red,_)))

Find all major suppliers who supply every part or job supplied by Sl:

s/snum : major_supplier(s) A

vp/pnum vj/jnum (spj(s,p,_,_) V spj(s,_,j,_) + spj(SI,p,j,_))

Dejinition. Let Q = xi/~i,. . . , x,/r,. ’ W be a query. An answer substitution is a
substitution for some,or all of the variables xi,. . . , x,.

It is understood that the substitution is correctly typed in that each variable is
bound to a term of the same type as the variable.

We will require the concept of the completion of a database. This definition is
similar to the definition of the completion of an extended program. However, instead
of a single equality symbol = , there is an equality symbol = 7 for each type T. The
completed definition of each predicate is then made in an analogous way to the
type-free case.

Example. Let the definition of p be

P(X) +-4(x, y)

p(b) *

where x has type 7 and y has type u. Then the completed definition for p is

~z/~(P(z)~(~~/~~Y/(J((z=,~)~\(~,Y))V(Z=,~)))

The equality theory for a database is as follows:

1. c f T d, for every pair c, d of distinct constants of type 7 and for every type 7.
2. VX/~ (x =7x), for every type T.

236 J. W. LLOYD AND R. W. TOPOR

3. V(xi=,,Yi)A . . . A(x,=7,Yn)-)(p(x1,...,x,)‘p(Yl,...,Yn))), for every
predicate p (including every =,), where xi,. . . , x,, y,, . . . , y,, are ap-
propriately typed for p and V is the typed universal closure.

4. VX/~ ((x =7 a,) V . . . V (x =,a,)), where a,, . . . , uk are all the constants of
type T, for every type 7.

The axioms 4 are the domain closure axioms. These axioms play a crucial role in
Lemma 4 below.

Dejinition. Let D be a database. The completion of D, denoted camp(D), is the
collection of completed definitions for each predicate in D together with the
equality theory.

Dejinition. Let D be a database and Q a query + W. A correct answer substitution
for comp(D)U{Q} . IS an answer substitution 8 such that V(WO) is a logical
consequence of comp(0).

Now that we have the appropriate declarative concept, we show how it can be
implemented. For this, we need to use a standard transformation which takes any
typed first-order formula into a corresponding (type-free) first-order formula [5].

Dejlnition. Let W be a typed first-order formula. For each type r, we associate a
unary predicate also denoted by r. Then the type-free form W* of W is the
first-order formula obtained from W by applying the following transformations
to subformulas of W of the form VX/TV and 3x/~V:

(a) Replace tlx/~V by Vx(V +- T(X)).
(b) Replace 3x/~V by 3x(V/r\ T(X)).

Example. Let W be the database clause

P(X) + 3Y/4xl Y)
where x has type r. Then W* is

p(x) + 3YMxT Y) MY)) A +>

If Q is the query

+- v’x/‘Tq(x, Y)
then Q* is

+ v&(x, Y) + T(X)) AD(Y)

We will also require the following type theory 9p [5]:
~(a), for each constant a of type T and for each type 7.

Now we are in a position to give the definition of a computed answer substitution.

Definition. Let D be a database, Q a query, and R a safe computation rule. Let D*
and Q* be the type-free forms of D and Q. An R-computed answer substitution
for D U {Q} is an R-computed answer substitution for D* U @ U {Q*}.

MAKINGPROLOGMOREEXPRESSIVE 237

In other words, to answer a query Q to a database D, we first transform D and Q
to their type-free forms and then apply the techniques of Section 2 to the extended
goal Q* and extended program D* U a. Note that, due to the presence of the type
predicates, every computed answer is a ground substitution for all the free variables
in the body of the query. The next theorem shows that this implementation is sound.

Lemma 4. Let D be a database and W a closed typed function-free$rst-order formula.
Let D* and W* be the type-free forms of D and W. If W* is a logical consequence
of comp(D* U a), then W is a logical consequence of comp(0).

PROOF. We outline the proof. Let M be a model for comp(D). We use a standard
method [5] to construct a model M* for comp(D* U 0).

For each type 7, the model M has a domain C,. Let the domain for M* be U,C,.
In M*, we assign to each constant the same element of the domain as in M.
Similarly, in M*, each predicate is assigned the same relation as in M. In M*, = is
assigned the relation {(c, d): there exists a type 7 such that (c, d) is in the relation
assigned to =I in M}. This completes the definition of M*.

Using Lemma 43A of [5], it can now be checked that M* is a model for
comp(D* U 0). The domain closure axioms are used to show that M* is a model for
the only-if halves of the completed definitions of the type predicates. Hence M* is a
model for W* and, using Lemma 43A of [5] again, we obtain that M is a model for
W. Thus W is a logical consequence of comp(0). 0

Theorem 3. Let D be a database, Q a query, and R a safe computation rule. Then
every R-computed answer substitution for D U {Q} IS a correct answer substitution
for comp(D)U {Q>.

PROOF. Let 0 be an R-computed answer substitution for D u {Q}, where Q is
+ W and W has free variables xi,. . . , x,. By theorem 2, (W* A ~~(x~)
A . . . A ~,(x,))d is a logical consequence of comp(D* U a). Thus (We)* is a logical
consequence of comp(D* U a). By Lemma 4, WC? is a logical consequence of
comp(D). That is, 8 is a correct answer substitution for comp(D) U {Q }. 0

This result provides the basis for the implementation of deductive database
systems using PROLOG systems. Techniques for implementing such systems are
described in [lo].

Example. We cannot omit the domain closure axioms from the definition of
camp(D). Let D be the database

p(a) +
and Q be the query + Vx/~p(x). Then the identity substitution is a computed
answer substitution, but Vx/~p(x) is not a logical consequence of camp(D) if the
domain closure axiom t/x/~ (x = a) is omitted from comp(0).

As we have pointed out above, an extended goal may delay permanently because
of a nonground negative literal. However, an important property of the implementa-
tion for deductive databases is that no selected negative literal will ever delay
permanently. As the next proposition shows, there is always an atom of the form
T(X) available to ground a variable x.

238 J. W. LLOYD AND R. W. TOPOR

Proposition 2. Let D be a database and Q a queq. Then no selected negative literal will
ever delay permanently during the evaluation of Q.

PROOF. We outline the proof. Let us say a free variable x in the body of an extended
program clause is safe if either x appears in the head of the clause or there is a top
level conjunct in the body of the form T(X).

Let P be D* U @U {answer(x,,. . ., x,)+- W* A TV A . . . AT,(x,)}, where Q
is + W and W has free variables xi,. . . , x,. We claim that P’, the general form of
P, has the property that each free variable in the body of each clause of P’ is safe.
To prove this, note that P certainly has this property. Furthermore, each transfor-
mation (a) to (j) above preserves this property and hence P’ has this property too.
(Note that transformation (i) reduces a subgoal 3x - (W + T(X)) to - (W + -r(x)),
but an application of transformation (e) restores the property).

Now, in the evaluation of + answer(xi, . . . , x,), every goal of the SLDNF-refuta-
tion, except the first, has the property that each variable in the goal appears in a
subgoal of the form r(x), by the above safeness property. The proposition follows.

0
Note that, by an appropriate reordering of literals in the body of each clause in

P’ (viz., putting atoms of the form r(x) first), we can ensure that the standard
PROLOG left to right computation rule is safe.

The third application of extended programs and goals is to the enforcement of
integrity constraints in deductive databases.

DeJnition. An integrity constraint is a closed typed function-free first-order formula.

Any variables other than underscores not explicitly quantified in a constraint are
taken to be universally quantified at the front of the constraint.

Example. Some integrity constraints that may be imposed on the above database
are the following:

(1) Supplier Sl supplies every job in quantities of at least 100:

q 2 100 + spj(SI,_,_,q)

(2) Supplier S2 supplies every job in Sydney:

spj(S2,_,j ,_) + job(j ,_Sydney)

(3) Supplier S3 only supplies jobs in Adelaide or Perth:

job(j,_,Adelaide) V job(j ,_,Perth) + spj(S3,_, j ,_)

Dejinition. [9] A database D satisjes an integrity constraint C if camp(D) is
consistent and C is a logical consequence of camp(D). Otherwise, the database
violates the constraint.

Intuitively, an integrity constraint should be an invariant of the database. The
standard method of determining whether a database satisfies or violates an integrity
constraint C is by evaluating the query * C. The following two theorems show that
this method is sound.

MAKINGPROLOGMOREEXPRESSIVE 239

DeJinition. Let D be a database, Q a query, and R a safe computation rule. Let D*
and Q* be the type-free forms of D and Q. An SLDNF-refutation of D U {Q}
via R is an SLDNF-refutation of D* U @ U {Q*} via R. A finitely failed
SLDNF-tree via R for D U { Q } is a finitely failed SLDNF-tree via R for
D* u @ u {Q*}.

Theorem 4. Let D be a database, C an integrity constraint, and R a safe computation
rule. Suppose that camp(D) is consistent. If there exists an SLDNF-refutation of
D U { +- C} via R, then D satis$es C.

PROOF. The theorem follows immediately from theorem 2 and lemma 4. 0

Theorem 5. Let D be a database, C an integrity constraint, and R a safe computation
rule. If D U (+- C> has a$nitely failed SLDNF-tree via R, then D violates C.

PROOF. The theorem follows immediately from theorem 1 and lemma 4. 0

Techniques for restricting the number of constraints to be checked after each
database change and for reducing the time required for each constraint checked are
described in [lo].

4. CONCLUSIONS

We have introduced extended programs and goals, proved the soundness of the
negation as failure rule and SLDNF-resolution for extended programs and goals,
shown that the use of extended programs and goals simplifies and clarifies some
programming problems, and applied extended programs and goals to database
clauses, queries, and integrity constraints in deductive databases.

Extended programs and goals are evaluated by transformation into general
programs and goals which can be evaluated using any PROLOG system that
implements a sound form of the negation as failure rule. Deductive database systems
using typed extended programs and goals can be soundly implemented even with the
standard PROLOG left to right computation rule.

We conclude that PROLOG systems should implement a sound form of the
negation as failure rule and allow the increased expressibility of extended programs
and goals as a standard feature. Such systems would reduce the need for pro-
grammers to use nonlogical features of current PROLOG systems, and would
provide a step towards the goal of “programming in logic”.

REFERENCES
1. Bowen, K. A., Programmin g with Full First-Order Logic, Machine Intelligence 10:421-440

(1982).
2. Clark, K. L., Negation as Failure, in: H. Gall&e and J. Minker (eds.), Logic and

Databases, Plenum Press, New York, 1978, pp. 293-322.
3. Clark, K. L. and McCabe, F. G., micro-PROLOG: Programming in Logic, Prentice-Hall,

Englewood Cliffs, NJ, 1984.
4. Dershowitz, N. and Manna, Z., Proving Termination with Multiset Orderings, Comm.

ACM 22465-476 (Aug 1979).

240 J. W. LLOYD AND R. W. TOPOR

5.
6.

7.
8.

9.

10.

Enderton, H. B., A Mathematical Introduction to Logic, Academic press, New York, 1972.
Haridi, S. and Sahlin, D., Evaluation of Logic Programs based on Natural Deduction,
TRITA-CS-8305 B, Royal Institute of Technology, Sweden, 1983.
Kowalski, R. A., Logic for Problem Solving, North Holland, New York, 1979.
Lloyd, J. W., Foundations of Logic Programming, Technical Report 82/7 (revised March
1984), Department of Computer Science, University of Melbourne.
Reiter, R., A Logical Reconstruction of Relational Database Theory, in: M. L. Brodie et
al. (eds.), Perspectives in Conceptual Modelling, Springer-Verlag, 1983.
Topor, R. W., Keddis, T., and Wright, D., Deductive Database Tools, Technical Report
84/7, Department of Computer Science, University of Melbourne.

