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Abstract. An analysis of recursive procedures in ALGOL 68 with finite modes shows, that a 
denotational semantics of this language can be described on the level of program schemes using 
a typed A-calculus with fixed-point operators. In the first part of this paper, we derive classical 
schematolcgical theorems for the resulting class of ieuei-n schemes. In part two, we investigate 
the language families obtained by call-by-value and call-by-name interpretation of level-n 
schemes over the algebra of formal languages. It is proved, that differentiating according to the 
functional level of recursion leads to two infinite hierarchies of recursive languages, the IO- and 
01-hierarchies, which can be characterized as canonical extensions of the regular, cortext-free, 
and IO- and 01-macro languages, respectively. Sufficient conditions are derived to establish 
strictness of IO-like hierarchies. Finally we derive, that recursion on higher types induces an 
infinite hierarchy of control structures by proving that level-n schemes are strictly less powerful 
than level-n + 1 schemes. 

introduction 

During the last ten years, tree language theory has established its relevance as 
an important tool for the analysis of structured objects and the structure of 
computations and as such has had profound influences both within the area of 
formal semantics and within string language theory. As some examples sf the first 
connection let us mention different methods for specifying programming language 
semantics on the derivation trees of programs (such as denotational semantics, 
initial algebra semantics, attribute grammars, syntax-directed translation), rep- 
resenting the meaning of programs by infinite trees through Mezei-Wright-like 
result (a denotation introduced in [28] for theorems, which allow to lift solutions 
of equations to a syntactic level, see [45,32,53]), and modelling operational 
semantics as derivations in tree grammars (as in [52,53,8,67]). Note that all 
applications allow to lift properties of programs to the level of tree languages. 

The close relation between string- and tree language theory can best be described 
using Fig. 1. 

To begin with, let us note that string language theory can be 
viewed as a subtheory of tree language theory by identifying strings with monaa”ic 
trees (where each node has at most one son). Generalizing from the monadic to 
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to the front-language 

Fig. 1. 

the rankd case (where symbols of arbitrary finite arity are allowed to construct 
trees) gives) a canonical way of defining tree concepts out of string concepts. As 
tu o examples o’bserve, that regular-tree grammars have the characteristic feature, 
&hat nonterminals~ may only appear as leaves (which is clearly the canonical gen- 
eralization of right-linear grammars), whereas context-free tree grammars allow 
nonterminals of arbitrary ran’iks in the right-hand sides of the productions. In many 
cases, this process ‘preserves proofs’, i.e. substituting the tree concept for the 
‘generating’ string concept establishes a generalization of the corresponding result 
to trees (perhaps the most prominent counterexample is the tree-transducer 
hierarchy resulting from nonclosure of top-down tree automata - the generalization 
of gsm’s - under composition, see [27]). This again may be used to obtain simplified 
proofs for string-theoretic results by lifting string-theory via the front-operation to 
theorems on the corresponding class (sf derivation trees. In general, both the front- 
{or yieki-) and the branch (or path-) operation allow to go in a uniform way from 
Zrees to strings. 

ing point of the above diagram, however, is the suggestion to iterate 
this prooess, producing in a canonical way increasingly complex classes of languages. 
Here we investigate the IO- and OI-hiemrchies obtained by starting the iteration 
with right-linear gramimars. It is we11 known that one iteration turns regular into 
contex’i:-free languages, while the next iteration yields the IO- or 01-macro 
langqpes [30], depending on whether we generalize rightmost or 3eftmost dericfa- 
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tions in context-free grammars (the classes of tree languages generated by context- 

free tree grammars in innermost-outermost and outermost-innermost mode are 
incomparable [3O]). In this paper we prove both hierarchies to be infinite and derive 
conditions on the input language-family to establish strictness of the resulting 
IO-like hierarchy. This gives a positive answer to conjectures in [35, 28, 70, 421 
and a correct proof of the strictness-result stated in [66;. In preparing these results 
we will derive a number of ‘classical’ properties such as fixed-point characterizations,, 
normalform-theorems, structural theorems, decidability of emptiness and member- 
ship and closure under intersection with regular languages. Together with the facts, 
that the language-families in the Or-hierarchy form substitution closed AFL’s and 
can be characterized as languages accepted by level-n pushdown automata (intro- 
duced in [44]; this characterization is proved in [21]), these results seem to substanti- 
ate the claim raised by V/and [ 7C], that the 01-hierarchy forms the natural extension 
of the Chomsky-hierarchy. 

We will now indicate, how these results relate to semantics of programming 
languages (and thus work out the abovementioned connection for this particular 
example). In fact, this paper was motivated from the problem within formal 
semantics to analyse the impact of higher type procedures (discussed in more detail 
in the following paragraph) on the definability of new objects of base type. 

One characteristic of the type discipline in ALGOL 68 is the fact that the type 
of a procedure (i.e. the type of its parameters and the type of its value, if any) has 
to be completely specified. Types are defined in mode declarations, which in 
particular allow the definition of recursive (more precisely: regular) types, using 
base types such as boo& int, char, . . . and constructors as proc, . . . . Thus the type 
of a procedure can have an arbitrary finite or even infinite functional level: the 
definable modes include zero = int, one = proc(zero)zero, two =: proc(one)one, l , . 

and untyped = proc(untyped)untyped. The following two examples show how such 
procedures can be used in the definition of base objects. 

Example 1. The following procedure EXP, embedded in a main program &!, 
computes for an integer function f and positive integers n, k the expression 

n 

/ 
. 2f(k) 

2” : 

begin 
int input 1, inout 2, output; 
proc EXP = :‘proc(int)int f, int n, int k) int: 

begin int result; 
en result := f(k) 

else result := 2r EXP( f, n - 1, k) 
result 

end of EXP; 
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output := EXP(square, input 1, input 2) 
and of P 

~~~rn~~~ 2. The following program p’ (essentially borrowed from [40]), computes 
ihe factorial function using a recursively typed procedure SELF: 

mode A4 = proc(M, int) int; 
int input, output; 
prac SELF = (Mf, int n) int: 
begin 

ifn=Othenlelsen l f(f,n--1)fi 
end of SELF; 

ou*~put := SELF(SEJ~F, input) 
end of P’ 

Clearly the first example shows, that it is convenient to have higher type pro- 
cedures available. The obvious question then is: in what sense are such p.:ocedures 
r~~c~s~~~~? It is well known that a simple language such as WHILE (with the usual 
arithmetical basic) is universal, hence the above question has to be formulz.:ed 
more caretally in order to be reasonable. A look at denotational semantics will 
help to find the right level of abstraction. 

In a denotational sem~&cs of an imperative programming language, the meaning 
of a pr~~~arn is defined abstractedly as a function which associates with t$e initial 
store the store obtained after executing the program, by reducing it inductively to 
the meetning of its constituents using some meta-linguistic concepts and a (essentially 
invariant from the discussed programming language) set of auxiliary functions. 
What naetalanguage is used, depends essentially on how close the semantics should 
be to a.3 i~~plementation; to serve as a sfandard it is clearly desirable to retain a 
level or abstraction, which allows a transparent and direct simulation of the typical 
features of the given language, which is the reason why the ~-ca~cuZus (involving 
abstraction:, applicatiotz, and recursion) is chosen in the direct semantics of ALGOL 
60 and PASCAL (see [Sl, 64,)). By stressing the role of the meta-language we can 
split such 2~ direct semantics into a translation of the programs into a A-expression 
over the auxiliary functions, followed by the standard semantics of the A-calculus 
([MI, 68, 221). Bt should, however be clear, that WPY still have to eliminate the 
influence of the base operations (contained in the auxiliary functions) to give a 
concise formulation to the problem. To this end, we abstract from the h-calculus 
to h-sckemes by denoting the auxiliary functions orcuring in the translation by 
o,perahon symbols, w’hose meaning has to be explicitly specified in some semantic 
a~~ebr~~. These two levels of abstraction are depicted in Fig. 2. 

To illustrate these ideas, let us give the A-schemes PA and Pi corresponding to 
the sample programs (the algorithm for the translation is given in f19]). 
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Example 1 (continued). Since EXP is defined recursively, its declaration semantics 
uses the fixed-point-operator Y. 

where 

assign 
PA = hEXP. 

/\ 
(Y(AEXP.A(f, n, k).body-EXP’)) 

ioc3 EXP 

/!\ 
square content content 

I I 
lot 1 loc2 

eval 

body-EXP = 

J\ /\ 
n 0 foe f lot 

I /\ 
k 3 1d EXP 

/ i\ / ‘\ 

f/ ‘1 
k 

n 1 
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Hn the ex,amples, we use L? = (0, 1, 2, -, f, square, mult, if, =, lot, . . . , assign, 

content, eval, cond} as denotations for the (more or less obvious) auxiliary functions. 

Example 2 (continued). 

czssign if 

/‘\ P: = ASELF. lot SELF 
(AfAn. i c\ 

/ \ 
SELF /=\, l contmt n n 

A comparison of the A-scheme:* resulting from the translatioii of 
procedures shows 
-. ,non+ecursive procedures with jkite mode induce h-schemes, which 
typed application am%. typed abstra&ion. 

\ 

/-\ 
j2 1 

ALGOL 68 

contain only 

- rectirsive procedures with at most n nested occurrences of the proc constructor 
iota their mode can be modelled by rt-h-schemes which in addition contain an atom 
Y, for the fixled-point-operation on the ntI2 function space. 

- recursively j!yped procedures lead to A-schemes which allow self-application and 
thus in general cannot be finitely typed. 

The link between level-n schemes and the OI-hierarchy is provided by the 
fixed-point characterization: interpreting level-n schemes over the algebra of formal 

(tree-) languages gives exactly the nth language family in the 01-hierarchy, hence . 

n-loops in Fig. 1 correspond to taking fixed points on the nth function space. By 
the CM-hierarchy result, this proves that recursion on higher types induces an infinite 
hierarchy of control structures, since more and more languages can be defined by 
increasing the level of recursion. In particular, when abstracting from the meaning 
of the base operations, higher type procedures cannot be simulated by procedures 
which make only use of base type parameters. 

The IO-hierarchy is the one intended by Maibaum [42] and treated further by 
Turner [66]. (Urfortunately in both papers IO and 01 seem to be confused.) Wand 
[TO] defines the 01-hierarchy in a category-theoretic framework as morphisms of 
base type ;n certain derived theories and indicates a proof, that this hierarchy starts 
with the regular, context-free and indexed language of [2]. Maslov [43] uses a 
canonipal generalization of indexed grammars to define a hierarchy of formal 
languages, which seems to be related to the 01-hierarchy, and provides an automata- 
theoretic characterization using multilevel stack-automata [44]. ln [28], Engelfriet 

t define the IO- and 0%hierarchies using a generalization of the 
fixed-point characterization of the X0- and OI-context-free tree languages. The 
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authors prove that the IO-hierarchy starts with the regular, context-free, and 
IO-macro lsnguages and sketch a proof of the corresponding result for 01. 

The study of recursion on higher types as control structure for programming 

languages was started by Milner [48] and Plotkin [S4]. Program schemes modelling 
higher type recursion were first introduced by Indermark [35]. Parts of the results 

of this paper were presented in [12-141. Models for a typed A-calculus with restricted 
recursive types are discussed in [3]. A comprehensive treatment of untyped pro- 
cedure calls on the level of schemes is given by Fehr [29]. 

This paper is split into two parts according to the semantical and syntactical 
aspects of higher type recursion. 

In part one cNe generalize the theory of recursive program schemes as developed 
in [52, 53, 101 to the class of n -h-schemes. Following the mathematical back- 
ground, Section 2 gives an introduction into the results and proof-techniques of 
the following sections, using regular systems of equations [32,52,69] to demonstrate 
the main ideas. n -A-schemes are defined in Section 3 as systems of equations, 
whose right-hand sides consist of (finitely) typed A-terms over base operation 
symbols, procedure identifiers and formal parameters the main procedure being of 
a base type (hence nested declarations of recursive procedures are simulated by 
simultaneous recursion, see [19]). In connection with the fixed-point semantics we 
introduce a semantic algebra Algol, which induces a denotational semantics for a 
subset of ALGOL 68 via Fig, 2. A combinatoric model of higher type recursion is 
derived in Section 4 by viewing the functions over an algelbra as carrier of the 
derived algebra with projection and functional substitution as new operations (cf. 
[42, 281). Here, recursion on level n is modelled by regular systems of equations, 
which in addition to the base operation symbols contain projection- and substitu- 
tion-symbols up to level n. This model allows for easy algebraic proofs of a 

Mezei- Wright-like theorem and a closure-result for the class of infinite trees gener- 
ated by level-n schemes. By the equivalence of the combinatoric and applicative 

approach proved in the appendix we inherit a Chomsky-normalform for n - 
A-schemes, which implies the equivalence of 1 - A-schemes and recursive program 
schemes. The Kleene-characterization proved in Section 5 characterizes the infinite 

tree of a scheme as the join of the chain of approximations obtained by iterated 
parallel substitution of the procedure bodies followed by a I -replacement of the 
remaining procedure identifiers. This result is used in Section 6 to obtain the 

completeness of a call-by-name operational semantics over discrete interpretations: 
by viewing an n -.A scheme as a kvel-n grammar (using the copy-rule to apply 

‘productions’) with a I -replacement rule as additional choice, we can generate 
sufficiently many approximations using only 01-derivations to represent the infinite 
tree of the scheme. For the programming language considered, this impliies the 

equivalence of denotational and copy-rule semantics. 
Part two investigates the language families generated by level-n gramniars in 

01- and IO-mode. We start by presenting sample languages, which exhibit the 
typical n-exponential growth at the nth level. Two fixed-point characterizations 
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provide the discussed link between level-n schemes and level-n languages. The 
resulting characterization of 01-languag,es as homomorphic images of regular infinite 
trees and JO-languages as homomorphic images of regula.r languages are used in 
the following section to prove decidability of the emptiness problem. In the next 
section we provide a branch-language and front-language-characterization, which 
in particular show, that the 01-hierarchy satisfies the diagram in Fig. 1. Finally we 
prove, that both language families are closed u,nder intersection with regular 
languages. IIn the CM-case, substitution closure implies, that level-n 01 string 
languages form a substitution closed AFL, while IO languages are only closed 
under homomorphisms. 

Since the proofs of these results require different techniques depending on the 
mode of derivation, the) are presented separately in Sections 7 and 8. 

In the last section we use the rational index, a complexity measure for languages 
introduced in [6], to prove both hierarchies infinite. An analysis of the proof in 
the IO-case leads to sufficient clonditions on the input-language-family to prove 
strictness of the resulting IO-like hierarchy. Examples for families satisfying these 
conditions are (deterministic) top-down translations of regular languages and the 
families in the 01-hierarchy. Finally we apply these results to prove strictness of 
the scheme-hierarchy. 

PART I, LEVEL-N SCHEMES 

1. Terminology, definitions, and basic facts 

The reader is assumed to be familiar with the basic concepts of tree language 
theory (as presented e.,. 0 in [23, 653) and initial algebra semantics [32]. For the 
sake of completeness and to fix notation, we will review some definitions and state 
a few basic properties needed in the sequ,, J. On first reading, this section may be 
skipped except for the definition of set in Subsection 1.3. 

l-1. Continuous algebras 

Let A = (A, S) be a partial order (PO). If T c A has a least upper bound in A, 
we denote it by UT. T f d is directed in A iff for each tl, t2 E T there exists t3 E T 
with tl, t2 G t3. 

A is called A-ct;i@ete (cpo j iff there is _I._ E A which is minimal in A and each 
directed T in A has UT E 
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A is called Ll-complete (complete lattice) iff each subset T of A has UT in A. 
For Lf -complete (A-complete) PO’S A and B we denote by f : A-, B a u- 

continuous (A-continuous) mapping from A to B, i.e. f is monotonic and f(LjT) = 
Uf(T) for each (directed) subset of A. If A = B, then, by Tarski’s fixed-point 

theorem [63], there exists U(f”( I ) 1 v E IN}, the minimal fixpoint of f, which we 
denote by ,U (f). 

Let I be a set of Erase types. A family of sets A = (A’ 1 i E I) is called an I-set, 
. We extend this notation to I* l - l - I’u{e} by A’ is the set consisting of the empty 

tuple, and AH’i := A w x A’. The Cartesian product is taken associative. 
For I-sets A and B we write A c: B if A’ c B’ for each i E I, and define A u 

B := (A’ uB’licI). An I-mapping f:A-,B is a family (f’:A’+B’Iid). We 
extend this notation to I* by f’ := 0-0, fwi := (a, a)H(f”(a),f’(a)):A”‘+ B”‘. 
We will omit the superscript w in f” if no ambiguity arises. 

The elements of D(I) := I* x I are called derived types of I. An I-set A determines 

the D(I)-set D(A) := (A”’ +Ail(tv, i)ED(I)) where A” +A’ := (flf :A” +A’}. 

A family of partial orders A = (A i 1 i E I) is called U-complete (A-complete) iff each 
.A’ is U-complete (A-complete). In this case, D(A) is U-complete (A-complete), 
-where the partial order relations are defined componentwise on products and 

pointwise on function spaces. 
Let 0 be a D(I)-set. ~EO’~*~’ is called an operation symbol of type (w, i). An 

O-algebra ~2 = (A, (PA) consists of an I-set A as carrier and a D(I)-mapping PA : 0 -3 

D(A). PA assigns to each f E .@w’i’ a base operation (PA(f) : A W + A i. For z E {U, A} 
‘Jve say that & is z-continuous (d E z-a/g 0) iff A is z-complete and all (PA(f) are 
z-continuous. 

Any z-continuous O-algebra J$ can be viewed as an 0, := 0 u 
({ _L i}l (e, i) E D(I))-algebra J& by letting _L i denote the minimal element in A’. We 

omit the index l_ if no ambiguity arises. 

An In-algebra A canonically induces the U-continuous powerset-algebra .%zZ wi01l 
carrier (PA’ I i E I) and assignment-function given by <ppA(f)( Tj , - . l , T’) = 

bA(f)h, . . . 9 a,) 1 aj E qh 

Any U-continuous O-algebra 9 can be viewed as an A-continuous; 0, := 0 u 
({+i}l (ii, i) E D(I))-algebra B+ with +i denoting the binary join operation Ll in 

A’. Again we omit the index + if no ambiguity arises. 

1.2. Initial algebras 

A. structure-preserving I-mapping h : A + B between carriers of R-algebras sla 
and B is called an R-homomorphism (notation h : d + 93). The following result, 
guaranteeing the exist,Tnce of unique homomorphisms Y-+& for suitable tree- 

algebras 9 is basic to o:ur work. 

Theorem 1.1. (1) [32]. The A-continuous algebra %Yn of infinite-trees over fl is 
initial in A-alga, i.e. for aN &E A-algO there exists a unique A-continuous &- 
homomorphism hd : ‘;e3r, + al. 
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(2) [28). The U-continuous algebra SRYI of tree-languages over L? is initial in 
j-,alg 0, i.e. for a/Z B E u-algO tkre exists a unique &ontinuous J2- 

homomorphism Ha : R& + 93. 

We will not make use of iany particular representation of the elements of CT0 
(e.g. as partial mappings on tree domains) but will rely on initiality arguments. 
Note, that the following basic properties can be derived from Theorem 1 I I : 

Crsrollaw GL (1) Each infinite tree t E ClTn is either atomic (i.e. t = a := pCTn(a)( ) 

f or (e.i) some a E R_ ) or can be uniquely decomposed as t = fttl 9 9 9 t,, := 

Y’crJ_f)(tr9 l ’ ’ 9 n t ) for an operation symbol f and infinite trees tk 
Q!) Thle set of finite trees FFs ilt Cl -0 can be identified with the carrier of the 

usual 0, -word algebra &,,# Clearly all trees in FTO can be obtained using the rules 
of (1). 

FTg is ,partially ordered by t s t’ Qjf t = L or aft J2’w*i’, ti, ti E Tzy’ s.t. t = 
ftt l *t,&==ft’, l *t~n(Vj~[rt]t~~t~) wheren=I(w). 

(3) For each infinite tree t E CT0 there exists a directed subset A, c FTn s.t. t = UA,. 
IZ,,g. A, may be chose;? to be (t’ E FTn ) t’ *S t), the ideal generated by t. 

An auxiliary functions on (finite) trees we use depth (t), front(t) (the concatenation 
of t’s leaves from left to right), breadth(t) (counting the number of leaves of t), 

and br(t) (the set of branches of t)” 

P.3. Derived operations, set, and tree-izomomorphisms 

In this section, we swill consider some lexamples of mappings defined using initiality 
arguments. We start by recalling the definition of derived operations. 

For w E I*, define: ghe set of (formal) parameters Yw by Ye := 0, Ywi := Y,V u 

CY d(w)+?,i}* Let Y ‘= lifwE14 Yw, then Y can be viewed as an I-set by defining 

Y’ := {Yj,w( j) 1 w(j) .= i For some w E Pb). Note, that y, := (yl,,(l), . . . , yn,w& E Y”. 
Finally, let n( Yk;y) denote the D(I)-set 42 u (Yi 1 (e, i) E D(1)). 

To define derived operations (in the A-continuous case; the U-continuous case 
is completely analogous and. will not be restated), consider some assignment a : Y, + 
A of the parameters into the carrier of some A-continuous O-algebra &, then n 
induces an J2( Y,)-algebra *Z, with yj,H*(j) denoting a(yj,w(i,). I-Ience any infinite tree 
t E C’rn (. I’, ) := CTi2t ‘v,,) defines a derked operation deropd (t) : A w -) A i given by a H 

hda (t), where h ;a, is the unique A-continuous G!( Yw)I-homomorphism guaranteed 
by rnitiality of %9 g(y,) (note, that we identified a = (al,. . . , a&A” with the 
assignme It yj,w( j) t4 ai). 

The derived operation of an infinite tree (a tree language) over a A~- (u>- 

continuous algebra is A-continuous Illfor a proof, see [32, 283). 
In case & = S’S’&), t + (t;, . . . 9 tn) := deropJt)(tl, . . . , t,) denotes the tree 

obtained by substituting (t 1, . . . , t,) for the parameters y, in t. We also use +- in 
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the iJ-continuous 
[28] defined by 

case; here + coincides with OI-substitution of tree languages 

a-&,..., Lk) = (a) for a E lFeVi’, 
01 

Yj,dj) - UL l *atLk)=Lj, 
01 

01 01 

L + El, l ..,z,)=iJt-(L1 ,..*, L/J. 
01 lEL, 01 

It is straightforward to show, that substitution is A-continuous 
[32,28]. 

The next lemma, taken from [32], shows that substitution of 
to functional substitution. 

Lemma 1.3. Let t E CTa( Y,,), s E CT&Y)“, and & E A*.aZg Jlr. 
Then 

dero,q& +- s) = derop.&t) 0 derop.&) 

in all its arguments 

terms corresponds 

We will also refer to Lemma 1.3 in proofs. involving the U-continuous case. 
An immediate corollary of Lemma 1.3 is associativity of substitution. 

Lemmal.4. Letu&T&Y,), t=(tl,...,t,&CT~(Y,J”,s~CT~(Y)“. 
Extend substitution to vector arguments t by t +- s := (tl + s? . . , , tm +- s). Then 

u+(t+s)=(u+t)+s. 

We now turn to the interpretation of infinite trees over $2 involving +. 
Intuitively, by viewing + a? union of tree languages, such a tree t defines a tree 
language over In, which will be denoted set(t). 

Definition 1.5. set denotes the unique A-continuous (O,.).-homomorphism KY”+ + 
(9% )+* 

Note, that set{ I) = 0 and hence, by U-continuity of operations in PJ&, set(t) = 0 
for any t E ITTo containing I. By Corollary 1.2 and A-continuity of set this implies 
set(t) = 0 for any nonfinite t E CTO. 

The next lemma shows, that set commutes with substitution. 

VtECT~(Y,J,s&T~(Y)” set(t+s)=set(tj+set(s). 



Proof. Since all involved mappings are A,-continuous, it suffices by Corollary 1.2 
to prove the assertion for kite trees. The straightforward proof is omitted. q 

We close this section by extending the& concept of homomorphisms (in the theory 
of formal languages) to infinite trees. 

Definition 1.7. (1) Cotlsider D(I)-sets 12, X. Note, that CTx( Y) can be viewed as 
a D(I)-set (CTx( Y,)’ I( IV, ii E D(1)). By i nitiality of %‘Y& any D(1)-mapping CT : l2 + 
CTE( Y) extends uniquely to a A-continuous &-homomorphism 6 : (89, -+ (WY& 

the tree-homomorphism induced by C, where (%‘&), denotes the A-continuous 
n-algebra with carrier CTE and assignment-function + 0 u given by + 0 a(f) 
0 19 ‘ . l , t,) := a(f) - (t1,. . l , t,). 

(2) A family 9 of infinite trees is closed under tree-homomorphism ifI for all 
D(I)-sets 0, C and D(I)-mappings g : f2 -, CT=(Y) range(aj c 9(X) implies 
G( 5(O)) c 9-(X). 

To view string-theory as a subtheo.i:y of tree-theory, we identify strings with 
monadic trees as explained below. 

IlMiniGon 1.8. Let fi be some D({i})-wt. 
ft is called monadic iff (Obe*‘)[ = 1 A Vdx: > 1 In(ik*i) = @. 

Clearly the left-concatenation algebra1 “v* of strings oljer V and &, with 
,si = {e}, nv’ =: 1.7 are +;omorphic. 

2. Regular equations1 

This section is tutorial in nature. we will review some standard results in 
schematology for one of the simplest ck~ss of schemes: regular systems of equations. 
In doing so, we hope tal familiarize the reader with some proof techniques used in 
the sequel, and, at the same time, prepare results in later paragraphs. 

Syntactica.lly, a regular system of equations will be deiined as a function mapping 
procedurenames to tke: body of the procedure, whic:h in this simple case merely 
consists of a tree over operation symbo:is and procedurenames. 

efinltion 2.1. Let I be a set of base tyI3es, and 0 a D(,?)-set of operation symbols. 
/& regular system of E!ryuations over $2 (1 If type i E 1 is ;tn H-mapping S : X,, + Tnt,X”) 

s.t. v EI+ and v(l) = i 
We denote by var(S) the I-set XU t bf procedurenames of S, and by R(O) the 

I-set of all regular systems of equation:, over 0. 

Note that no forma:. parameters are al!lowe$ hence pracedurenames occur only 

as leaves in the body cf a procedure. In order to deal with higher type recursion, 
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the main procedure ~~(1) will be allowed to call procedures of an arbitrarily high 

type* 

Example. Let I = {i, b}, J2 = {f, g, h, a} with types (bb, i), (i, b), (i, b), (e, i). The 
following system of equations defines a scheme S in R(n)? 

I 
x2.6, x2.6 = f 

a X2,b h 

The notation as a system of equations suggests a fixed-point semantics for schemes 
in R(a): over an interpretation d E A-alg 0, S induces a function 

which maps A” into itself. The semantics of S over & is the first component of the 
least fixed-point of &. 

Definition 2.2, Let S E R (O)‘, LZ? E A-alg 0. 
The semantics of-S over the ikrerpretation d is 

Example (continued). According to Tarski’s fixed-point theorem, the semantics of 
S over E&J is the least upper bound of the chain 

n prl pr2 

1 fga lb gf J-oh-Li 

2 f@Uf &d-h LTfSf -bh -Lhfga I-b 

3 fgdgf L+Lhf ga J-b gfgfgflbhlihfga lbhfgagf 1bhJ-i 

Having defined semantics, we immediately have a notion of equivalence: two 
schemes &, S2 over &I are equivalent (nol:ation: S1 -S) iff they compute the same 
value under all interpretations. 
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Can we decide equivalence’! In order to answer this and similar cluestions (such 
as divergence, reachability., macro-property [39], . . .>, it is use&l to lift ;tiesc 
problems to some syntactic domain and then apply language-theoretic tools, For 
regular systems of equations it is well known that the Gquivalence class of a scheme 
S can be characterized by iiit.s ir$nitt:* tree T(S), which is simply the interpretation 
of S over the initial continuous algebra. This stems from the following MW-like 
theorem. 

Theorem 2.3 ([32, 533). 

The proof of this result follows immediately from the observation that the:. :zth 
approximation of the semantics of S over & is the homomorphic image of the 
rcth approximation over %‘&. 

The syntactic objects we gain through the MW-like result are still quite unmanage- 
abie. We will now work towards a rnore operational description of the infinite tree 
of a scheme which relies on regular tree languages. 

Note that in the computation of the infinite tree of S according to the Tsrski 
fixed-point theorem one substitutes in the (n + 1)st step the nth approximate of 
T(S) into the right-hand sides of the scheme. The following Kleene-characterization 
gives a top-down algorithm to compute T(S). 

Definition 2.4. Let S E R (‘0) wi+h t mar(S) = Xv. 
By initiality S determines u ;liquely a A-continuous &-homomorphism 

S : %9*(X0) + %C,(X,). 
‘Fhe Kleene-sequence of’ ST K(S), is defined by 

K(S)(n) := r. ’ 2” (xl,“(*)), 

where 1 is the unique homomorphism generated by 

A simple induction argument shc’ws that the chains 

n e 1 0 2?(xj,&,~ and n ++pr$&J _I_ J 

coincide. Thus we have 

Theorem 2.5 ([S 21). V’s E R (0) T(S) = UK(S). 

Let us now discuss the relation to regular tree languages. 
A regular tree grammar G E NR(O) with terminals 0, nonterminals Xv, and axiom 

xl,i)~l~ is simply a nondeterministic regular system of equations, where each pro- 
cedurename may have a finite number of procedure bodies (the productions). Since 
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trees (written in Polish notatioG1) are just strings, regular tree grammars are just a 
certain kind of context-free (stfing-) grammars, hence the notion of derivation (a*) 

is well defined. The tree 1angl:lage generated by G is the set of all terminal trees 
derivable from the axiom: 

L(G)={= Tnlxl.“(+~. 

Example (continued). Define in regular tree grammar over 0, by adding to S the 

productions xl,i = I i, x2,6 = I b. We show how to derive K(S)(3) E FTn = TO, : 

+ f ga gfgf lb hx1.i hx1.i 

=$fkPgfgf J-bhlihfgaX2.b 

*fgagfgf J-bhJ-ihfga lb* 

With each (deterministic) system of equations S over 0 we associate a regular 
tree grammar S,. over 0, by adding the productions xi,v(j) = I o(j). The tree language 
L(S,) E FTa is called the schmatic tree language generated by S. It is easy to see 
that each tree in the Kleene-kq::auence can be generated by &. On the other hand, 
a suitable induction on the lengtth of a derivation shows that a tree derived in n 
steps is always majorized by K(S)(n). Hence L(S,) is directed and its join is equal 
to the join of the Kleene-sequence. 

Theorem 2.6 ([52]). VS E R(S) T(S) = uL(S,). 

It follows from the normalform theorem 2.7 that S can be chosen in such a way 

that its schematic language is an ideal and thus characterizes the equivalence class 
of S. Hence, by the corresponding result for regular tree grammars, equivalence 

(and divergence) for regular systems of equations is decidable. 
We conclude this section by establishing a closure property for the class 

9 := {T(S) 1 S E Ii (0) for some 0) 

of regular infinite trees. 
We would like to show that 3 is closed under tree-homomorphisms, i.e. replacing 

all operation symbols in a regular infinite tree by regular infinite trees of the same 
arity yields again a regular infinite tree, To this end vve need two normalform results 
which are of interest in their own right. They show that the syntactic definition of 

R(0) can be altered in cvco extremes without changing the class of computable 
elements. 
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Let us- first consider the restriction. Obviously, we can reduce the depth of the 
t-hand sides of a scheme by successively substituting n = ftl l l l tk by the 

equations x =fx1 ’ l l X&, xj = tp 

Zlheorem 2.7 ([45], normalform). 

\i’S~R(lt) 3SkR(L1) S-S’ 

Note that the construction of S’ according to this idea will only give a polynomial 
increase in the size of the scht%me. 

0n the other hand, one car allow regular infinite trees as right-hand sides. Note 
that the definition of semantics extends straightforwardly to this case. 

T)teorem 2.8 ([69]). Let S: XV -+ y(L!(X”)) be an l-mapping. Then there exists 
Sk R(a) with S -9. 

The obvious idea behind the construction of S” is to replace each right-hand side 
of S by a call to the main procedure of the scheme defining the right-hand side. 

Both of these results rare corollaries of Wand’s normalform theorems [69]. A 
rigorous proof can be found in [36]. 

We can now derive closure of regular infinite trees under tree-homomorphisms. 

‘S’htorem 2.9, 9 is closed under tree-homomorphisms. 

Proof. Let SE R(O) be in normalform, and let ci be a tree-homomorphism (see 
Definition 1.7) s.t. for all fE fitw*‘) a(f, E T(C( Y,.+J)i. By Theorem 2.8 there exists 
S’ E 3 (Z) such that S’ - & 0 S, hence it is sufkient to prove G( T(S)) = T(6 0 S). 

Consider the following diagram: 

Since ci 43 2 and &?$o 4 coincide (by definition) on the generators XL, and G? 
is a strict A-conkinuob:; R-homomorphism, the above diagram commutes. By an 
e:i sy indu.r argument this implies 

t; O P(.Zl,u(l)) = G@&(l))). (*) 
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But then 

= (XI,& by Theorem 2.5 
n 

= i..-.i r. o d c @b,ud by (*I 
n 

= u c? O i 0 P(X~,“(1)) 
n 

= G(T(S)) by Theorem 2.5. IZI 

3. N-lambda schemes 

In this section we introduce a A-calculus oriented class of schemes which models 
higher type recursion. 

For the purpose of this paper it is convenient to use a representation slightly 
different from the ‘typed A-calculus+ Y’ framework suggested in the introduction. 
Rather than allowing nested occurrences of the fixed-point operator, we generalize 
regular systems of equations and allow typed A-terms as right-hand sides. In the 
terminology of programming languages, this requires elimination of nested pro- 
cedure declarations. Moreover, our definition of typed h-terms differs slightly from 
the standard definition in the restriction to derived types. We note that these 
variations in the syntax do not change the class of computable objects !1.8]. 

I To aid intuition, we start with an example. 

Example. Consider the sample ALGOL 68 program of t!he introduction. The types 
involved are functional types over the base types 

I={i integers 

,3 booleans 

, k locations 

continuations. 

The types of the operation symbols are given by 

n={O, 1,2 : (2, i) 

9 -9 t : iii, i) 

9 square : (i, z’) 



, content : (I, i) 

, assign 

, eval 

: (li, c) 

: (ci, n’) 

, cond} : (bee, c). 

‘WC use the procedure identifiers 

x == 1x0 :c” 

9x11 : ((i, i), (ii, i)). 

The formal para.meters have their type as subscript 

Y = (y1.h Y2.h Yl,(i,i)l- 

We represent the program by the equations (omitting ‘( )‘) 

x0 = assign(loc3, .xt(square)(content)(locl), 
content(loc2)) 

xl(Yl.(i,i)NY* ,h y2.i) 

= eval(cond(= (yi,ig 0), 

fi.ssignUoc, Y I,bi,i)(Y 2.i 119 

assign(loc, t(2, xt(y I,(i,i))(- (Y I,.i, l), Y2,i)))h 

content(loc)) 

In general, the right-hand sides of such equations consist of typed A-terms which 
are inductively built up using operation symbols, procedure identifiers and formal 
parameters. 

EPefi&Qion 3.1. (I) Let I be a set of basetypes. The set D*(I) of derived types over 
I is defined by 

DO(I) := I, D”‘l(I) := D”(I)* x D” (I), D”(I) := u D”(I). 
r3 

(2) Let d2 be a D(I)-set of operation symbols, and X, Y be a D*(I)-set of 
wrriab2e.v and parameters, respectively. The D*(d)-set Tn,x, y of typed A -terms over 
O,, Xand Y is the smallest D*(I)-set T with 

Jxr, XuYIf,‘;r, 

t E TM.4 A, s E T” fi t(s) E T”, 

t E T” A (cz, iv) E D*(I) fi hy,, . t E T’? 
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Due to the restriction to derived types, each term can be uniquely decomposed 
into its subterms. 

We interrupt the formal development to introduce some notation. 

Notation. (1) The level of a type r E LJn (I) is its functional depth n. 
(2) The type of a term t i.s denoted by type(t). The level of a term is the level 

of its type. 
(3) var(t) and par(t) denotes tile set of variables and parameters of t, respectively. 
(4) The set of free parameters of t, free(t),. is define6 inductively by 

free(f)=0=free(x) forfEL?,xEX, 

free (yj,,) := {yj,v), 

free(t&, ‘ . . , ?J) := U free (tjh 
OSj=Zr 

free(hy,.t) := free(t)\ Ya. 

(5) t is closed iff free(t) = 0. 

(6) We denote by t$ the level-0 term obtained from t by applying t to all its 

formal parameters: if type(t) = ((~~-1, . . . , (CQ, i> l l 3, then 

tS_ := to&,_,) ’ l ’ o+r,) 2 ‘Gww 

Formally, we will define such systems of equations as type-preserving mappings 
from procedure identifiers to procedure bodies. As in programming languages, the 
main program has to be of a ground type, and all parameters have to be declared, 
i.e. we consider only closed procedure bodies. 

Definition 3.2. A typed A-scheme over 0 is a D*(I)-mapping 

S :X+ T~,x,Y 

S.U. 

(i) X=(x0,.... xN} is a finite D*(I)-set, 

(ii) type(xo) = (f, . . . , (e, i) 9 l a) for some k E w, 

k 

(iii) Vx E X S(x) is closed. 

Notation. (7) var(S) denotes the set of variables of S 

(8) The kvel of a scheme S is the highest level occurring in its definition: 

level(S) := max(leael(x) 1 x E var(S)}. 

(9‘j The class of all typed A-schemes over L? with level less than or equal y1 wili 

be denoted n -A (Sk). 
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In examples, we shall wri*:e a typed h-scheme as a system of equations 

where tj is obtained from S(r,J by omitting all outer abstractions. 
Hence the right-hand side Of xi refers to tj$ and rhs(S) = {till Xi E var(S)). 
As is usual in denotational semantic s the meaning of the procedure bodies is , 

first computed relative to fictitious vaiues for procedure- and parameter-identifiers, 
which are given by an environment. 

I)eGsi@im 3.5 Let & E A-alg 0. 
( 2) The D”(r)- cpo A* of functions over A is given by 

A* := (A’ 1 -r E D*(I)) 

with 

Ah&‘) ._ 
.- A” +A”. 

(2) The set of environments over & is given by 

ual := lg:Xu Y+A*[p isaD”(map}. 

(3) ‘IThe semantics of terms over the interpretation ,$ 

is defined inductively by 

The definition of se:mantics of typed h-schemes is a straightforward generalization 
of the regular case. As the serai&cs of a procedure body only depends on the 
value of the procedure idlentifiers, [S(x 1; San denotes a ‘higher type derived oper- 
a-;rion’: any assignment Pa := (Xi -*ai) extends uniquely to [S(X), &]Pa E AtYPe(x’. 
Hence S induces a continuous fuPctiona1 

Sd : A type(xo) 
c 

x c . . x AfyCf(+) _+ ‘4 wPe(xbj) x . . . x AftyPe(x~), 

The semantics of S over J$ u ill. be defined essentially as the main program 
component of the ILeast-fked point of S+ 
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Note that by Definition 3.2 the type of the mai; prograrrr May be any ground 
type of the form (e, . . . , (e, i), . . .). In order to make the semantics comparable, 
we apply to the appropriate number of empty parameter lists. 

.Notation. (10) For a eA7 with r = (LY~-~, . . . , (LYO, i) * l l ), 

Befmitium 3.4. Let S E it -A (n>, sa2 E A-alg ft. 

The semantics uf S mw the i~te~pre~~ati~n ,d is defined by 

IS, 4 := prdpS.dlh 

In the following example we shall define an interpretation A!goZ which, together 
with the standard semantics of typed A-schemes and the translation indicated in 
the introduction, defines a denotational semantics for a subset of ALGOL 68 with 
finite modes. 

Example. Let I, fz be given as in the previous example. 
(1) The carrier of Algo! of type 

i S-,Z 

b is S-*B 
I L 

c c 

where 
$I= ..* -1 0 1 .** integers 

B= true false booleans 

\/ 

cfEL=loc !ocl toc2 * * - locations 

store 

&C=S-4 con tin ua tims 
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(2) The assignment function of AlgoZ is given by 

- ‘+(hr K2)‘+(~ ‘+f&-) - K2(4)) 

(strict extension; square, t accordingly) 

- ++((#15 K2) ++@-+strict equality of K&T), K+)) 

locj’ I-+ (( ) c--, (a t-4) lo@) (iem) 

conten++ ~*(w+~(cz))) 

assignH((ar, K)+~(o*cT[~/K(cT)])) 

evalH((6, K)-‘(dT-K@(fl)))) 

cond-I(/% 6, @2)4~~-43b)+ h(d, e2(d)) (‘strict’ conditional) 

It is but an exercise in denotational semantics to check that the semantics of the 
sample scheme over this interpretation satisfies 

a(iocl) 

/ 2 a(loc2 P 
. 

[S, Algol](o)(Ioc:3) = i * * 

Mote that thlis connection allows us to lift problems from programming languages 
to schemes. In [18] we give a detailed treatment of this relation and apply this 
method to decidability of the macro- and formal-termination property [38]. 

4. N-rational schemes 

Before we proceed to generalize the results of Section 2 to typed A-schemes, 
we shall take a look at a combinatoric formulation of higher type recursion. This 
model is essentiolly algebraic in nature and thus allows easy proofs of algebraic 
results as the W-theorem and closure un&r tree homorphisms. The equivalence 
of the two approaches proved in the appendix allows us to carry over these results 
to typed A -scherazs. 

The key to the algebraic treatment of higher types is to view the function of an 
algebra as an algebra itself with projections, constant abstraction and substitution 
of functil3ns added to the operations of the underlying algebra. The corresponding 
operatio:l sy:mbols pi, &s, sub are called derived operation symbols, cf. [42, 281. In 
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this framework higher type procedures are described by regular systems of equations 
over (possibly n -times) derived opera,Gon symbols. 

To illustrate these notions we shall describe by means of an example th!e transla- 
tion of typed A-schemes into the combinatoric model. Tht: translation-mapping 
comb is based on the simple idea of replacing an application 

by the substitution of functions 

sub 

t 
This makes it necessary to lift the type of the arguments tl, . . . , tr to the level of 
the function t. The necessary type-information is given by abstractions and memor- 
ized as a subscript to the translation function. 

Notation. It is convenient to abbreviate the inleger types in U*({i}) by 0 := i, 
n+l:= (n, n). 

Example. Let I = {i}, f2 = {e: (e, i), a: 1, +: (ii, i)}, X = (no: (e, (e, i)), xl: 2, x2: 2) 
and S E 2 -A (a) be defined by 

S(xo) := A..h.xz(a)(e( )), 

S(Xl) := ~Yl.~Yo.Yl~Yl(Yo)), 

S(a) := Q&o. + h(~~(yl))(yo), ydyo)). 

The translation is done in two steps, each of which eliminates one level of 
abstractions. We abbreviate comb t’> c. 

c(Sb0)) = MA.x2bk( )N 

= A.ce(x2(dM 1)) 

= A.sub(xh’( h c,M NJ 

= A.subMaY i), abs~de? ))I 

- h.sub(x&z?’ )), e’( )), 
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= A]?1 .sub (Yl, co(yl(YoN) 

= rky1.sub(yz, sub(yl, co(yo))) 

= ,h yl.sub ( yl, sub (~1, pry )> 

- hyl.sub(ya, VI>, 

c!\S(xz)) = Ayl.c(Ayro. + ~~:d~dyd)(yo), yl(yo))) 

= Ay&-)( + (xz(xl(yl))(Yo)~ YdYo))) 

= Aywb(+‘( ), ~oM~dy~))(~o)), CO(YI(YO))) 

= ~yl.sub(+‘( ), szrb(xz(xdyrN, co(ysh subh, col(voJ)) 

= Ayl.sub(+‘( ), :wb(xzMyd), pr.;), sub(yl, pr% 

-Aywb(+'( ), x2h(y1h ~1). 

The scheme c 0 S is an example of a recursive program scheme in the sense of [53]. 

It should be clear that the next step yields a regular system of equations c 0 c 0 S 
(see also the next example). 

We shall now define the derived alphabe:ts and the corresponding algebras by 
induction on the functional level. 

Definition 4.1. (1) Let 0 be a D(I)-set. 
The &rived alphabe:f of II, D(i2j, is the smallest D2(1)-set with 

f +dwqi) fi f’ E D(fl)(=*(w9i)f, 

w E I”, j fs [I( iv)] fi pr,? E D(t2)(e*(w’w(i))), 

(w, i) ED(I) n abs(,,i, E ~(~)((e’i”(w*i”, 

u E I", (w, i) E D(I), Z(v) = r 

n stib;),,ij E D(O) ((u.i)(w.u(l))...(w,v(r)).(w.i)) 
. 

(2) Let & E A-alg 0. 
The derived algebra Gf d, D(d) = (-D(A), (PD& is the A-continuous D(O)- 

algebra with assignment function 

f’+( +(PA(;f)), 
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To treat higher level function spaces, we iterate thzse constructions: 

LY+‘(O) := D(D”(n)), Dn+*(d) := D(D” (d)). 

We can now formally define the combinatoric model of higher type recursion. 
The class of n-rational schemes con&s of those regular equations over D”(a) 
whose defining equation is of the ground type 

b,(i) := (e, . . . 9 (e, i) l . e ). 

n 

The semantics of such a scheme is simply the ( )-application of the semantics of 
the underlying regular system of equations over the ,otth derived algebra. 

Definition 4.2* (1) The class of n-rational schemes oiuer 62 of type i E I is defined by 

n -R (92)’ := W (D” (0))6n(i’. 

(2) Let&Ed-algO, SW-R(n). 
The semantics of S over the interpretation d is defined bj 

Example. Let 0 and S E 2 --A (0) be as in the previous example. The scheme 
c 0 c 0 S E 2 -i? (0) is equivalent to the sche:me S’ with 

sUb(i.i)(e.ib 
le,(e.il) .~&,a) 

x0= /\\ x1=/ \\ 

sub[,,i) subfe,l, e” pr: pr: 

a” 

(ii.ijl.1 subw, 

It is easy to see that the semantics of S’ over Pa” (with + denoting union and e 
denoting {e)) is equal to the macro language {a*‘” 1 m E 0). 
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By the MW-theorem for JR (&9”(6!)), the semantics of an n-rational, scheme is up 
to ( )-application equal to the homomorphic image of T(S) E CT$$. However, 
it should be obvious that T(S) no longer characterizes the equivalence class of S, 
since we are dealing with partially interpreted schemes. Instead, we expect the 
semantics; of S to be uniquely determined by the semantics OWP the initial interpreta- 
tion %3’& We now show that this tree czn be obtained purely syntactically from 
T(S) by interpreting stab as substitution of infinite trees. This translation will be 
described by a mapping yield. 

Exarrrplle. Let 0 and S be as above. 
Consider the approximation 

sub 

J \ 
sub e’ 

I= / 
\ 

\ of T(coS). 
-f-’ a’ 

/ 
” \, 

+’ 
\ 

sub 
\ 

sub 

Then, abbreviating ykld to y, we have 

y(t)= y(s~~5+‘sub+‘sub+‘_~_hulba’a’a’)~e 

=(+yl,i y2,it(y(sub+’ sub+‘_LI suba’a’), y(a’)))*e 
= (+ +YI,~ y2,it(y(sub+‘-Ll), y(suba’a’)) ayl,i)te 

= + + +I1 tUZyl,i ay;,i +e = + + +I1 aae ae. 

The reader can check 

\ e 

.3 ([42, 281). Let der-%Tn be the &continuous D(O)-algebra with 
carrier (CT& YW)i 1 (w, i) E D(I)) and assignment function odlet g’ven by 
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The unique A-continuous D(O),-homomorphism %2&n, + &r-%& will be 
denoted yield. 

For the proof of the ‘sharper’ MW-result we need the following lemma. 

Lemma 4.4. 

is a A-continuorw D(O),-homomorphism. 

Proot. Strictness and continuity carry over from hda (see Section 1.3). 
The only interesting case is to check the homomorphism property for sub, which 

is immediate by the commutativity of + and derop$l proved in Lemma 1.3. q 

Since both hD(d, and deropd 0 yield are strict A-continuous D(O)- 

homomorphism, we have by initiality of %?T’&~J 

Corollary 4.5. Let JXZ E A-alg LZ. 
Then 

yield 
=h2, -- - $er-%?& 

AD/T 
commutes. 

As der- (JT~%+2!~& = CT$.df~), we can compose the translations y to a map 

yield’“’ : CT:&, -, CTh. 

Theorem 4.6. Let ti E A-alg f2, S E YE -R (0). 
Then 

I§, &jj = hd 0 yield’“‘( T(S)). 

Proof. Let n > 0. By Corollary 4.5 we have for any t E CTki+2&-, with m < n 

hww,(Y(t)) = hwl++.&t)( ). (*) 
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But then 

= tiD~~r~,( r(S))lA by Theorem 2.3 

= &&J’“~(,T(S))) by (*). q 

For the case d = %$a,, the above theorem shows y’“‘( T(S)\ = [S, %Y-& hence 
the semantics of a!1 n-rational scheme is just the homomorphic image of the 

semantics of the scheme over the initial interpretation. 
As a typical application of the MW-theorem, we now prove that the class 

n--E=: {#“‘(‘l’(S))lS E n -R(O) for some 0) 

of n-rational trees is cilosed under tree homomorphisms. Since :T satisfies this 
property, it is sufficient to show that tree homomorphisms can be lifted via yield. 
The next two lemmata prove that this can be done. 

Lemma 4.7. Let a, C be D(I) -sets, fi := D(n)\CY, and let&be a tree homomorphism 
cana~~ically extended to parameters. Then 

t? : der-%‘Tn -, der-%Y’.‘. 

is a A-continuow d, -homomorphism. 

Proof,, Strictness and Icontinuity follow by definition. The only interesting case is 

apGn the homomorI;hism property for sub: 

&(t es) = &(t)-&(s) for t E CT& Y#, s E CTn( Y,,,)“. 

Since 6 is contimoaus, this can be checked by induction on t, using associativity of 
substitution (Lemma 1.4). c1 

The next lemma is taken from [28]. 

Lemma 4.8. Let Q : D ( 52) + CT Dcr,( Y) be a D’(I)-mapping satisfying 

and let 

a, := y 0 Im r fi’. 

T%en 

Immediate by Lemma 4.7 and initiality of %3&n+ 0 
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The proof of the closure property is now straightforward. 

Theorem 4.9. n - r is closed under tree-homomorphisms. 

Proof. Let n > 0 and SE n -R(J2), Q : i2 + C’&( Y) be a D(I)-mapping with 

O’w*i) 3fH y’“‘( T(Sf)) E CT,( Yw)i 

for some Sf E n -R (,)(wsi’ (:= R (D” (,))ce*..‘.(w,i).“)), 

For k E (0, . . . , n}, define Dk+’ (I)-mappings 

ck :o”(fi)+&T&r,( Y) 

bY 

+-I 
Dk(f2)\lP- - . ’ 31 s us where type(s) = b, 4. 

Clearly a0 = CT. Moreover, the ck satisfy the assumptions of Lemma 4.8 since 
ok-l = (&. ThUS We have 

3v’“‘( T(S))) 

= y(n’(6,,( T(S))) by Lemma 4.8 

= y’“‘( T(S)) for some S’ E n -R (2) by Theorem 2.8. III 

We hope that the simplicity of the algebraic proofs justifies the introduction of 
the combinatoric model. 

Before we turn to an operational characterization of n-rational trees, we state 
the equivalence of the two models and list as consequences the MW- and normal- 
form theorems for typed A-schemes. 

From the introductory example of this section it should be clear that level-n A- 
schemes can be translated (by n applications of comb) into n-ration:al schemes. To 
prove the converse, simply replace the combinators by the corresponding A - 
expressions-e.g. prr c*h.hy,.yj,w(j,. It should be obvious that this translation, called 
yA, preserves equivalence. Mopeover, both translations are size-preseruing : the size 
or^ the translation is polynomially bounded by the size of the schp;rie. 

Theorem4.10. n-R(n)-n-A(R). 

The proof is given in the appendix. 
As an immediate consequence we obtain the MW-result for typed A+chemes. 
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We note that an appropriate extension of the unique homomorphism to higher 
types allows a direct proof along the lines indicated in Section 2. 

Corollary 4.131. For S E n -A(O), let T(S) := [S, KY& 
77fen 

V&4! E ,d-alg 0 as* d] = h.& T(S)). 

In contrast, a direct proof of the following Chomsky-Normalform-Theorem seems 
to bc: more complicated. 

By the normalform result for regular equations, the comb-translation of a typed 
A-scheme is equivalent to a system of regular equations where the right-hand sides 
consist of either a combinator or a base operation symbol or a procedure identifier 
or a combinator applied to procedure identifiers. Translating the combinators into 
the corresponding A-expressions gives the following normalform for typed A- 
schemes. 

Corollav 4.12~ Let SE n -A (0). Then there exssts an equivalent S’ E n -A (0) such 
that 

(I!) size(S) jG p(size(IS)) for some polynomia! p. 
(Z?) Vx E var(S’) with type(x) = (cu;rt; i . . , (a~, i) . . .) 

x.b-f(yac,) withfd, ai=e forja1 

or = ~“(y,,) 9 l e (ya,) or I:‘( )(Y~,_,) . l l (y,,) with x’E var(S’) 

or 

or z X1(~20&), . . . , &o&!>o&,_,) l l ’ (YaJ Md2 xi E Var(S’) 

or == Yl.~,dl~(YZ.*~(Z)(ya,-1), l l l , 

~k.~,(k)(y~,_~))(y~,_2) l l l ho) with p s m A k,) =E k. 

In particular, it is sufficient to consider applicative terms as right-hand sides, 
Frence 1 -A(n) is equivalent to the class RRS(i2) of recursive program schemes 
over 12. 

5. The KIeene characterization 

As an intermediate step towards an operational semantics, we shall generalize 
the Eleene characterization tlheorem to typed A -schemes. 

Recall that the Kleene sequence of a regular system of equations was generated 
by iterateId substitution of the procedure bodies for the corresponding procedure 
identifiers. Finally, the procedure identifiers were eliminated by substituting the 
noINhere defined procedure. The generalizatiion of this idea to typed A-schemes is 
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straightforward, except that we have to take care of parameter passing: the canonical 
extensicon 3 of a scheme as a mapping on typed A -terms defines only a textual 
substitution of procedure bodies without evaluating actual parameters. 

Example. Consider the scheme S E 2 - A (114) of the previous example, 
Then, e.g. 

3*(x0) = A.A .~YI.AY~. + (~~MJ’I))(Y& yl(y&Ne( 1) 
L ----------I--_--- J 

rather than 

and 

~(S^‘(X~)) = A.A.Ayl.Ayo. + (&dyd)(q~oj, ydyo))(d(e( )) 

where 

s2 = 3&x,>> = Aydyo.. + (J-z(&(Y~))(Yo), YI(YO)), 

81 = i<&x,>> = AYI.AYO.YI(YI(YO)) 

rather than 

/+\ 

Ah- /+\ a \ 
I a e 

\ 
Q 

\ 
e 

which we would expect since 

* A.A. + (+(12(.ldsda)))(e( I), shkd )h de{ I)) 
P 

-% A.A. + (+(.l, sda)(e( ))), de( ))) 
_L 

*-A.A.+(+(l, a(a(e( I))), a(e( ))h 
B 
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The reason for choosing the A- caEculu!~l as a formal model was of course that it 
has the appropriate operational semantcs to deal with parameter passing. As 

indicated in the example, the evaluation of actual parameters is split into elementary 

steps called &reducStiorzs. Since the nowhere defined procedure I, of type r = 

(4:rrn, . . . , (CEO, i) . . J is represented by i\y,,,,. l l l hy,,-,._Li, I-reductions are a special 

case of p-* reductions. 

We nollr liist some basic operational notilons and properties of the h-calculus as 
needed in the sequel. 

Definition 5.1.. Let t, t’, Sj E Tfl,x,~. 

(1) For a=@,..., &) E (X v Y)k with ty,pe(a& = type(sj), we denote by 

&Wl, ’ l ’ 9 s’k)] the term obtained from t by substituting si for all free occurrences 

of aj in t. 

(2) A p-redex is any term Ayaq t(sl, . . . , Sk) with ievel(ar) = level(t). 
(3) t is ir;: normalform iff t contains no p-redex. 

(4 j The set of bound parameters oft is defined by bound (a) = 8 for a E 0 v X \J Y, 
bound(s&, . I . , s,)) = iJ~sisu bound (sJ, bound (A y,. t’) = bound (t’) v Y*. 

(5) Let A :== l2vXv Y w(h, .) )) (,)}. A context of type 7, 7’ is a pair C = (y, y’j E 
A* x A* such that for all t of type T 

lqt] := yty’ E T;;.,. y. 

(6) t is p-reducible to t’ (t + t’) ifI *there exists a context C and a redex R = 
Ay: .s(sI, . . . , sk) such that 

Vj c: [n] free(+) n bound(s) = 8 A t = C[R] A I’ = C[S[Y,&, . . . 9 Sk)]]- 

One can always ensure that a p-redex can be reduced by renaming of bound 
variables, called a-conversion. As usual we shall identify two terms if they are 

identical u,p to QI -conversion. 

Ret 5.2. a -reduction preserves semantics. In particular 

Fkt 5.3 (Church-+Rosser property). 

([SO]). In the typed A-calculu:s, any term t has a unique normalform nf ft) 
tirhich can be obtained from t by an arbitrary reduction strate,gy. 
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The above definitions cover the case of A -terms in FTa,x, y := TG, .x, y arising as 
approximations. We sometimes refer to the reduction of d = C[_L&S)] to t’ = 

C[_I_,] as a 1-reduction (t +,_ t’). Terms in FTn,x,y are ordered canonically: t 6 t’ 

iff t=liforsOmeiEIOrt=?~(t~ , . . . , tr), t’ = th( fi, . . . , t:) h Vj E (0, . . . , r}tj S ti or 

t=Ay,.s, t’=Ay&‘hSd. It is easy to see that the normalform operator is 
monotone with respect to this ordering. 

Lemma 5.5. t s t’ n nf (t) s nf (t’). 

Proof. Clearly G can be extended canonically to contexts. We prove filrst 

t=Gt’/lt+s n was f’+=S’, (*) 

Case 1; + = +I. Take s’ := t. 

Case 2; no I-reduction 
n t = C[hyJ&, . . . , t,,] A s = C[fOEjlLY/(fl, l l 0 9 t,>ll* 

By assumption Ayly.tO # lia,v), hence since t s t’ there exists a context C’ and 

terms t& . . . , t: s.t. 

t’= C’[Ay&,(t;, . . . , t:)], C’aC, t; at. 

Assume (without loss of generality) that the redex in T’ can be rec’ucetl to give 

S ’ := C’[t&[y,/(t’l, . . . , t:)]]. 

A trivial induction on to proves s G s’ and thus (*). 
By a simple induction on the length of the reduction sequence using (:b) we obtain 

t s t’ fi 3s’ 2 rlf(t) t’ -2 s’, 

By definition of G all p-redexes s’ are situated at I-positions of nf (t), hence 

nf(t)s nf(t'). u 

By now it should be clear that the evaluation of actual parameters can be described 
by taking the normalform of a term. Hence the following definition is the proper 

generalization of the Kleene-sequence to typed A-schemes. 

Definision 5.6. (1) Let S E n -A (0) with uar(S) = (X0, I . . , XN}. 

S uniquely determines a D*(I)-mapping 

S : G,x. Y + Tit.x. Y 

bY 
s^(f) :=f, g(Yj,v) := yj,v, s^(Xj) := S(Xj), 

&th . . . , t;)) := &t>(S(td, . . . , &tr)), 

&Ay,. t) := A y,&t). 



(2) Let _I be gener.ated by it;’ +--) _i_type(x ). 
Thts ~Zei?~~-~‘ quernce ge~~e~~z~e~ by S, ADDS), is defined by 

K(S)(l1’5) := nf 0 E O i!?“(X&. 

The above definition allows a numbler of syntactic variations In particular by 
the Church-Rosser property, we can freely mix taking normalforms and expanding 
according to the definitions of a scheme. 

iProof, By induration on t wle have t -) of’ se g(t) +* &‘), hence by the Church- 
Rosser property 

Ttle folSowir,g :emma gives the oonnection between syntactic and semantic 
approximations of the infinite tree. 

Let pl. denote the bott~~~~ ~uvironnlent, and t$ be the term obtained from t by 
applrqing t to all its I-arguments: 

Proof. By induction on the structure of closed terms in normalform. 
- t == A&,,. ‘ ’ l Ay,,.f with f E 6?‘w*i), q E ~‘(~)~: 
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- t = Ay,,. l l . h~,~.y~,~ with w(j) = u: 

= _LCT of level 0 

= nf (Ayam. l .* 0 A yak. y&) since q(j) = t’. 

- t = hy,,. l ’ 9 Ay,,.a( ) with a E Ote% follows as in the first case. 
- t = Ayam. 9 * 8 Aya,.f(tl, . , . , tr) with f E O’w’i),CYj E D’(I)* 3.t. vj E [r] hy,,,,. l l * Aya,.ti 

is closed and in normalform: 

- t = A y,,. l 9 l A y,,.x(s,) l l l (sk) with feue&x) ‘= p + 1, kuel(sj) = j, kwdid = r 

and 

t=Ay,,:* l AYa!k*Yj,v(Sr) l l l (sk) with a,+l( j) = v, 
k 6 r + 1 G k%, kVd(Sj) = j = kVd(Ctj): 

both sides reduce to _&T of level 0. [3 
We can now prove the Kleene characterization theorem for typed Lschemzs: 

the infinite tree can be obtained by iterated expansion of all procedure calls, starting 
with the main program. 

Theorem 5.9. For all SE n -A(O), K(S) is a chairs and T(S) = u K(S). 

roof. A straightforward induction on m using Fact 5.2 shows that the semantics 
of the mth expansion in the bottom environment yields the mth approximation of 
the least fixed point of Sc&Tfl: 



by (I) 

by Fact 5.2 

by Lemma 5.8 

by Lemma 5.7 

since x0$ = XOJ. a 

In this chapter we prove the completeness of a leftmost-outermost reduction 
strategy to obtain the infinite tree of a typed A-scheme. In terms of the programming 
language considered, this implies the equivalence of denotational and copy-rule 
semantics. 

The section is organized as follows. We start with the definition of the schematic 
language generated by 3. typed A-scheme: besides expanding procedure calls accord- 
ing toi the (rewriting-) rules of the scheme and evaluation of actual parameters, we 
allow the substitution of the nowhere defined procedure of proper type. It is then 
easy to see that each tree in the Kleene sequence of a scheme can be generated 
by the associated schematic grammar. We proceed by stating the analogon of the 
standnrdizatilr,o theorem which implies that any tree in the schematic language can 
be deirived by leftmost-outermost reductions only. In such a derivation a textual 
substitution of the procedcse body is always followed by a complete evaluation of 
all ae::ual parameters. Such a sequence of reduction forms one 01-derivation step 
(as &fined e.g. for the special case of context-free tree grammars). It is then 
straiij,htforward to show that a trc:e generated by m 01-derivation steps is majorized 
by the mh approximation iq thll:: Kleene-sequence. By summarizing these results 
we: obtain a characterization of” the infinite tree of a scheme as the join of its 
schernatlc (On-) language. 

AS. in the regulair case, we start by considering nondeterministic schemes and 
then specialize to schema& grammars. 

A kvel-sz tree grammar 6 with terminals 0, nonte?minal’s X = (x0, . . . , XN), para - 
metw Y, and axiom x04 is simply a nondeterministic level-rz scheme where each 
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procedure identifier in X may have a finite number of procedure bodies (the 
productions). We denote by n - NA (In) the class of level-n tree grammars over 0. 

Definition 6.1. Let G E n - NA (a) and t, t’ E Tn,x,y. 

Then t is G-reducible to t’ (t +G t’) ifF t + t’ or there exists a context C and a 
nonterminal x such that t = C[x] and t’ = C[s] for some s E G[x]. 

The level-n tree language generated by G is defined by 

L(G) := {t E To 1x0& + t}. 

For an ex:rrmple we refer to Section 8.1, 
With each (deterministic) level-n scheme S over L! we associate a level-n tree 

grammar S, over a,_ by adding the productions SL(xi) 3 A_ I)pe(x,J. The tree language 
L(S,) c_ FTO is called the schematic tree language generateid by S. It is easy to see 

that each tree in the Kleene sequence can be generated by S,: 

Lemma 6.2. VS E n -A (0) K(S) z L(&). 

Proof. By induction on t E T~2,x.y we have t + i& g(t). From this we obtain immedi- 

ately by induction on m 

hence 

x01 + 3m(x& + I. (8”(x&) *_ K(S)(m). Cl 
I 

We aow want to show that all trees in a level-n language are already derivable 
by either substituting the leftmost procedure identifier or reducing the leftmost 
/3-redex. In the literature two such results are known: for the untyped h-calculus 
this is a consequence of the standardization theorem [1 l] while for context-free 
tree languages, this theorem is formulated as equivalence of OI-(= outermost- 

innermost) and unrestricted derivations [30]. In fact, as indicated in the sequel, the 
second result is just a special case of the first. 

In a certain sense (by solving the equations backwards by allowing explicitly a 

symbol for the fixed-point operator, see [ 18]), our language is jus!: a sublanguage 
of the untyp!ed A-calculus, hence we shall expect the standardization theorem to 
hold for derivations in level-n grammars, even though it does not apply directly. 
Since the proof of this result follows the classical proof exactly, we shall only 
indicate how the proof as given in [49] can be adapted to the A -calculus discussed 

in this paper. 
The proof of completeness of leftmost reductions is) a corollary to the standardiz- 

ation theorem. This states that any reduction can be simulated bly a so-called 
standard reduction in which the redex of the ri + 1st derivation step is always 
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situated to the right of the n th re&dex. In contrast with leftmost re&.tctions, not all 
redexes have to be reduced. 

I)ej!&JiOrm 6.3, Let 1, ~2 21 + G . e l +G tn+l be a derivation in a level-iz grammar G 
and ar;sume th:it the jth reduction-step is of the form 

li = C’j[Rj] <+ C,[;Qi] = ti+l for some context Ci = ('yj, y; ). 

D is a standard derivation ifi Vj E [n] yi 6 yj+l. 

Theorr/em 6,4 ([I 13). Let G E n - Nh (0) and t -$ t’. Then there exists a standard 
derkmtion from t to t’. 

Ppl(r(/,plh’. The proof given ir; rd.91 carries over, if one specifies together with the set 
dex(t) of redexcs occurring in Some term t for each occurrence of a nonterminal 
symbol in t the right-hand side to be substituted for this occurrence. Moreover, in 
proob’s one has to treat the addi,tionaI case that the reduced redex consists of a 
nontr:rminal. Since the procedurebodies consist of closed terms, this case is always 
trivial. l2 

In particular, for any t E L(G), there exists a standard derivation x& +z t. Since 
6 is in normalform and contains only terminal symbols, the standard derivation is 
in falr:t a leftmost derivation. As in a leftmost derivation of level-0 terms a procedure 
call is never expanded before all actual parameters are given, a substitution of a 
procedure body will always be followed by a sequence of &reductions modelling 
the evalua%ion of the parameters. We shall view such a sequence of reductions 
which descfibes in fact an application of the copy-rule as one 01-derivation step. 

In order to define Oklerivations we need some auxiliary functions. 

Noltation. (I) A t-tee t E 1;2( Y) is linear in w E I* iff t E Ta( Y,) and each parameter 
occurs exactly orrce in I!. 

(2) If t is linear in to and (sl, . . . , S& TZ,X,yY we abbreviate t[y,,,/(sl, l . . , s,,l 

to 1!J&, . . . ) Sk]. 

(3) The bead-atom of a level- 0 term in normalform will be denoted head(t). Let 
taid(t) be the unique string such that t = head(t) l tail(t). 

(4) Let t E Tn ,x, y’ be 211 closed level- 0 term in normalform. Then (s, ~1, . . . , sk f is 
called a linearization of t i-ff 

. AVjEi[k]sjE T $!$, y is in normalform 

A t = SISlr . . . , Q] A head E X. 

l:ite that for such t a linearization always exists which is unique up to renaming 
of ps,ra ,ne t ers. 
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Defidtion 6.5. Let (3 E n - NA (-62) and t be a closed level-0 term in normal$orm. 
t is O&derivable to t’ in G( t * 0E.G t’) iff there exists a heariz&on (s@, sl, . . , , sk) 
of t with k 3 1 s.t. 

t’ = so[taf (s tail(s,)), ~2, . . . , sk] for some s E G(head(sl)). 

The C&language generated by G is defined by 

Example. Consider the sample scheme S E 2 - h (&I) of the previous example. Then 

.x0( I( 1% ~~i[rtf(S(~~~~i )( >)I = x2bM )I 

==3 Yl.iCnf(S(x2XaM >>>I 
01 

= +(x2hWM )),a(4 ))I 

;‘+(yl,i, ate{ )))[nf(S(x2)(xl(a))(e( >>)I 

= +(+(x2(dW)(e( )I, xdak( JO), 44 9) 

==+ +(+(yl,i, y2.A a (4 N)[nf Md (a ))(4 hi, dd(4 )>I 
01 

= +(+(J-i, xl(aM I)), 44 )I) 

=g3 +(+(J-i, yl,i)y a(4 )))bfWAdk( Ml 

= +/+\ 

/\ a 
_L a 

\ z 
e 

\ 
a 

\ 
e 

since 01-derivations preserve the typ,g and tk properties of being closed and 
in normalform, any term t 01-derivable from the axiom can be decomposed 
according to some linearization. 

As an immediate consequence of the standardization theorem we obtain the 
completeness of DI-derivations. 

. k&3 E n -NA(R) J&(G) = L(G). 
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WC can mw show that the infinite tree of a typed A-scheme can be characterized 
as the join of a.ll approximations generated by its schematic grammar, In fact, we 
prove that a tree derived in m C&derivation steps is rn;> jorized by the mth member 
of the Kleene :;equence. Since the Kleene sequence is contained in the schematic 
langu;:\ge of S, it follows that L(SJ is directed. Together with the previous corollary 
and tire Kleene characterization this yields: 

Theo~~em 6.7. V‘s E n -1-A (0) L(S,) is directed and 

T(SEi = u L(§I). 

ProoIL By Thl=orem 5.9, Lemma 6.2 and Corollary 6.6 it is sufficient to prove 

Asserti’on *. Let oo, . . . , a;, be such that ~(a,), l -(GO) is a closed level.-0 term in 
normalform and assume 

Then 

nfo i(t)ezf 0 i O sl’(x(um) l l ’ (uo$)* 

We s;h,ovr * by induction on I: 
For .I* = 0 there is nothing to prove. 
C~~/f:sider a derivation 

r 

xhl) l l l b-d c;;” f -;;;’ t, 

and let (,; sly . . . , sk) be a linearization of t’. Then there exist tl, . . . , tk E FTa,x, y s.9. 

Vj c: [k] si =$ ti A t = s[tl, . . . , tJ. 

By Induction hypothesis and monotonicity of ulf we have 

VjEfk] rlf d(z,+snf &&). 

But then 

nfo i(t) 

= srflf&tIh ’ l * , nf(m>1 

s S[#f 0 1 ” 9’(Sj) ,...,nf&s’(s~)] 

= nf 0 i 0 S’(S[Sl, . . . , s/J) 

== nf 0 _t 0 S’(nf(S(x)(o,) l * l (CT-()))) by definition of t’ 
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= nf 0 i 0 ~^‘(S(X)(C~,) l l . (go)) by iterated app’lication 

of Lemma 5.7 

s nf 0 i 0 $‘(S(X)(&~)) l 1 8 (&TO))) 

= nf 0 i 0 ~‘+‘(x(o;,) 8 8 9 (CT&. cl 

Remark. It is easy to see, that schematic grammars in Chomsky-normalform 

generate all approximations of the infinite tree of the corresponding scheme (Lemma 
2 in [SJ), hence, as in the regular case, the equivalence class of a. scheme can bc 
characterized purely operational by a tree langua,ge. For the special case IZ = 1 of 
recursive program schemes it is known, that the equivalence probIem for schemes 
is reducible to the equivalence problenl for deterministic pushdown automata [8]. 

A generalization of this result to higher levels using deterministic level-n pushdown 
automata [44] seemS to be possible using the results in. [21] and Subsection 7.4. 

We conclude this section with two applications of this result for particular 
interpretations. 

In the event that the semantic of a scheme is taken over a discrete interpretation 
(where the carrier is a flat cpo and if . 9 l then l l 9 else l . . is the only r;,on-strict 

operation) we can compute the semantics by rcpeatixjg 01 derivation steps until 
the image of the approximation under the uniquf: homomorphism becomes defined. 
If (and only if) this happens. the semantic of the scheme is equsyl to this value, 
otherwise it is undefined. 

For the programming language considered, this result states the equivalence of 
denotational and copy-rule semantics: since p-reductions preserve semantics, we 
already know that the copy-rule semantics is correct (with respect to the denotatIona 

semantics). Now assume that the denotation al semantics of a program P yields a 
defined integer value for a gi*ren initial store and a specified output location. By 

the Mezei-Wright theorem and the same argument as above, this value is already 

the imag,e under hAlpol (applied to the initial stoire and the specified output location) 

of a finite approximation of the prugram-tree rf,,P,,) which can be derived by a finite 

number of applications of the copy-rule. 

Appendix: Equivalence of n -- R and n - A 

In this appendix we prove the equivalence of both definitions of recursion on 
higher types. The translation from applicatilre to combinatoric represenfation by 

the mapping c has already Ibeen illustrated in Section 4. In order to simulate 
n-rational schemes by n -A schemes we rep&e the combinators sub and pr by 
the corresponding A -ter XE. ii-terms over derived alphabets then occur in the 

intermediate stages. 
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We ffirst deal with th> simulation of n-rational schemes by level-n A-schemes. 
By anabgy to the mapping ykdd on trees, we call the translation mapping yA. 

Since h-terms over D(O) have the set D(I) as has? types they only contain 
parameters itn D+(Y) := Y\& K 

jh : ^j!-Dl(iL).X,D(Y) 3 Tn,X,Y 

is the following D*@(I))-mapping: 

yn(x) ::= x, YdYjJ I=. Yj,“, 

y,(f) := A.f fdx f E 0, 

YA (abJ:(,,i)) := AY t,(e,i)-Aywyl(,i)( ), 

yh (SU&i yW,i)) + Ayu.Ayw~)'l.a(l)(y;:.uo(yw), . l . 3 h.a(mh’w)) 

with CY = (u, S)(W, u(l)) l l l (w,v(tn-l)),m-l=l(v)*l, 

The following lemma shows that yA preserves semantics. 

ploot, Induction on the structure of t. 

- t E X u Y: triviid. 
_t=:f: 
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[subyw,i,, D(d)Ilp = QD(A)(SUbYtv,i)) 

= (go, a, l l . , g,)-(a-g0lgdd, . . . p gtnbN 

= (go, -0 .,gt?J 

~uAyHI.)‘1,,(1,(Y2,a(2)(Y~~), l l ’ 9 Ym+l,acm+l,(Yd9 Jab’ 

with p’=p[y&0, . . . 9 gdl 

= [I/,+ (subyw,i, 1, LIP= 

- t = abs(,i,: 

Ub a S(w,i), D&NIP = QmA)(abS(w.i)) 

=f-(a-f( N 

=f -(a wUYl.(e.i)f )9 ~llpLYl,(e.i)lfn[Y,lal 

=f wUAYbv*Yl,te,iJt 19 4lP[Yl.~e.i~/!l 

= [VA Qabstw,i,), 4~. 

-t = t&, . . . , t,) : immediate by induction. 
- t = Ay,.t’: immediate by induction. El 

NOW let S be a level-n A-scheme over D(O). Since the level is calculated relative 
to the base type, yA 0 S is a level-n + 1 A-scheme over J2 which in accordance with 
the above lemma is equivalent to S up to ( )-application. 

Corollary A.3. 

VS E II -A (D(i2)>‘e*i’ VJ$ E A-alg 0 [S, D(&ji ) = [yA 9 S, s&l. 

Proof. 

Lemma A.2 n SD(d) = (y* 0 S)d * assertion. •J 

We now ‘want to examine the conditions under which an inverse mapping to yA 
exis 3. 

1r~ attempbting td define such a function c inductively, one is immediately confron- 
ted with the problen of how to deal with abstraction. -While dealing with an 
abstraction Ay,. t, c should intuitively mermrize the type cx so that constants1 of the 
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type Y are ‘lifted’ to constant functions of the type ((Y, v) and/or parameters yiVcr ( i) 
are replaced by the projection prg. Since, however, new parameters of the same 
Zeoe1 can be declared in t, such as t = l l l h yp.s * * l , occurrences of yi,cy( i, in s vvould 
be dealt with by es. If CY( ij St p1 (r) for all r E [I#)], then a translation by c would 
lead to a contratdiction. 

Example. Let type&) = ((i, s), (i, i)), e E J’Z(~*~‘: 

This situation results whenever ‘global’ parameters of the same level occur within 
an abstraction. The following definition characterizes A -terms which make possible 
a translation by c., 

Defhitirm AA, t p? T ~,x,~~ is called locally closed iff for each subterm hy,.s of t it 
holds 

y E free:.5 ) n lewr’(y) = level(a) f- y E Ycy. 

It is possible to show that each n --A scheme is equivalent to a scheme whose 
right-hand sides are loctilly closed, c.f. [18]. Since the construction leads out of the 
class of homogeneously typed A- terms, we merely illustrate the proof by using the 
following example. 

be an equation of a lev&2 scheme. In the first stage we replace the critical subterm 
A y 1 ,ieyl.s by a procedure call whereby the ‘global’ parameter is passed as actual 
parameter. 

SrQge 1; EBimination of ‘global’ parameters. 

x3 =: AY ~s.Ay~,,.ylp 

In general, the resulting scheme is no longer homogeneously typed. In particular 

typc(x.7) = (s, (If, s)). 

Hoqrvever, by appEications to ( ) and abstraction with respect to the empty 
parameter list ti is always possible to construct an equivalent homogeneously typed 
k -scheme [ 181. 

Stuge 2: P/pe homogenization. 
Define 

rypeQxi I= (((e, s), (i, s)). 
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The equations for x1 and ~3 are replaced by 

The correctness of this construction hollows immediately from textual subsltitutiou 
and p-reduction. 

We assume in the foIlowing without loss of generality that the right-hand sides 
of II -A schemes are locally closed. 

Thle inverse mapping c’ is ROW defined by induction on the structure of terms. 
Therefore, if w(i) # i (i.e. Y~,~ is a global parameter), we define c,(yiJ = _t+,+ We 
then show that the mapping works correctly on locally closed terms. 

Since A -terms over D(O) have the set D(I) as base types, we have to lift the 
type of level-0 variables. 

Let D(X) := {x’ IX E X}, with 

and 

level(x) =O, fl type(d) :== (e, type(x) 

type(d) := type(x) otherwise. 

Definition AS. Let w E I*. 

i E I fir C,(yj,i) := 
prr( ) if w(j)=i, 

.s 

J-4 1v.i) otherwise, 

Gvcd := 1 ali+++, if w # e A type(x) = i EI, 
x, 

otherwise, 

t = t&, . . . , tA A typdtd = (e, i) E D(4) 

v d* - c,(Ay,.t) := c,(t), 

level(t) > 0 ,-= c,.(Ay,J) := Ay,.c,(t)- 
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An example of r;he belhaviour of comb is given in Section 4. 
Now let & E A-dg 0 be an interpretation lof 0. Wd want to show that t and c,(t) 

define the same value over d up to abstraction to the empty parameter list. Since 
it is possible that the type of variables occurring in 6=(t) has been lifted, we must 
evaluate c,~ (t) relative tu a suitably modified environment: 

for 

let 

P’E UocJas=D(X)vD(Y)+D(A)* 

be defined by 

if level(x) > 0, 

otherwise. 

Lemma A.6. Let t E Tn,x,y be locally closed and 

Q-free(t) := free(t) n{yivi 1 i E I, j E 01) 5. Yw. 

Then it holds 
(1) level(t) = 0 p? [c,(t), DC:&)lp’ = [Ayw.t, s&lp, 
(2) level(t) > 0 f^* kV(th IwfnllP’ = ut, J4le* 

t = yi,y A vfg I n c,(t) = yi,y trivial; 

t = x A type(x) = i E I I\ w # e m c, (t) = abs(,&x’) 

/?.! UGv(t), mJ4nP’ 

= ~~,~sB)(a~s(w,i,>(p’Ux’n) 

= a -p’Ux’]( ) 

= a H,Puxn 

= jlAy,,.t, dipi 
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t=xhtype(x)=iEIhw=e 

- UGv(t>, D(J@lb’ 

= p’[x’l 

= ( h4lXD 

= [AJ, Jafnp; 

t = x A ZeUeZ(x) > 0 trivial; 

t = f c 0 /‘r [c,(t), D(d)]p’ 

= I[ f’( ), DWW 

= Qm.a,(f’)( ) 

= Q&(f) 

t = t&1, . . . , tr) 

A ?ype(to) = (e, i) E D(I) 

n UGv(to( N, m4lP' 
= Uabstw,i@~ Ctoh D W)b’ 

= Q~tJa,(aEls(,i,)(I[C,(to), Db@b’) 

=a f-~Uce(t0),D(4np'~ 1 
=a++Uto,4ld 1 

by induction hypothesis since to locally closed A 

level ( to) > 0 fi O-free(t0) = P) 

=a 4tot h4b 
=uny,.t,dnp 

.4 type(Q)) = I(v, i) E I+ XI 

* UG, (0, mm' 



142 W. Damn 

by induction lh;Jpothesis since t Ilocally closed implies 

=: a -[t&h l l g , t,), dMyJa1 

since o-free (to) = fl 

== 5Ayw.F, .aelp 

A fwel( to) > 1 immediate by induction since F 
locally closed implies 
‘Wj E {0, . . . , I”} O-free($) = 0; 

F = Ay,.F’ A v E I* - 5&(F), D(d)]p’ 

= UC, (F’), D(~&ib’ 

by induction hypothesis since t 
locally closed implies 
O-free (1’) c Yu 

by induction hypothesis since F 
locally closed n O-free (F’) = 0 

= IIt, dAp* n 

Now let S E n -t 1 -h (0 j, Itar = X. Corresponcling to S we define a level-n 
A *-scheme over D(0) Ey 

cts; :mQ+ zm.D(X).DWh~ 

c(S)(d) := c,(:S(x)). 

VS E n + 1 ---A (01 Vd E A-aZal2 ITS. dl = MSL DM)1( ). 



Proof. Let S E n + 1 -A (Jz), uar(S) = (x0, . . . , XN}, and CC= type(xJ + l l m * type(xN), 
a! ’ := typed l * 9 l 3 type(&). 

We Crrs: show by induction on k E o: 

prj ~W~W~~A~ = prj S2d-l~~> if level (xj) > 0, 

( )-prj S$(_L,&I otherwise. 

since deveZ(x,) = 0 * 

(ZeueZ(x,) > 0 analogous by induction hypothesis) 

1 US(xj 19 dDP if level(xj) > 0, 
= [A. S(xi), &jp otherwise 

by Lemma A.6 

= priS$+1 (AA-) 
I 

if kV@l(X~) > 0, 

( )wpri SC’ (I~-) otherwise. 

Wt: now show the assertion of the corollary. 

(*e) 

= us, 4 since lerd(x0) = 0. 
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k 

The corollaries in this chapter show that we can translate A -schemes in a. stepwise 
fashion into au +rational s&eme and vice versa. This proves the equivalence of 
the two defimtions~ of recursion on higher types. 

Thwrem A.8, n - A (0) - n - R (In). 

Roof. ‘&Let SEIZ-A(O), s&A-alga. 

lS9 &j = [c”(S), o”(.&J( )a l l ( j Corollary A.7 

’ 2” s:imilarly using Corollary A.3. 0 

‘Ren&k. Since the size of’s trarlslated term is bounded linearly by the size of the 
Original term ‘64~2 have 

&e( Y” (S 1) 6 p’(si.te (S)) for polynomials p, p’. 

PART II. LEVEL-N LAMWAGES 

IR part one: of this paper., we developed a theory of level-n schemes. In particular 
led-n grammars were in:roduced to generate (in the schematic case) approxima- 
tiorrs of the inf;nite tree of TI scheme. Tt turned out, that CM-derivations are sufficient 
to generate all trees in a levn:l-fl language. 
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Contrary to the context-free string case, the classes of languages generated by 
level-n grammars using rightmost (or innermost-outermost) and leftmost (or outer- 
most-innermostj derivations are incomparable [30]. In this part we apply the results 
of par: one to establish closure properties, decidability results, and various charac- 
terizations for level-n IO- and 01-languages and prove both hierarchies to be 
infinite. Sufficient conditions are derived to prove s:rictness of IO-like hierarchies. 
It is s)hown that level-n schemes form a strict hierarchy. 

7. 01 

In this section we study the families n -2&r of languages generated by level-n 
grammars (in 01- or, equivalently, unrestricted mode of derivation). It will turn 
out that level-n languages share almost all essential properties with the first three 
members in the 01-hierarchy and thus indeed form a natural, perhaps the natural 
extension of the (revised) Chomsky-hierarchy (cf. [YO]) of regular, context-free and 
macro languages. 

After presenting example languages at each level, we prove a fixed-point charac- 
terization, which gives the link between level-n languages and level-n schemes. 
We show that the family YE -2&(6!) coincides with the class of languages obtained 
by interpreting level-n schemes over 52,. in the power-set algebra of (tree-) languages 
over 0. As an immediate consequence we inherit a Chomsky-nr-rmalform from, 
level-n schemes. To demonstrate the usefulness of the fixed-poin.t characttifizaticn, 
we apply the MW-theorem to obtain an r;asy algebraic proof of the decidability of 
the emptiness problem of level-n languages. 

To substantiate the claim of naturalness of the 01-hierarchy, we show that it 
‘solves’ the language-family producing diagram of the introduction. This involves 
two niore characterization theorems: level-n 01 string languages coincide with the 
path languages of level-n 01 tree languages and r:he frontier languages of level- 
(n - 1) 01 tree languages. 

We close the section by investigating closure properties. An extension of the 
classical state-product construction for context-free (tree-) grammars (cf * [G 11) 
shows that level-n 01 languages are size-closed under intersection with regular 
sets. This answers a question raised by Schmidt [SS]. Together with the decidability 
of emptiness this demonstrates recursiveness of level-n languages. Finally, closure 
of level-n trees under tree-homomorphisms implies substitution-closure of level-n 
string languages, hence for monadic 92 n --2&&2) forms a substitution closed AFL. 

7.1. Example languages 

It will be shown that level-n languages are in essence exponentially thinner than 
level-(n - 1) languages. In this subsection we define samrke languages L, E n -%x 
which are typical in this sense: 



Let 0 = {e, Q, b]~ with types, (e, i),, 1,l. 
Define the language I., (f&r n > 2) by 

n a 

(‘ 2” : 

{ a2 b k+l 
a2 bk .e. 

n-l 

(n 2(’ 
. . . 

a2 b(e)lkEo}. ’ 

We first show by means of an example ‘hoiw 11,3 can be generated by a level-3 
grammar. In this section we identify e ( ) and e and define y, := yl,m for m E W. 

IExample. Let X = (x0, x1, x2, x3, A, B) with types 0,2,3,3,3,2. Let G+ 
3 - NA t.i2) be defined by 

In the following derivation of a16b3a4b’a2b(e) we view a textual substitution 
fo’ilol#ed by a complete evaluation of all actual parameters as one derivation step. 

4 
xo * xdxdbK4 

1 

j. 
* x3ix2(xtB)(B~ W(daMW)) 

1 
* X3(X2(XI))(B!b))(~26(:)) 

1 
--r, x3(x~(x1))IB2(b)~(A(x2(nl!)(B(b))(a”b(e))) 

l 
* .~31x~(xli)(B2(b))(X2(xl)(a)(B(b)(a2~~(e)))) 

1 
=c+ X3(X~(X1))1B2(b))(x2(xl)(a)(b2a2b(e))) 

1 
* x3(x~(X1))(B2(b))(xl(xd(a))(b2a2b(e))) 

1 
* xdx!i(xd)(B’?(6))(x&)(x~(a)(b2a2b(e)))) 

5- 
+ x&xd)(B2(bJ)(xda)(Q2b2a2b(eJlJ 

1 
* x~(x:(.rl))(B2(0))(84bZa”b(e~j 

WI= a’b(e) 

w2 = a4b2a2b(e) 
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1 
3 A(xq(xl))(B”(b))(a4b2a2b(e)) 

1 
-S x~(xl)(a)(B(B(b))(a4b2azb(e))) 

4 
=+ x~(xd~aMb(B(b)(a”b*a*b(eM 

1 
+ x2(x2(xl))(a)(b3a4b2a2b(e)) 

4 
* x2(xd(x2(xdaMb3a4b2a2bo) 

4 
+ x~(x~(x2(x~)(a)))(b3a4b2a2b(e)j 

1 
* xl(x2(xl)(a))(xl(x2(xl)(a))(b3a4b2a2b(e))) 

1 
* xl(x2(xl)6a))(x2(x,)(a>(x2(x,)(a)(b3a4b2l~2bCe)))) 

5- 
* x~(x2(xl)(a))(x2(xI>(Q)(x~(xl(a))(b3a4b2a2b(e))~) 

4 
3 xl(x2(xl)(a))(x2ixr>(a>(xl(a)(xl(a)(b3a4b2a2b(e))))) 

4 
* xdx2(xd(aN(x2(xd~a~(xlo(a2b3a4b2~~*b~e~~~~ 

4 
3 xdx2(x~)IaMxdxd(a)(a4b3a4b2a2bo,) 

4 
=+ xl(x~(xl)(a))(xl(xl(a)>(a4b3a4b2a2b(e):I) 

4 
+ x~(x2(x~)(a))(x~(a~(x~(a)(a4b3a4b2a2b(e)))) 

1 
* xl(x2:,xl)(a))(xl(a)(a6b3a4b2a2b(e~~~ 

1 
+ xl(x2(x~)(a))(a3b3a4b2cz2b(e~) 

1 1 
Jx2(xI)(a)(x2(x1)(a)(a8b3a4b2a2b(e)))) 

1 J 
-& x~(a)(xl(a))(xl(a)~,x~(a)(a8b3a4b2a26((!~ 

& xl(a)(a2)(xl(a)(a1Qb3a4b2a2b(e)))) 1 1 

& a’6b3a4b2a2b(e) = w3. 

obviously, x1 and x2 define copy-functions of type 2 and 3 respectively. The 
charag:teristic exponential growth is due to the possitdity of defining an arbiltrary 



number of itwhams of copy functions of the highest type in each case and 
successively qBplying them to copy-functions of a lower type. 

We naw show that the obvious generalizations of 433 generate the languages L,. 

Pmof# Let n 2 3. Define Gq E M -Nh(Jt) by 

w 
with 

(2) 

vur(G,, j =-: {x0, . . . , x,,, A, I?} 

tjjpe(x0) = 8, VjE[n --I] type&)= j+l, 

type (A) = type (x,) = n: type (I?) .= 2, 

xd) := x&-2) 6 l 9 (d(N(4, 

Xj$ := yj(jri(yj-I)).$ for j E [PZ - 11, 

4 := y, - dYn-2) l . l Iv2>mYdYoh a= ~(YdYo)h 

x,4 == xnl&a-l(YrP”l))(Yt3-2~ l ’ l (Y2W(YlMAb 

x,s_ =A& 

We now show that the copy-functions have the desired characteristics. 
Let m E [n - I], k E O. By induction on k it follows immediately 

Ma;?Fli)k(G+*) ’ ’ l (00) s 0-2,k(om-1) l l l (,cTo) 

s hhlN2”( frmWl.) l l l (~0) induction hypothesis 

Thus it follows: 

Aawtiun 2, 
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Proof, 
-m=l: by Assertion 1. 

-m-,m+l: Xk,+~(Xm)“‘(xl)(a)(w)S 

s x2,*(&.1) l l l (xl)(a)(w) by Assertion 1 

by induction hypothesis 

fl-l /” 2k 
..* 

Let wo:= e, wk+* := a2 bk+*(W& 

- k = 0: trivial. 
-k+k+l: 

11 

x0 Gi x,~xL (x~-~):!x~-~) . l l (XI)(~kCW)(Wk> 

--r, xn(x!z’r b&P2N(&-3) ’ ’ l (~*wk+l(m 

(A& h-2) h-3) l l l h)(~~(~))b’k~) 

=: tk* 

therefore suffices to show tk & w&l- 

This follows immediately from Assertion 2: 

LH. 

tk *x.-l &-2 h-3 k ( j( ) ’ ’ ’ h)(d(Bk(@hk>) 

k k 
*Xn--1 G-2 h-3 ( )( ) l l l h)(d(bk”(Wk)) 

n-1 

/ 
. 2” 

3 a2 *. 
bk+‘(Wc) = wk+l. 

From Assertion 3 it follows immediately k,, c: L(G,). 
It should be obvious that these are also the only derivable words. Cl 



7.2, Fi.w&point characterization 

Let 45 be a level-n grtammar with termirrals 0. Clearly there is only one canonical 
wtfy of assoc;ating a functional Gmn with G, such that (the first component of) its 
least fi;red-point yields the language genIerated by G: define G, E n -A (0,) by 
viewing the nondeterministic choice in the productions of a nonterminal x as an 
operation symbol -t (cf. Subsection 1.1). Then, by the Mezei-Wright theorem and 
the operational characterization of the infinite tree of G,, 

hence it suffices to prove (by a straightforward induction on the length of a 
derivation) that the [Jo set-image of the schematic language generated by G+ 
coincides with the language generated by G. Thus the fixed-point characterization 
is esf;entiaUy a corokry to the completeness of the operational semantics. 

On the othetd ha&, each level-n scheme Gver LJ+ can be viewed as a level-n 
grammar by asscciapjng with a nontermkal x the :ret-image of the right-hand side 
of x in G+. This proves 

Pfoaf, 2’ Let S E n -A (LL). Let + occur without loss of generality (see Corollary 
4.12) on?y in the rule Pk := +$. 

S E n --AL& (0) is identical to S excluding the rules Pi = yl,ijy2,+ 
we have 

P&] = :lief( T(S)) Corollary 4.11 

= set([A L(&)) Theorem 6.7 

= 1. J szt(L(sA)). 

Because 08' Coroilary 6.6 it therefore surfices to show 

&J sd(L&Q)) = L&set 0 S). 

Assertim 1. 

- k ++ k + I: Conslider x& :==& t 3 t’ in SI. 

Let (&I, 51, . . . , tk) be a linearization of t so that tl = x(cp,) l l l (~0) is replaced. 
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Case 1: t’ = &i., t2, . . . , &I. 

S’E set(t) = st,e(to) + (8, {tz), . . . , {fk}) 

fi 3sa E seijto) {without occurrences Of yl,i 
9 
i such that s’ = sortI, tZ, . . . !, & 1 

f”* S’E set(t:l f-a ! 103 +sp in set 0 S by induction hypothesis. 

Cuse 2; f” = lo[+(q u’), ~t~, . . . , t,J with (CT, B’) = (TV, M = 0. 

Linearity of to A s’E se@‘) = set(t’-J - ({cr, u’}, {iz}, . , . , {tk)) 

fi 3soE set(tfJ s’ = S&T, i2, . , . ) tfJ v s’ = s&.~‘, t2, . , . , fk] 

- .r& -3 to[P(u, u’), f2, . . , , tk] in set 0 S by I.M, 

Case 3; x # P, no L -rule. 

Immediate by induction hypothesis since suet 0 S(x) = (S(x)} is the anly x-rule. 

Assertion 2. 

- k = 0: trivial. 

- k+k+l: YConsiderx& =$s ==$s’in set OS. 

Let (so, sI, . . . , sk) be a linearization of s, so that s1 = X(G” ; . . . (~0) is replaced. 

C&e 1: x = P, m = 0, a0 = (Us 0’1, s’ = so[u, sz, . . . , sk] (wathout Pass of genere 
ality). 

a x0$ * t by LH. for a t = to[sr, . . . 9 sk] with so E set&) 

n x0-J =&3 t’ :== to[+(u, CT’), s2, . . . , sk] A s’ E sett:‘). 
* I 

Case 2: x # P: Immediate by inductisn hypothesis. 

This allows to proof (*): 
‘c’ 

fi x04 & s by Assertion 1, 
OI,wr Q s 
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f-3 3teT a+,X x&. =$ t A s E set(t) by Assertion 2. 
t 

Let (to, fl, . . . 9 ,tk) be a linearization of t. 

Case I* k=O n tfrc;?;i, n tELo&_). 

Since 
s E Tfl fi 5 E se&) fi s E set( to[ I, . . . , 1.1) 

Thus “2’ is proven, 

end of proof of (*). 

‘5’ Let G E n -IV& (a). Associate with G an equ:ivalent grammar G’ with 
var(G’) := var(G) ‘d {;p) by 

X1=tl,.*.r.xl==~,* all x-productions in G 

m > 1 .-rs_ = P(t1, . . . , P(t,+ fm) . . .) iin G’ 

and 

Pi, = y I. i, Pi = y2,i in G’ 

rt G’ is determirktic up to the P-productions. 

Now let G:. E az -h (L?+) denote the deterministic variant of G’ with Pl= +(yl,i, yz,i)* 
Then since set Q C: z= G’ it holds 

L(G) = L(Q) = L(set 0 G:) 

== J d.L(G+l j) (*) 

= set(u t(G:J) 

= setiT(G: )) Theorem 6.7 

= [c;:, P&l Corollary 4.11. Cl 

I,;‘; application of the fked-point characterization we state the nondeter- 
wninistic v;lriant of $he normalform theorem. 

3 (Chomsky-Normalform). For each grammar G E n -N.&(O) one can 
effectfuely construct an equivalent grammar G’ E ~1 - Nh (42) such that 



7. ,3. Decidability of emptiness 

I$ this subsection, we shall first give a simple atgebraic proof of decidability of 
the. emptiness problem for level-n O&tree languages and then analyse the algorithm 
to derive upper bounds for the depth elf #a tree in a nonempty level-n language. 

Consider some BI-language L E n - .9’OI(~). By Theorem 7.2 we can represent 
& as the semantics of a level-n scberne S E n - A (0,) Over the domain of tree 
languages over f2. In order to decide whether [S, (Bra)+n is empty, it suficcs by 
the MW-theorem to analyse the infinite tree a(S). Thus we want to define a 
predicate test, such that 

set 

V 
p’& --‘- -- (#rue, false) 

ewtY 

commutes. Here, empty denotes the prtedicate which sends 
To define test, we shall give { rye, liGse} an 0, structure. 
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(1) size(G) a’ p(size(G’)) for a polynomial p, 
(2) G is deterministic up to the pru&&ons 

P(Y l,i, Y2.i) = yl,i]yz,i for P E oar(G) 

(3) If x E uar( G)\(P) and type(x) = (LYE, . . . , (a~, i) . . J, then 

xl=fyIzO forfd?, q=e fcjr 124 

iv 

= x'<y,) l 18 (y,) for xx’I E uar(G) 

or 

= Yi. r,(i)(Ya,-1? l l l (Ye,-,) with cup(j) = (q,+ . . . , ho, i) . . .) 

or 

= XIMY~,), . . . v ~AY,J)(Y~,,_,) l * l (yoo> with J:, f uM3 

or 

= Y ..a,(l)(Y2.a,(2)(Yn,-~), l l ’ 9 
. 

Yk,a,(k)(Ya,-1))(Yor,_2) l l l (y,,) with p 6 m A k = l(a,). 

In particular, l-2?&(0) coincides with the class EF(O) of ccntext- free tree 
languages over 0. 
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Dehitfon 7.4, &et B = (B, a) denote the a+-algebra with carrier {true, false} and 
assigs?ment ff unction given by: 

G’ b-,(( )+&&e) for a E 6!‘e’i), 

f-((bt, . . . v b,,)-61 v bz v l . l v b,,) for f ci 12’w*i), 

-I-I+ ((bl, b&+ 61 II b;!). 

Lemma 7.5, Setting true s false makes B into a A-continuoers &-algebra with 
u-complete carrier. I 

PIN&. For flat cpo’s it suffices to prove the operations monotone, and this follows 
directly by checking the truth tables. Note that the join operation is given by 

LlM = f&e 0 false) E M’ for M Ic B. Cl 

lA2Inm8 P.6. empty : @t&-J, + i% is a u-continuous R+-homomorphism. 

lP;aoof, (i) em17ty is an R+-homomorphism: 

eJnpty({a}) = false = cu(a)( ) for a E fPeSi), 

true itf3jLj=Q) 
= 

Sake otherwise 

= empt.y(L,) v l 0 l v empty(L,) 

= dfkmpty&A . . . , empQG)i, 

1 true 
r?mp.t;*(Lj u Lz) = 

itTLl=L2=8 

fake otherwise 

= enlpty(Ll) 11 emptV(Lz) 

= a(+)(empty(Ld, empw(L2)). 

(ii) em,pfy js strict by defkition. 
Now let AZ? 5 PTCk, 9 f 0 

‘3 (t mpty O_i 9) = true h VL E Zempty(L) = true) 

pr I_ j{emfHy (L) i L (5 9) 

i 

false iff ~LEXC #0 z 
true otherwise 

= empty(i. J 2). n 
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Now let test by initiaiity of %&+ denote the unique A-continuous ,f2+ _ - 

homomorphism, then we have 

Corollary 7.7. test = empty 0 set. 

Thus an infinite tree TV CT 0, generates the empty language iff test(t) is true. 

The decidability of the emptiness problem thus follows from the Mezei-WrigiNike 

theorem and the finiteness of B. 

Theorem 7.8. The emptiness problem for level-n CM-tree languages is decidable. 

Proof. For the following application it is convenient to represent L as the solution 

L(S) := US, P50] of an n-rational schesme S E n -R (a,). 

L=8 

n 

n 

n 

c 

n 

n 

n 

empty(L(S)) = true 

empty(set(yield’“‘iT(S)))) = true Theorem 4.6 

test(,yield’“‘( T(S))) = true Corollary 7.7 

[S, 3?1= true Theorem 4.6 

Definition 4.2 

prl 
Definition 2.2 

l **( ) =hue Theorem1 1 
. 

where a! and SDn(ye,:D”(B)” + D”(B)” are determined by 

S and N + 1 = l(a) = lvar(S)I 

pr&~79&40,. . . 9 -Luv-IM ) . l . ( ) = true 

w 
with k’:= D”(S)” since fo”r iterations k -_Fk (I) we have 

fk(-L) =fk+*(..L) fi Vm skfk(_L)=fm(_L). 0 

By analysing the above proof we now derive an upper bound for the depth of % 

tree in an nonempty level-n language. To ;his end, we first estimate the number 
of iterations needed to compute the test semantics of a level-n scheme. 

Lemma ‘7.9. For T E D”(.!!, de&+* irsductively 

rank(i) := 0, 

rank(a, Y) = ~~ax{l(a), rs2nk(v), rankMj))ij E Ckdl~~ 
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I’mof. We first show 

n 

/ .2+ i:‘or cl, c2 E R+ wiI:h cl > 4. 
2” 

_ n = 0: trivial. 
-p-W-PI: 

silrce 6” = 2ld(b)*x 
n 

/ 
,<;<I . ,p -- 

. 2=‘2 

= 22 ” since ld(2”) = x 
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The assertion now follows by induction on T: 

m-7 = i : define co = 2. 
-T = (a, Y) E D”+‘(d): 

(fpclq.....~5dc~~ 

by 1.H 

by I.H. and trivial arithmetic for r~ :> 0 (for n = 0 the 
k-c,_, - expression reduces to CO - 2 fd(c,)- k-c, 

J 

by (*:) 

ld(c, - runk(~)“).(c,.rank(n.u)n+k) 

cm+,-rank(a,u)“+’ 

forasuitablec,+1 E R. 0 

Together with the proof of the Kleene characterization, this implies that at rilost 
EXP”(POL) steps of the Kleene sequence of an n-rational scheme are needed to 
guarantee that the image under set 0 yield’“’ is not empty. 

We now prove that in translating by yield the depth of a tree can increase at 
most exponentially. 

Lemma 7.10, Let C be a many-sorted alphabet, t E F%:c,. 
Then it holds 

depth (yield(t)) s 2deprh(t). 

Proof. Induction on t. 
_-t=f: 

depth(y(f’))=depth(fy,)=2=2dep’h’f)w 

- t = I(&: 

depth(Y(-k,,)) = depth&) = 1 = depth(l,,,,.J. 



- t = abstbeY+): diwcict by I.H. since y(ubsla,v$‘) = y(t’). 

= depthlyh) + WA . . . , y(t,))l 

s depth ( y( to,)) + ma(depth C Y(ti)) ii E Cd) 

s2 deprk(r,)+2mc2*!?:prh(vlri))lirt[rn by I.H. 

S2*2 max~depf~(v(ri))licIO, -. . , fH 

depth ( I 1 S2 . II 

It is easy to see that this bound is optimlal (consider to := f’, tn+l :== subfji,i,tnta). 

Rem&s, For the typed A-calculus, this lemma implies that the size c f the normal- 
form of a term t of type 0, whose higrhest subtype is n, can be restricted by 

since size(t) =size(comb’“‘(t)) and the noi*malform of t coincides with yield’“’ 
(comb’“‘(t)). 

By summarizing, we obtain a 2n-Iexponential bound on the depth of a tree in a 
nonempty level-n language. 

Thmrem 7.11. Let L = [S, PFnl for a level-n scheme S over O,.. 

:fi p(siteW)) 

L-$U ++ 3fEE depth(t)&! * ’ 

for 4 pol;yruwzial p. 

Proof.. I&et (without loss of gznerslity) S E n - R(O+), with w(S) = Xa, r = l(a), 
k’= lea). From the proof of Theoream 7.8 it follows 

L f BI fi pr#$“(48) (i,))J = fabe 

- :est(yield’n’iprl(S~Y;DrI;R,) (I ,))J)) = false Theorems 2.3,4.6 

e test(yieZd’“‘(K(S)(E)‘))) = false Theokm 2.5 or 5.9 

- set(yieZd’“‘(K(S)(@)) # 0 Corollary 7.7. 

E # 0 therefore implies 3 E set(yieZd’“‘( K(S)(E))) c L. 
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Let depth(S) := max(depth (S(x)) 1 x E uat(S)}, then it holds 

de~th(~~S~~~~~ s k” e de~th(S~, 

and thus 

depth(t) G de~t~(yieZd’n’(K(S)(~))~ 

Lemma 7.10 

c n-an& ($2 .;c 

* r. depth(S) 

with rank(S)=mlzx(rank(a(j))lj~[rj} 

28 4 p(~iz~~S~) 
. 

s2” for a suitable polynomial p 

size(S) 2 rank(S) 9 lvar(S)1 l depth(S). Cl 

Lemma 7.9 

7.4. Paths and leaves 

In the present subsection we shall prove that the ~~whier~rchy solves the Ianguage- 
producing diagram of the introduction. Thus we have to characterize leve’2-n + 1 
string languages as frontier-languages of level-n tree ~a~guag~~s in a uniform way. 

For one direction of the proof it is convenient to assume that a level-ra string 
grammar only uses one parameter of the base type i. Here we shall prove t%le more 
general result that path languages of level-n tree languages (:an be generated by 
level-n grarr-mars satisfying this requirement. 

In the sequel we shall use the following property of ~~-deri~~a~ion~s in a grammar 
in Clhomsky normalform. 

Lemmra 7.~2, Let N denote the det of ~~~~ic~tive terms ovef ~~~~terrn~~a~s of /eve/ 
0. If G E n - AIA (0) is in Chomsky normalform, then 

The assertion follows immediately by induction on the length of the derivation 
and case-splitting according to the form of the right-hand side. 

We shall now prove the path language characterization. 
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As in the context-free case (cf. [8]) we replace a nonterminal of ‘arity’ k (i.e. 
with type (. . . , (,ik, i) . . .)) by k nonterminals x’,, i E [k], whose right-hand sides will 
be tbc set of ‘pkths leading to ,s$ of the right-hand sides of x. 

In order to ldescribe this notioill formally we shall define a mapping bri on 
applicative terms. In the treatment af higher type subterms we first allow all possible 
paths and in an actual derivation &oose the correct one by means of projections, 
This implies a change of types, 

(1.1) The arity of a type 7 := (am:. . . . , (P, i) II . l ) is Qr(r) = k. 
(2.2) Define 6r:D*(l)+D*(I) by 

brli) := i, br(ik, i) := (i, i), 

br{a!(1) ’ . . . l a(r), ZJ) := (br(a!(l)) 
ar(a(1)) , 

. . . l br(n(r))““*“‘l, by{ v)). 

(2) Terms 

(2.1) a&) := ar(type(t)). 

(2.2) For appkative termsl t E T. ?,x, y and 0 -- 1 -c ’ s ar (t) we define brj (t) by induction 
on t: 

brj(X) := Xi with typ&‘j = br(type(x)), 

br&( )> := brb( to)( ) if ilevel( to) = 1 z 

br- f t I t J\‘O , 1, l ’ = > tk)) = ,Li, br,(td(br~(t,.)~l if level&) = 1, 

To simplify notation we identify 

t and> {t}, 

hq,~( t) and brI(t), ,, . . , brr( t), 
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(3) Grammars. Let G E n - IV” (0) be a grammar in Chomsky-normalform. We 
define br(G) E II - NA(&) by 

(3.1) Nonterminal symbols & :=: {x’ Ix E var(G), 0 s j s ar(x I}. 

(3.2) Axiom x:1. 

(3.3) Productions 

tErhs(x)in G n VOS j < ar(x) bri(t) E rhs(x’) in br(G). 

Before we prove the correctness of the construction, we first give a simple 
example. 

Example. Let 0 = {e: (e, i), j’, g: (ii, i)} and G E 

var(G) =(x0: i, xl: (ii, i), x2: ((ii, i), (ii, 

x0 = x2hk d, Xl1 =f(Yii)lg(Yii), 

X23- = Y l,(ii,i)tY l.(ii,i)(Y2,i9 Y Id)* Y2.i))* 

Clearly 

2 - NA (L! j be defined by 

9% 

LoI = {f(f(e, e), e), f(g!e, e), e), s(fk e), e), g(gk f 1, dh 

Then 

var(br(G)) = { & i, xi, x:: (i, i), xi, xi: ((i, i)(i, i), (i, i)N 

and 

x:= x2x:, x:)Wlx3x~, x:)(e), 

x:4 =fl(Yl,i)lgl(Yl,i)v X:3- =f2(Yl.i)lg2(Y l.i)9 

Xi-l- = Y :,Ci,iI (Y :.Ci,i, (Y l,i3)9 

Xgl = Y:,(i.ij (Y :.Ci,ib (Y l,i))lY :i!,ti.i) (Y Id)* 

An example of an Ol.-derivation in br(G) is 

xi 2 xl(x:, x:)(e) =d -‘> t :(x:(e)) T f’(x:(e)) %f1(g21:ei). 

Clearly L&br(G)) = br(L&G)) 

Theorem 7.13. The path languages of n -.S?& coincide with the 
languages. 

. One inclusion is trivial. 
Now let G be a level-n grammar in Chomsky-no~malform, Without loss of 
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generality &e [ IS]) we may assngme 

The pre&Df CST br(L(G)) = L(br(G)) is based on the following two assertions (here 
br := brg-,). 

‘Assertion 2. 

Both assertions are proved by induction on the length of the derivation and 
case-split,ting by the form of the app’lied production. 

Prouf of Asm~tion 1. The base step is trkial. 

Now let A :$ t + t’ be an OI-dei-ivation in G and (to, tl, . . . , tr) a linearization 
of ! such that r’ = fO[ t\, , . . , t,] with 

rf = sfy*,,/o”] ’ ( ’ [y,,/a’l[ya,/h, ’ l ’ 9 Sk)1 

where 

tl = x(c?) l 9 . (c?)(s~, . . . , sk’) and s E As(x). 

By inlrjluctisn hsothesis it suffices to consider the case 

W’ E w,[br(ti)] with wo = Mfo). 

Case 1: 

s -fhi, l l = 9 yk,i):, m = 0 

n 3j g [k] 3~ E br(sj) W’ = wo[f’(v)I 

and by construction 

f’(y*,i) E rhsi:x’\. 

A:c. w~[x~(EJ)]E bir(t) we have by II-I. 

y + w&‘(c)] =$3 WI in br( G) for some y E br(A). 
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Cm? 2: 

s=a( ),ao=e 

163 

Pa WI== wo[e( )] and by construction e( ! E rhs(x”). 

Since wO[xo( )] E br(t) we have by 1.H. 

y =$+ w&‘( )]--d;7 w’ in br(G). 

Case 3: s = x’(y,,) l l l (y,,>. 

(3.1) leuel(x) = 0 

T-4 w’= w&‘*] and by constructim x” E rhs(x*) 

/L since wo[x”] E br( t) y =$+ wo[x’] 3 w ‘. 

m 3v E br(s,) w’ = wo[v] anti 

wo[br,(x(rrm) l 8 * (a’))(u)] = ~~[~~(br~,,c,,,,(o~)) * l l 

(brI,,(,,,l(cr’))(vjl~ W) 

and by construction ye E &s (x ‘) 

n y + wo[br,(x(cm) . l l ((7 ‘))(v)] -==ga w&J in M3 by IeHe 



with 

Since 
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it follows by I.H. 

~.=&v==pv’ inbr(G). 

Since 

v1 = br,(al) A v2 = bri(cr,l. 

w = wO[x’(br[,,(,,n(a”)) l . l (bqar(al)l b”)>Wl f W) 

and by construction 

rhs(x’) 3 Y?,W~J (Y &r(vq~ (Y 1.d 

it follows by I.H. 

y==$+%w’ inbr(G). 

(6.2) p > 0; similarly to (5.2). 

Proof of Assertion 2. The base step is trivial. 
Now let A EN and y +ol w =%& w’ be a derivation in br(G) with y E MA), 

su& as 

A = X(Cm) l l . (a’)(sl, . . . , Sk), type(X) = (am,. . . , (a0, i) l l J, 

y = x’(bqa,(,,jl (~‘“I) l l l (bqarcal), (d)(d 

for j E [k], v E br(Sj). Then it holds 

w = ~CbrCar(a,)3(ya,)lb~arca,,l((+m)l 

. * * tb~nr(crl)3(,Ycr,)lb~ar(al)3 b’>lCyd~l 

for Iv 5 rhs(x’). 
B-J construction there exists s E rhs(x) with v E brj(S)* 

Let 

t == SlIYa,/~m‘f ’ ’ ’ [Yc&Il[Ya&, ’ n l 9 aJ* 

By case-splitting according to the form of s we show that 

w E br(t). 
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Case2 s=a( ) n w=e( )Ebr(t). 

Case 3: s =x’&,) l l e (yaoj. 

(3.1) Zeved(x) = 0 n w = x” E br(x”). 

(3.2) i’eveEfx)‘~O n w = WOE br(t) with 

Eli= ~“(b,~,~ll,(~~,l(cr”)) l l l (bq,,(,,,l(crl)). 

bri(s)+-@ n r=j n W=VEbr(.Fj)At=Sja 

(4.2) p>o,v’=cyp(r),(Yp=(cT*,...,~~) 

- w = WOE br(t) 

with 

W] = biri(Gr(O P-1 ) l ’ l ((+I)) 

= bri(~,)(b~,,c,~._,,,iaP-‘)) l l + Cbqarcn,ddh 

Case 5: s = :~h(X2(YcrJr l l ’ 9 &0&N~Ya,_,) ’ l . o$YJ. 

(5.1) leuel(r:) = 0: similar to (6.1). 

(5.2) level(x) > 0 

n w -2 WOE br(t) 

with 

WI= bri(xl(x,(d’) , . . . , xJcrp))(up-l) l l ’ (d)) 

== d (b~ar(lcz)l~x2)(br[arccr,)] (up)>, . . c , bqar(x,j] (xrl 

(b~,,(,,)l~aP)))(b~,i(,._,),(aP-’)) 0 = l Uqar~al~~bl)h 
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In each case there exk ~0, ~1, a linearization (to, fl, . . . 9 tr) of P and j E [r], such 
that 

and 

w’= wO[vr] with wi(v)& v’ 
01 

therefore tj exists by induction hypothesis with 

2” E br(tj) A A & to[tl, l l . 9 tj, l l . 7 tr] 
OX 

a tort*, . . . , t;, . l . , fr] =: t’. 
or 

Obviously w E br(t’). 
This Assertion 2 is proven. . 

Now let w E br(L(G)), such as ~04 $ 0I.G t E Tn and w E br(t), then by Assertion 1 

therefore w E L(br(G)). 
If w EL(~~(G)), then since .& br(xo) by Assertion 2 w E br(t) for E ir’&V) with 

x0$ g0I.G f= Let (to, h, . . . , .$) be a linearization of t. 
If 0 is monadic, then since w E Tab,, r = 0 and hence I’ = to E L(G) hold. If fl 

is not monadic, then w E br(to). By (*) there exist ti, . . . , t: E TO with ti &II & 

therefore 

X(J + f&, . . . , t:] =: TV Tn 

and 

w E br(to) s br(t’) c br(L(G)). 0 

We now discuss the characterization of frontier languages. In order t3 show that 
the front language of a level-n tree language can be generated at the in - 1)st level, 
we replace each operation symbol f with arity k by the functional 

hYl,(i,iJk * Yl,(i.i) O ’ l l 0 Y&,(~,~) which concatenates the fronts of the subtrees tl, . . . , tk 

of f(r1, . . . , tjcjc). 

Construction 

(1) Tves 

fr : D*!(i)) + D”({(i, i)}), 

if+, i), 

(a(l): l . l l &9,44fP(Lu(l)) . . l 9 l fr(a(rh frW>- 
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(2) Terms. Les fl be a D({i})-set. Define a monadic alphabet &, by 61Fi’ := k?‘? 
By induction on the consltruction of t E T a,,r,Y we define the front of t, fr, (t), by 

frA da) := a for a E ksi), 

fr; Cf) := P := Ayti,,~,k l Abyl,i=yl,(i,i,(* l l (Y/c,(i,i)(Yl,i))-* l l ) 

for f E ~3 with ar(fl = k, 

frh (YjJ := Ymv) 

j?A(X) := x, 

fr* @oh 9 l , l , f,)) := fQ (to)(fr* (M, l 1 l 9 frA W)9 

fr,, (&. t’) := Ayp~o,.fiph (2’). 

(3) Grammwr. Let G E n - NA(i2) with vu(G) =X and axiom S =T x04. 
We define fr(G) c n + 1 -NA(L&) by var(fr(G)) := X u&x;} wit’tl type(xb) := i 

and productions fr(G)(&) := S(e), Yw E X fr(G)(x) = frA (G(x)). 

Since frx is a homomorphism with respect to abstraction, application and substitu- 
tisn, a derivation in G canonically induces a derivation in fr(G) by replacing f by 
f and applying alJ/ terms to T. The following lemma shows that the normalform of 
the resulting term coincides with the front of the derived tree. 

Lemmra ‘MO. Vt E To front(r) = cf(frA (t)(le)). 

Pr;too%, By induction on t we show that 

,,f?ront&) + w = nf (fh (N~4. 

Since fkotzt( t) = front&) + e the assertion thus follows. 

+=a: 

-tif(fcda)(w)) = a(w) 

= a(ylJ *- w = front&> +. Iv; 

FEKts 5.3, 5.4 
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= nf (frh (tl)( l * l (front&) - 4 l * l N 

= nf ( frA (tl)( front&) + * * l - frontoct,) + w)) 

= front&) + front&) + l l l + fmnt&) + w 

= fronto(t) + w. Cl 

The correctness of the construction is based on the following lemma. 

Lemma 7.15. frA Ct[yJsl) = fm V)[yfdfrh WI. 

Proof. Immediate 1.y induction on the construction of t. El 

We now show that Err(G) generates the frontier language of L(G). 

Lemma 7.16. front(L(G)) = L( fr(G)). 

Proof. ‘E’ We prove first by induction on t 

-t=x fi sag fh frh) =x ;(o;.frdsh r 

- i E 0 u Y: trivial. 

- c’ = Ay,,t’: immediate by 1.H. 

-c + = t& . . . , tr): 

Case 1: 3j ti,,g : immediate by I.H. 

Case 2: 

to = Aym. t’ A s = t’[yJ( t*, l . . , tp)] 

fi frh 0) = Ayf,c,).frl, (t’)(fc (td, . . . frk (6)) 

*frA (t’NIyf4dfh t fd, . . . 9 fh (tr))l 

= frA (s) Lemma 7.15. 

Thus (*) is proven. 
Now let S = x0$ be the ax!iom of G, then it follows immedfdely from c*:) 

169 

IX 

E.H. 

(*c) 
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and thus 

” Ito; s(e) fr(G) 
_*_ frA (t)(e) % nf(fr,(t)(e)) = front(t) by Lemma 7.14. 

r 

‘ 2 CaII an f-re:dex any redex of the form f( tl, . , . , t,). 
We first show 

if frAU) f cGI w w is not an f-reduction, then there 
I 

(*I 
exists s with t” s A w = f?-A (s) 

by induction on f. 

-*t=J( n w =,fr&) with SE G(x) fi t--” *‘S. 
G 

- t = Ay,.t’r immediate by LH. 

--. t = if,J( dl, l . * 4) &): 

Case It 3j fl*(ti) + wi: immediate by induction. 

Case 2: f&J = Aye. w’ h w = w’[y,/(fr&), l l . , f&(&)l]g 

By the assumption that t is not an firedex we have to # f. Since new abstractions 
are only introduced in the translation of terminal symbols we must have 

3~31’rv’=~Y&‘)ACY =fr(P) 

fi W :-frdt’)[y~~(pJ(fQ (tih . . l , fc4 (t,))l 

= f&J with s = fr&‘[yp/(tl, . . . , tr)]) by Lemma 7.15. 

Obviously’ it holds t + s. 

This proves (*). 
Now let w E L(fr(G)). By Theorem 6.4 there exists a left reduction leading to 

w. Without Ioss of generality we may assume that the evaluation of the actual 
parameter el is delayed and carried out as the last reduction step. Then the above 
derivation b3 has to be of the form 

-+ w, (e)-&f ( w3)(e) ‘;: w. 
&3 

ATort.e that only the lzrst P-reduction is a non-standarid derivation step. Since in 
an kduciion no actual parameters are copied, we can arrange that all f-reductions 
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are carried out at the end of derivation by interchanging f-reductions with 
non-f-reductions, starting from the right. This is possible since D is (essential,ly) a 
standard derivation and thus the redexes interchanged are either contained or 
situated to the right of the corresponding f-redex. Hence L, is equivalent to a 
derivation D’ 

where no f-reductions are carried out from pi to u j. But then S + ~1 + ;f; o ‘1 + l * l + 

o,,. -)a* u: is a derivation in fr(G), hence by (*) and the fact that frh(S) = S there 
must exist terms ti, I; with f~,~ (Q = uj, frA (ti j = v; such that 

Since f is linear, t; inherits from ZJ; the property of being a term over parameters 
and operation symbols only. Moreover, vi, contains only f-redexes, hence t:, is in 
normalform and thus by the above t; E L(G). This proves w to be the front of a 
tree in the language generated by G: 

front(t:l) = nf (fh (tX Me )) Lemma 7.14 

= nfkdde)) 

= nf(nf(w,)(e)) = w Facts 5.3,5.4 q 

We shall now characterize level-(n -t- 1) string lang,uages as frontier languages of 
level-n tree languages. 

By the construction used in the path language characterization it suffices to 
consider string grammars in Chomsky-normalform, such that all types of nonter- 
minals and/or parameters are either a base-type or of the form 

(a m, , . . , ((i, i)“, (i, i)) . . . ). It is easy to see that such a grammar is equivalent to a 
grammar which uses e only in a new initial production XL = xo(e( )) and where .R$ 
is the only nonterminal of a ground type (otherwise replace each expression x 4 with 

ande( ) 

type(x) = (e, . . . , (e,O. . .I by x( ) . . . ( )h,h 

by yl,i, and add the production 

We now associate with such a level-(n + 1) string grammar G a level-n grammar 
c(G) (essentially the image under cot&) by writing an application t&(yd) as 

composition tl 0 tz and omitting the parameters ylei in all higher level productions. 
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Taking the image of c(G) under frant yields again the grammar G, hence by the 
above lemma the frontier language of c(G) coincides with the language generated 
by G. 

coIwtmction 
(1) Types: 

c : D*({(i, ij) I+ D*((i}>, 

(i, i)-i, (a, z+-a(C(cr(1)) * ’ ’ ’ l c(d)), c(v)). 

(2) U_,et Q be a monadic {i}-sorted alphabet. Define an {i}-sorted alphabet 0, by 

ki 4 0, := Jp, n(i*,i\ ._ c ,_ b), 

We use the symbol for composition in infix-notation. 
(3? Assume, that alli productions of G E n + 1 - NA (0) are of one of the following 

forms: 

c(,G,? E n -- NA (&) has as nonterminals urzr(G)\{~b} with re-d%:fina:d. types. The 
productions of c(G) are obtained by substituting each production of the form 

This proves the fol!owing characterisation of OX-string languages. 

7, 7be frontier languages 0f n - PLP 01 coincide with the level- (dz + 1) 
CWming languages. 

l~4FrO@f. ‘gg Let L = front(L(G)) with G E n - NA(L& then L = L( jr(“;)) by Lemma 

X16, hencle L E (n + 1) -&@,). 
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2’ Let 0 be a monadic alphabet and L=L(G) for some G~(n+l)-Nh(0). 
Then there exists an equivalent level-n + 1 grammar G’ which contains only produc- 
tions of the form (3.1)-(3.8) (take the Chomsky-normalform Gr of G and use the 
above hint to construct G’ out of br(Gr)). Since fr(c(~)) = T E D*({i}) and hence 
(up to &reduction) frA (c(G’(x))) = G’(x) we have by Lemma 7.16 L(G) = L(G’) = 
L( fr(c(G))) = front(L(clGN. Cl 

Since 0 - NA (0) and 1 - NA (0) coincide with the class of regular andfor context- 
free tree grammars over 0 and frontier-languages of context-free tree languages 
define exactly the class of macro-languages [56], the O&hierarchy starts for a 
monadic alphabet with the re;;ular, context-free and macro-languages, 

Corollary 7.18. Let l2 be a monadic dphabet. Then 

A sketch of a proof of this result can also be found in [28,70], An alternate 
proof using top-down tree transducers on infinite trees is given in [5;]. 

7.5. CLosu fe properties 

In this section we will demonstrate, that level-n OI string languages form a 
substitution closed AFL. 

We start by investigating closure under intersection with regular languages. The 
construction employed is an extension of the classical state-product construction 
for context-free tree-grammars (cf. [61]): in an 01-derivation, the current state of 
the finite automata is memorized in the top-nonterminals; as soon as a new terminai 
symbol is derived, it is fed as input to the automata and the new state is again 
stored in the top-nonterminal. To avoid the (technical!) elimination of rules which 
generate a special symbol for nonacceptance (c,f. [61]), we simulate the intersection 
at the level of trees over 0, and use _I_ to ‘erase’ nonaccepted branches. 

Essentially, intersection of languages over 0 corresponds to taking meets of the 
tissociated. languages over J2,. For the monadic case considered in this section, the 
meet operation can be further specialized. We need the following nr#tation. 

Notation. Let fl be a monadic alphabet, t E FTa+(N), R Z- To, and L = U se@+) 
with L+ c FTa,. 

(1) R, := (t E FTa+ 1 set(t) c R}. 
(2) b, tt, l 

. . , fk) 1,‘ a fd linearization of t iff 

(i) tj E N u {e, I }, 
(ii) front&) = y&l C- ’ ’ + Yi,k, 

(iii) f = s[fl, . . . , fk]. 
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Ckiarly each t has exactly one full linearization. In the sequel we will restrict 
ourselcres to full linearizations. 

(3;r If (s, t1 , . . . , tk) is as above, we set Zeaue,(t j := tj, breadth(t) := k. 
(4,~ puthi is the string in J2’jVi’ leading to leuuej(t). The set path(t) = 

{p&(t) jj E [breadth(t)] A Zeuoej(t) = e} contains all paths of t leading to an e-leave. 
(511 ‘Define a partial order c on FTn+(W) by 

t i;r: t’ iff t = s[tl, . . . , fk] r\ t’ = s’[ti, . . . , th] fi 

s=s’Ak=k’Hjc[k]tj#tj n ti= I, 

i.e. t can be obtaired from t’ by replacing some leaves by I. 
(6 :’ The meet of LL+ and R, is given by 

L, Iv?+:== {sER+I3tEL+sct}. 

It is now siraightforward trot prove, that the intersection of L and R corresponds 
to the meet of L, and R,. 

Lemma 7.19. Vt E FTn, puth( = set(t). 

Proof: Immediate by induction over t. El 

Lenrma ‘7.20. Vt E FTn+ S c set(t) - 3s G t S = set(s). 

Proof. Let t = t&, . . . , tk]. By Lemma, 7.19 we have 

S={pathi,(t)e,. . . , puthir(r for some r E (0, . . . , k}. 

&tine s := &i, . . . , &I, where 

t; = e if jE(il , . . . 9 &I, 

_L otherwise. 

I& ILemma 7.19 we have S = set(s). U 

Corollary 7.21. L n R = IJ set&+ i-l R+). 

Prorrk ‘s’ Let w E set(t) n R witn t E L+ - by Lemma 7.20 3s f t w E set(s) = 
set! t:l n R. 

‘linen set(s) z R n s E R,, hence s E &+ n R+. 
b 2’ Cct w E set(s) with s EL, Ll R, 

* sER+A3tEL+SSt 

* w E .get(t) A w E m(s) c R 

- w E J set(L+) n R. 0 
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Now let L be a level-n 01 language over 0, and R = L(9) for some Rabin-Scott- 
automata 9 with states [k], input alphabet 12’, transition function 6, initial state 
1, and final states F. Then R+ is the set of trees such that a path is either accepted 
by 9 or leads to _L. By Corollary 4.11 and Theorem; 6.7 and 7.2 we have 
L = U set(L(SJ) for some level-a A-scheme S E n -A (a+). Thus it is sufficient to 
construct some SE n -A (a,), such that the schematic language generated by S 
contains exactly those trees of R +, which differ at most at I-leaves ‘by e’ from 
trees in L(SJ. Clearly SL has to simulate (01-)derivations of S, except that an 
e-leave is only generated in case the path leading to this leave takes % into a final 
state. Recall that the current state will be memorized in the head-nonterminals. 

While simulating a production x4 = xl(x~(ycr), . . . , x,(y,))$, say, we do not know 
in advance, which state the automata will have reached while working on strings 
generated from xi with ja2. To cope with this, we allow all possible states and, 
later on, choose the correct state by means of projections. 

Construction 

: D*({i}) + D*({i}), 
7 
1 := 1 l , ((Y(1) l l l l l a(r), v) := (Cr(l))k l l l l l a(#, F). 

We identify [k] x Y, and YGk via 

(2) Terms 
(2.1) Let t E Tk y be an applicative term. 
We define inductively 5 E T&xx,[klx y by 

x’ := (lx,. . . , kx) with type&) := type(x), jj := (ly, . . l , ky), 

to1 9*'-9 tr) := (prdW1, . . . , u, l l l , prkml, l l l 1 m. 

(2.2) Let fl := {pri(S) 1 t E N A j E [k]}. 

: gTa+(fi) + STn+(N) is the unique R+-homomorphism generated by prj(t) Ht. 
(3) Let S E n -A (a+) in Chomsky-normalform, 9 = ([k], J2’, S, 1, F) a Rabin- 

Scott automata. 
Define SE n -A (a,) with KU(S) :=: [k] x ear by 

(3.1) x4 = e( ) in S m Vq EFqxJ = e( > in S* 
(3.2) ~4 = +5_ in S /‘* Vq E [k] 4.x4 = +@yl,i, 4yZ,i) in S. 
(3.3) xJ- = a$ in S n Vq E[k] 4x4 = a(SQ, dy1.i) in 9. 

(3.4) xJ=x’S_inS fi VqE[k]qxJ=qx’JinS. 
(3.5) XJ =xlh(ya), . . . , x&N in S -- -- 

m Vq E [k] AXE, . . . , x,ty,N in 27. 
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Tc aid intuition, we will first give an example. 

ExampIn?. Co;nsider the gramm:jr G3 of Section 7.1. In order to be able to carry 
out the constauction, it is sufficient to replace each occurrence of a, 6, and e in 
G3,. Ivy nonte:&inals 8, b, and e, respectively, and to add the productions 

Lcl: i5;: t: 3 - h (.I?+) denote tthe moldified version of G3+. Now consider the repular 
<set 

R:: :I= d(b2)+a+(b3)+(a v 6)” == a’(b2)‘.i’b3(a v b)* 

whiekt will be employed in Section 9 to evaluate lower bounds on the ‘complexity’ 
of the sample languages. R2 is recognized deterministically by 

9 a 

-+@-rtQ5@~@,4@Q)P,@qg 
0 b 

a c, u b ._ ;3b 
0 

a 

nte set of productions of s consists c)f the extended rules of S 
-- 

1x0 = '~X3(X1)(5)(~)9 4x14 =qyl(yl(yO))9 qx21=yY2(Y2(Y1))(Y0)9 

-s-m 

@ji = C(qX3!X2(j'2))(B(yl))(A(y2)(yl)(YO)), 4A(y2)(j&y0))9 

and ‘productions modelling the behaviour of the finite automata 

qa 1_ =I a(S(q, 4yo), qbJ, = b(S(q, k)yo), qe = e. 

Pm example on an Ol-derivation in & is 

1x~)=$lx3(&i)G) 
_.- 

+-t(t, lA(x1)(6)(e”)) 
_-- P - 

with t := lx3(x2(x,))(B(b))(~~(xl)(b)(e)) 

=+ +(r9 lx16)(b(e)) 
.- 

=+ +(t9 la(ig(b(e)))) 

=* +( r, a (2a (b (e)j)) 

r.3 +(t9 a(a(2b($))) 

* +I,t, a(a (Bl(3e):1)) 

* +(& aab(l)) 
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-- 
* +(+V, lA(x2(xl))(s(b))(A(x,)(tP)o)), Wl) 

with wl = aab(dJ, 
-- 

t’ = lx~(~)(~)(A(X2(X1))(B(b))(A(X1)(~)(e~)) 

* +(+(t’, lx*(~)(a)(B(b)(A(xI)db)(e)))), ~1) 

* +(+(t’, lXl(Xl(a))(B(6)(A(XI)(b)(e))))), ~1) 
-- 

* +(+(t’, lxl(a)(xl(a)(B(b)(A(x,)(a)(e))))), WI) 

* +(+V, la(a(xl(a)(B(b)(A(xl)(b)(e)))))), WI! 
--- 

* +(+tt’, a(2a(xl(a)(s(6)(A(x,)(~)~~))))), w)r 

* +(+(t’, a(a(2xl(a)(B(b)(A(xl)(b)(e))l))), ~1) 

* +(+(f, a(a~2a(a’(B(6)cA(x,)(b)(e)))))), ~1) 
-_ 

* +(+O’, a(a(a(2a(B(b)(A(xl)(b)Ce))))))), ~1) 

* +(+O’, a(a(a(a(2B(gj(A(xl)(b)(e))))))), wd 

--S, +(+(t~~a4(2b(6(A(x,)(b)(e)), ~4 

=+ +(+V, a4(b(3b(A(xl)(b)ie))))), WA 

+ +(+(t’, a4(b(b(4A(~)(6)(~~)))), WI) 

-3 +(+(t’, a4(b2@h~~)o(e)))h WI) 

--5 +(+(t’, a4~b2(4a(a(b(e)))))), ~1) 

* +(+V’, a4(b2(a(6a(b(e)))))), ~1) 

3 +(+(t’, a4(b2(a2WHe)))N, WI) 

3 +(+(t’, a4b2a”b(7e), wl) 

3 +(+(t’, a4b2a2b(L)), WI) 

=+ /+\ 

/+\ 

a 

\ 
I a” a 

a 
‘1 

b2 ‘b 

\ 
a2 

\ 
1 

\ 
\ 

b 

‘\ 
_! 
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It is easy to see that the shortest word in the intersection of L(G3) and 82 is 

d2S6g4.a't'b'Jn4b'!a2~,, 

The foil’owing three lelnrmata demonstrate the correctness of the construction. 
Sicw WC crnjly &al with Cklerivations, we will simply write + for *or. 

‘+% pr*o:,‘e ik;t, that &_ only generates trees, which are derivable in SL. 

&oof. By induction on the length of a derivation. The base step is trivial. NOW 

conside:~ a derivation 
* 

:1x& ‘T t =p t’. 
I I 

LRf Is, 51, . l . , s,) be the full linearization of t, and assume (without loss of 
genemilit!r) that sl = qx(ci,,) l l l (go) is the subterm replaced in the last derivation 
step. ‘dl) induction hypothesis we have 

If t’ de; obtained from 1’ by a &production, the assertion is obvio&y true- We 
proceed by considering c:ases (3.1) to (3.7) in the construction of S. 

(3.lj t’ =s[e( ),s2,*.* , s,] and ,t +sl i’ since x 4 = e ( ) in S. 

(3.2) Let GO = (&, i2j 

F* c” = s~+(prqi&), p&4(72)), s2, . . . , $1 

A i: 79 s[9(tn, t2), ~2, . . . ) _s,] since x3_ = +J- in S 
I 

=f’ since +(tl, t2) = +(pr&J, pC#2)h 

(3.3) Simiiiar to (3.2). 

(3.4) t’ = ,s[qx’(tjip) l * l (@o), S2, . . . , &] with i? s m 

f-u p _ ==g$~'=:s[pr,(x'(crp)~ l l (ud,sz, l ' 9 srl 
-- __ --- 

(3.5) t’.= s[qx*(x2(0$, ‘I . . s X,(o=p))(c+~) ’ ’ ’ (ii&&, . . . 9 &] 
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Next we show, that & generates only trees with paths leading to J_ or accepted 

by 9. 

Notation. (7) 6* denotes the (total) extension of 6 to strings. 

(8) For A E N we denote by state(A) := prl(head(A)) the state memorized in the 
top nonterminal of A, 

Lemma X23. Let lx& $gL t and 1 := breadth (t). We have 

Vj E [I] (leavei = e n S*(pathi(t)) E F) 

A (lt%.Wt?j(t) E N n s*(pathi(t)) = state(Zeavei(t>)). 

Proof. By induction on the length of a derivation. Again, the base step is trivial since 

6*(pathI(lxoJ)) = s*(e) = I= state(lxo$). 

Now consider a derivation 1x04 $gl t +, t’, and assume, that t satisfies the above 
assertion. Let (s, si, ..*, $1) denote the full linearization of t, and assume, ~1 = 

4x(6,,,) * l (&-J is the subterm replaced, then by induction hypothesis q := path I (t) 
(= path 1 (s)). 

In case a &production is applied, the assertion is obviously true. We now discuss 

cases (3.1) to (3.7). 

(3.1) t’ = s[e( ), ~2, . . . , sl] n by construction 

q = s*(path&>) = s*(pathl(t’)) E F. 

(3.2) a0 = (tl, t2j A t’ = s[+(p~f&), prq(~2)), s2, l - l 9 al 

m state(leave&‘)) = state(pr&)) = state(pr,O2)) 

= state(leave&‘)) = q = P(path&)) = 8VpathM)). 

(3.31 t’ = s[a(prq, (GO)), s2, . . . 9 aI 

fi state(leave#‘)> = state(pr,, (60)) = 4’ 

= S(q, a) = S(S*(pathI(t)), a) = S”(pathl(t)a) 

= F(patht(t’)) 

(3.4)-(3.7) Direct by II-I., 

path,@‘) =pathl(t) 

A state(leave&‘)) = state(leavel(t)). 0 

The: next lemma implies the ‘completeness’ of &: all trees in R+ which are 
ma)o:ized by a tree in L(S,) can be generated in s,. 
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Lemma 7.23. Let xOJ- Gs, 1, qj :.= s*(pathi(t)), and /et (s, ~1, . . . 9 $1) &note the full 
linearization of t. 

Xhen for d! $i with 

we have 

ho&,, By induction on the length of a derivation. The base step holds trivially, since 

l.xO.I = prl(a) and S*(pathl(x&) = S*(e) = 1. 

NM Yet t, (s, ~1, . . I. , si), and qj be as above, and assume 

Let 31 = X(U,“) ’ l l (a,,) be the subterm replaced in the last step. 
hypothesis, we have with q := q1 

IxfJs_ =$ S[~lJX(&,) * ’ l (i?(j), s;, . . . , $1 =: T. 
I 

Clearly the assert/on holds, if a &rule was applied in the 
discuss cases (3.1) to (3.7). 

(3,l) t’ = s[e( ), ~2, . . . , q]. Since 4x4 = I is a production in 
t” *&_ s[I, $1, . . . , s;]. 

Moreover, for q EF, $‘ contains the production qx 
7=+gfL s[e, 51, . . * , &I. 

(3.2) o. == (tl, t-2) ti t’ = s;[ + (?I, tz), s2, . . . 9 sl]. 

By clonstructio~ 

Then, by induction 

last step. We noJv 

&_ we always have 

l=e( ) and thus 

hence the: assertron follows from path&‘) = pathAt’) = pathl(t:L 

(3.3) t’ = s[a (uo)l, ~2, . . q , $1 

A pathl(t’)r =path&)a - S*(path#)) = iP(q, a) =: q’ 

n qX$ = a (q’yl,i) in SI 

fir I T s[a ( pr,,v (6$), &, . . . , $1. 
I 
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(3 4 t’ = s[.x’(cr,) ’ ’ ’ (O-J, SZ,, . . . , Sl] 

A oathI = pathdt’) n S*(path (t’)? = q 

and by construction 

i? scprq(x’(q’) l l ’ (as)), 32, l ’ l 9 51. 

(3.5) t’ = S[Xl(X2(Up), l l l , xr(qY))(q--1) l . ’ bo)r s2, * . ’ 9 al 

n pathl(t) = pathI I- 8*(pathIit’)) = q 

and by construction 
-- -w - 

t’? s[qx1(x2(opp), l l l 9 x,!q?Mcr,-1) ’ l ’ a, $2, l l l 9 51 
I 

= s[prq(x1(x2(cBp), l * . 9 x,(qJkp-1) l l ’ (ho)), f2, l ’ l 9 51. 

(X6) 5/ = aP+l( j), prj(cP+l) = (7, t’ = s[uk+) l l l (go), S29 . . . 9 RI 

n pathI =pathI(t’) n 8*(pathdt’N = q 

and by construction 

-- 
= s[pr,,(u(up) l ’ ’ (uo)), 32, . . . , s;]. 

(3.7) V1 l l ’ u,. = cep+l, a,+1 = h, l l l 9 trh 

t’ = s[t1(t2(up), l l l , tria,b)(up-11 ’ l l bo), s2, . l l I S/l 

~1 pathl(t) = pathI n S*(pathl (t’)) = q 

and by construction 
-- - 

Summar&ing these results yields the correctness of the construction: &. generates 
exactly the trees in the meet of R+ with the schematic language generated by S. 
Moreover, the size of $,_ is bounded polonomially in terms of the size of S and the 
number of states of 9, th.is solves an open problem in [SS] in fact size(%) s 
size (9 11’ l size (S,). 

Theorlr:mb 7.25. Level-n CWVstrhg languages are polynominlly closed under h tersec - 
tion w!th regular languages. 

Proof. L,et G E n - NA (a), where 0 is scme monadic alphabet, and let 9 be a 
Rabin-Scott automata with k states and input-alphabet n’? By Car Jary 7.3 
there exists a Chomsky-normalform G’ of G with size (G’) s p(sire (G)). 
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By Theorems 4.1 I, 6.7,7.2 and Corollary 7.21 it suffices to prove 

L(S,) = L(&) l-l L(4)+. 

‘2’ Let t E i..(gl). Then 

1x01& ’ Corollary 6.6 
l I 

(leave(t) = e m S”(patbj(t) E F))) 
Lemmas 7.22,7.23 

fi t E L(S,) A path(t) c L(S) 

Ir* t E L(&) (7 L(Z!)+ c L(S) ll L($)+ Lemma 7.19. 

‘2’ Let s EL@! I+ where s L t for some t E U’S,), and le: (to, tl, . . . , tl) denote 
the full linearizatic n of t. 

Then s = t&, . . , t’l] where the !j satisfy 

(1) ti:=eAS*(~athj(t))fM fi tj= I 

by definition of L(9)+ and Lemma 7.19; 

(2) ti = e A S*( pathi( EF r** fi = A.. v fi = e 
by definition: of L(9)+ and Lemma 7.19; 

(3) tj =I rL I = I by definition of 5. 

Pience by Lemlna 7.24 lx& &, s, and thus s EL(&). q 

Remark. The construction can easily be generalized to cover arbitrary ranked 
alphabets 0. In I his case, R is represented by a t finite) nondeterministic top-down 
automata $2 (with transitions S,(q) 3 (41, . . . , qk) for f~ O(ik*r’) and, for each constant 
a E @“, a se,t of ,%a1 states F& cf. e.g. [23]). 

The following modifications have to be made: 
[I) or is replaced by the usual order < on trees, and n is again the meet (now 

with respect to SI). Lemmas 7.20 and 7.2 1 hold for 6 as well. 
(2lt In the con:;truction of .!?, (3.1) and (3 “3) are replaced by 

~1)’ xl=a( )inS r* VqcF, qx$=a( )inS 
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Since w E L iff L n {w } # 0, recursiveness of level-n C&languages is now an 

immeldiate consequence of the decidability of the emptiness problem. 

Corollary 7.26. n - 3’or c k%%%. 

We finally prove, that level-n CM-languages are closed under substitution and 
thus form a substitution closed AFL. This result is essentially a corollary to the 
closure of level-n trees under tree-homomorphism (cf. Theorem 4.9, since any 
substitution on languages can be lifted to a homomorphism on infinite trees. 

The operation corresponding to substitution of languages viewed as monadic 

tree-languages is given in the following definition. 

Defdtion 7,27. Let In, z’ denote monadic alphabets, and let G : L? + PTs( Y) be a 
D({i})-mapping s.t. 

u(e) =(e) h (h E f2’ Vt E u(a) leave&) = y1.i j- 

The (monadic) substiMon indrxed by rr, 

is the canonical extension of c : 

c?(e) ={e}, &(a~) := a(a) +-6(w), c?(L) := U G(t) 
CEL 

Note that the restrictions on u are crucial, since we want the substitution to 

completely ‘process’ all strings in a language L. 
The next lemma shows, that substitution can be lifted to infinite trees. 

Lemma 738. Let (T : 0, -) CTx+( Yj be a D((i))-mapping 

5. t. a(e) = e A a(+) = +J 

A V(kl E 17’ Vt E set 0 a(a? leaVel(t)= y*,,i- 

l&n: 

GGF 0 set = set = ~9. 
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Pr&, Since all mappings involved are continuous, the assertion can be proved 
inductively fm finite trees t. The only critical step is t == a (t’). 

- t = a(t) 

se@(t)) = set(oja) +=+ 3( t’)) 

= set(ufa)) +- set@(t’)) 

= s&r(a)> c- fi(set(t)) 

= U {set(a(a)) +- m(s’) 1 sf E set(f)} 

=: U{&&F(a(s’))(s’E set(t’)) 

= Z(o@et(t’))) = s&ZF(sizt(a(t’))) 

Lemma 1.6 

II-I, 

(*) 

We nuw prove (*). 
‘2’ Immediate by monotonicity. 
‘c_’ Let w E wr(o(a)) t set 0 &et(f)), then there exits v E set(g(a)) s.t. 

w E v c-se! 0 o(sei(r’)). 
Note that leauel(v) = y1.i. A, straightforward induction on v proves 

?s’ E set@‘) w E v 4-q s&7? (s’). q 

Theorem 7.29. Level-n 01 sItring langtiages are closed under suhtitutiom 

Proof. Let CT’ : 0 + PT= ( Y) 11 D ({ i )> -mapping with 

(1) 0%) = {e}, 
(2) Va E ficd’i) ‘a’? E o’(a)/ kauel(f) = yl,i, 
(3) Ma E Pi’ 36” E n --MA (C( Yj)) n’(a) : : L(G”) 

and L. =: L(G) E n - ?&(f2). We must prove 

G’(L) E n -- 9&Z). 

(1) Oih?) = e, C(+) = +(yl,j, y&j), 
(2) Ma E nti*j’ ~rji) := T(G:). 

ClearBy CF’ = geet 0 (7. This iJnpIies 

&‘(I.) = &(set( T(G+))) Corollary 4.11, Theorem 7.2 

= s&(4( T(G+))) Lemma 7.28 

= set( T(S)) for some S E n -A (2,) Theorems 4.9,4.10 

= t(ser(S)) Corollary 4-l 1, Theorem 7.2. C3 
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Since any fa.mily of languages which contains %%‘9 and is closed under intersection 
with regular languages and substitution forms a full Al?L (cf, e.g. [57, p. 12931, we 
have 

Cwollary ‘ir.30. Lewd-n OI-string languages form a substitution-closed AFL. 

8). IO 

In the present chapter, we discu.ss the language families rl --opz?IO in the IO- 
hierarchy, which are generated from the language-diagram of the introduction by 
igeneralizing rightmost derivations in context-free grammars. 

Having checked, that the sample languages can also be generated in IO-mode, 
we proceed to give a fixed-point characterization of level-n IO-languages. Together 
with the corresponding result for 01-languages, this generalizes the result in [28], 
:hat the difference between IO and ~01 can be explained 

- denotationally by interpreting with respect to the powerset-algebra of the nth 
derived algebra and/or the nth derived algebra of the powerset-algebra of the 
(‘-tree algebra; 
- aZgebraicaZ/y by the order of application OF set and yield’“‘. 

As in the case of tree-transducers, the order, of choosing and copying is crucial. 
The characterization of level-n IO-languages as images under yield’“’ 0 set of 

regular infinite trees and thus as images under yield’“’ of regular tree-languages 
shows, that the IO-hierarchy coincides with the hierarchy defined in [42]. 

Contrary to the O&case, the following results are most easily established using 
the combinatoric representation of IO-languages; the proof always depends on the 
possibility of ‘lifting’ the discussed property via yield to the level of regular 
tree-languages. -4s a simple example, the decida‘bility of the emptiness problem 
for level-n IO-languages is a trivial consequence of this result for regular tree 
languages. Due to space restrictions, the section on paths and leaves for IQ is 
omitted, While it can be shown, that front langua,ges of level-n IO tree languagzes 
are level-st + 1 10 siring languages, the corresponding result for paths does not 
seem to hold (in fact, for the grammar br@) constructed 
b&o(G)‘) 5 L&br(G)), cf. the example in Section 7.4), 
section bv establishing closure under intersection with 
homomorphism. 

in Section 7.4 we have 
see [ 161. We close tale 
regular languages and 

8.1, Example languages 

In this section we prove, that, for n ‘3 2, the language 

can be generated by rightmost derivations from a linear level-n -:- 1 grammar Gk+l. 
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Let us first: consider an example. 

Exsnaplie, 43 5 has productions 

X0 + XdhYIJbY1(Y l(YoMmd9 

x33 IkY2.AY*.~.Yo..~3(~~\YI.Y2(Y2(YI))) 

(AYo.b(Yl(Yo)))(Y2(a)(Y l(YO)h 

x:i -* Ay2.m).‘l..r~yo.y2(a)(yl(yo)). 

We present a rightmost-derivation for a 16b3a4b2a2b(e). The derivr tion leads first 
to three terrtual substitll&ions of the body of x3 for x3. Then the resulting h-expression 
over pwameters and terminals k reduced to its normalform. 

1 

where t z-7 hy2.A~~ .A yo. 

Ayz.Ay r AYO. 

+hy2.Ay, .A yo. 
6 
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+ nf(t) = a’6b2a.4b2a2b(e). 
P 

Lemma 8.1. Wn 23 L, E n -CrJa, 6, e}). 

Proof. Denote by Gk the leb \. .-n grammar obtained from G,, by substituting 

GA). . . . 9 G&X,-~), G,(A), G,(B) for xl,. . . , ~~-1, A, B in the right-hand sides 
of x0 and x4 and taking normalfoims. Clearly L(GL) = L(G,), hence by Lemma 7.1 

L(G:) = L,. 
Any rightmost derivation in GL can be split into a seq’uence of textual substitutions 

of G;(x,~) for xn, followed by a sequence of &reductions which takes the resulting 
term over In and Y into its normalform; tJlus any string generated in this way is 
an element of the kth set in the Kleene sequence of G;!L for some k E o. Moreover, 
by Fact S.4, any string in K(Gk)(k) can be obtained in this way, hence Lic,(Gk) = 

U K(Gk), and thus by Theorems 5.9 and 7.2 LI&G~) = L(Gk) = L,. C. 

8.2. Fixed-point charasterization 

A fixed-point characterization of IO-languages requires the definition of a higlher- 
type functional bB over the domain OB tree languages for each level-n grammar G, 

such that (the first component of) the least fixed-point of 9 coincides with the 
IO-language generated by G. In the (context-free} cclse n = 1 this was achieved in 
[28] by considering different notions of substitution:; of tree languages (aad thus 
in fact defining different D (a)+-structures over P’I’a). The IO-semantics of a 
nondeterministic recursive program scheme can then be defined canonically by 
using IO-substitution as denotation of functional composition. The generalization 

of this approach to higher type recursion is not straightforward (see [44]). Instead, 
we will lift the fixed-point characterization of 1&G) via yield to a regular gram- 
mar e’“’ 0 G over D”(n) in n - NR(&?), whose lo-semantics can easily be defined 

denotationally as interpretation over PD” @I) and 13” @??a), respectively. 
In a first step, we will thus show, that the IO-language generated by a level-n 

grammar G coincides with the yield’“’ -image of the regular tree language generated 
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by c”” 0 43. This can essentially bc done by induction on the level of G. We w11l1 

only indiz~~te a possible proof of this result, since the rest of the paper will only 
rely on the resulting chghracterization of the IO-hierarchy as homomorphic images 

gul;ar tree-languages. 

eorem 82. n i- 1 -L&&2) = yieM(n -2&(D(a)>“*“$. 

Proof. ‘J’ Let G E n - ,ATA (D(f2))“*“‘, then yA 0 G E n + 1 - AQ (0). 
The proof of y(LdC"i)) = L&yk 0 G) is based on the following assertions: 

Assertim 1, yA (t>[y,lY,A, (s)] = YA !41.Ynlsl)~ 

As.sertimz 2. t +G t’ fi yA (t) dYAC~ VA (t’). 

Assertim 3. Call a k-redex any term of the form y#)(tl, . . . , tr) where k E 
D(n)\*C!‘. 

If yA(t) -+vpG J is not. a k-reduction, then there exists t’ s.t. yA (t’) = s A t +G t’. 

Assertion 4. Wt E T*Dif?, Y(t) t s = nf(yA (t)(s)). 

The proof of these assertions is by induction on t. 
Now ‘ier t E k&G), and assume, that x& -* tl + l l 0 -+ tn = t is a rightmost derivation 

in G, then 

is a derivation in yA 0 G, s.t. x04 $ yA (&)( ) is a right-standard derivation, in which 
only k-re4duces are omitted. 

The on.l!y cxiltical case in the simulation of G’s IO-derivations in ptA 0 G arises in 
the treatment of expressions of the form 

~Ah&iv,~,)(J~~~, . . . 9 F,)(A1, . . . . , Ap). 

Here, it is essential, that all arguments A 1, . . . , A, arc expanded to terminal terms 
(and hence all right-hand f;ides to be substituted are chosen) before the evaluation 
of y&&,iJ) leads LO copying aIf arguments. Thus, in order to compute yield(t), 
any strategy can be chosen which eliminates all nonterminals in argument positions 
of a k-redex before re ducing this redex. In particular, x04 + &G yield(t) is equivalent 
to a rightmost derivation. 

‘I”0 prove the opposite inclusion, -we observe that any rightmost derivation in 
yh 0 G leading to some t E l&(yA 0 G) its equivalent to a reduction sequence 
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(1) x0./, +* s,( ) is a right-standard derivation, which omits only k-redexes, 
(2) x0$ +* s,, ( ) contains no k-reductions, 

(3) 8, E: &A(DU2)). 
By Assertion 3 this implies the existence of a rightmost d.erivation 

in G with y&) = sn, hence by Assertion 4 t = yield(t,,). 
‘c’ Let G E rt + 1 - NA (a), and assume w.1.o.g. level(x) 2 1 for all x E var(G). 

Then c(G) (as constructed in Corollary A.7) is in n - NA (D(J’2))‘c*r). Similar to the 
proof of Lemma A.6 one can prove yk (c,(t)) -)g t, hence by the proof of ‘2’ 

LOW) = LIO(YA (c(G))) = y~~~W&&?)). 0 

Since 0 - NA (D”(0)) coincides with the class of regular tree grammars over 
D”(n), we have as an immediate corollary a characterization of the language 
families in the IO-hierarchy as homomorphic images of regular languages. 

Corollary 8.3. n -d&(fl) = yield’“‘(%%S(D” (fl))‘? 

To obtain the fixed-point characterization it remains to prove that the translation 
of a regular language under yield’“’ coincides with the denotational semantics of 
the generating grammar over PD” ( 2-Q). This is a special case of the Mezei-Wright- 

like result for ‘IO-equational sets’ as proved in [28]. 
Since the initiality arguments in the proof of Theorem 4.6 carry over straight- 

forwardly to the’u-continuous case, we will omit the proof. 

Theorem 8.4 ([28]). 

As an immediate corollary to Corollary 8.3 and Theorem 8.4 we obtain the 
fixed-point characterization of level-n IO languages. 

In the following (commutative) diagram we summarize the operational, denota- 
tional, and algebraic characterizations of level+ IO- and 01-languages. All types 
should be clear flrom the context and are omitted to increase readability. The 
correspondence b&ween regular equations over D” (0,) and C” (a), is based on 
the idea, that the nondeterminism can be pushed down to the lowest level, since 
the join operation in the function space is defined pointwise using the join-oloeration 
at the lower level. For a formal proof, see [15]. 



&3, Decddability of the e nptiness-problem 

Au mentioned before, he decidability of the emptiness problem is an immediate 

consequence of the characterization of IO-languages as homomorphic images of 
regular tree-languages (and the fact, that emptinese, is decidable for L E S%‘%). 

CoaoDary 8.6, The empt,kess-problem @r level-n IO la.nguages is decidable. 

Proof. 

yiek?““(L(Gj) = 0 iff L(G) = 0 for any G E n -NR(f2). 0 

We now use the decision procedure to derive an upper bound for the depth of 
a tree in a nonempty level-n IO-language. 

‘IIwsrefm 8.7. Let G E n -NIX(O) and L = yield’“‘(L(G)). 
‘Thert 

n 

/ .2 site(G 1 

&d(l) ifl 3td., depth(t)s2 l . 

Proof. Let 

d := max{depth(s) 1 ,s E rhs(G)), r ‘= Irhs(C)l. 

y the proof of the pumping-lemma for regular tree languages (see e.g. [23]) 
we have 

L(C)+0 n 3tfiL(G)depth(t)sd*rssize(G) 
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(otherwise some nonterminal has been called recursively and we could derive a 

shorter tree using ‘cut and paste’). Lemma 7.10 applied to such a tree t yields the 

assertion of the theorem. Cl 

8.4. Closure properties 

In this section we will demonstrate the power of the combinatoric characterizfiation 

of IO-languages by giving easy algebraic proofs of closure under tree-homomorph- 
isms and intersection with regular languages. The techniques used to lift these 

properties under yield are taken from [28]. 
Let us first recall the definition of recognizable tree languages in the many-sorted 

Definition 8.8. Let &? denote a finite D(I)-set. 
L E TX is recognizable ifI 

3ZkaZgO3FcQ’ size(Q):= l~a’l~~~L=L~(~):=h3~(~). 

For an infinite 0, L c TX is recognizable iff L is recognizable as a subset of TijB 
for some finite 0’ c 0. 

It should be clear, that this definition describes algebraically the recognition of 
tree languages by a deterministic bottom-up tree automaton with final startes F (as 

defined e.g. in [45, 231). 

Clearly the intersection of the yield-translation of a language L with a set R can 
be simulate:d at the level of L by taking the intersection with yield--‘(R). 

Lemma 8.9. Let L z TD(a), R c To. 
Then yield(L) n R = yield(L n yield-‘(R)). 

Th.e next lemma shows, that the inverse image under yield of a recognizable trze 

language R is recognized by a finite subalgebra of the derived algebra of the 

automaton accepting R. 

Lemma 8.10, Let Cn denote a finite D(I)-set, and let R = L&S) .for some fmite 

automaton 2 E alg ll wi;lh final states FE Q’. 
Then for all finite D’ c D (0) there exists a finite suBa!gebra 9 ’ E D (9 ) s.1; 

(1) size (9’) d 2p(sire(9)) for a polynomial p, 
(2) yield-‘(R) n T$’ = L&3? ‘). 

. (2) By Lemma 4.4 
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commutes. 
Hence we have for 2’ ::= hncs,( FD& 

(e i) LF~~‘~=h;?(F)=h;;:~~(F)nT~ 

= yield-“(ha’ (F)) n T’cf:” 

= yield-‘(R) n T$? 

(1) Let D’ =: D’(rrl*“l) LI l l l u D’(am*vm) and r = ma.u{1(ar,-) lj E [m)). 
‘i’hcn 

G2 a*size(Z!l)* for some cy E R,. D 

Sy the above, the intersection of a level-n IO tree language with a regular 
1ar:guage can be simulated at the 9” (L&level by intersection of regular tree 
!a:iguages. Since regular tree languages are closed under intersection we have thus 
prnved 

Tkeoreml 8.11. n - 310 is n- exponenrially closed under intersection with regukv tree 
languages. 

Prod. Let L = yield’“‘(L(G)) for some 45 E n - XR(O) and R = L&3) for ‘.? E dg fi 
with size(%) E 69. 

Chocoe finite subalphabets D h c II”’ (1’2) s.t. 

yield 0 l l . 0 yield(L(G)I) c Tj,h. 
I I 

M 

Using Lemma 8,IO a straightfo:rward induction on m shows: 

The language R, c TDm (whe:re R. := J2, &+I := yielK’(Rk) n TDI,,) is recogniz- 
;tlble by a deterministic bottom-,up autorr aton 9,, with 
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we have 
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m 

/ .2 p,(sire(3)) 

size&J 6 2 * * for a polynorninal pm. 

Tnk A yield 0 l * l 0 yield(l( G)) = yield 0 l l 9 0 yield(l( G)) 

w I-. P_ J 
m 

yield’” ‘(L(G)) AR 

= yieZd’“‘(L(G) n R,) by Lem_ma S.9 

= yield’“‘(L(G’)) by Theorem 7.25 
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, 

for some G’ E n - NR(0) s.t. 

size(G’)sp’(size(G), size@, j) 

for some polynomial p’ and thus 
n 

(I\ 
. 2p,lsitr(9): 

n 

/ 
.‘2 

p(slze( Ci ). ~124 ( 9 1) 
site(G’) s p’(size(G), 2 m . )S2” 

for a suitable polynomial p. q 

Since w E L iR L n { w} # 8 we obtain as an immediate corollary of Corollary 8.6 
and Theorem 8.11 recursiveness of level-n IO languages. 

Corollary 8.12. n - Zflo c %FK 

We will now prove closure of IO-languages under tree homomorphisms. Svnce 
we already proved in Section 4, that three homomorphisms can be lifted via J (ield 
to linear ‘second-level’ tree-homomorphisms, this result is a direct consequence of 

closure of regular tree languages under linear tree-homomorphisms. 

Theorem 8.13. For n > 0, n - L& is closed under tree homoworphisnw. 

Proof. Consider L = yieZd’“‘(L(G)) with G E n -NR(ln) and a D(I)-mapping 
a:n+~~(Y). 

For 0 < m s n, define D” (I)-mappings 

m - 0: D” (L?) -, TDmtr,( Y) 
bY 

Fl 

f ““’ b-+comb 0 l . l 0 cornb(Ay,& f)) for f E J?‘w*i), 
t J 

m 
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By a trivial in btior: on t yield 0 comb(t) =: t, thus the m - u meet the assumpticlns 

in Lemma 4.8, hence 

~?(y~~i’“‘(L(Gj)) = yield’“‘(n - &(L(G)j) = yield’“‘(L(G’)) 

fot some (3% n - NR(a), since n -5 is linear ;and %5W is closed un&r linear 

tree-homomorphisms (take G’ = n - & 0 G). 0 

We note, that the techniques of this paper are not sufficient to establish c:losure 
o! level-a IO-tree languages under deterministic bottom-up tree transducers (as 

csnjectured in [28]). First, the construction used in [28] to lift such transducers 
under yield cannot be iterated, essentially, since several initial states are needed 

at the higher level. Moreover, basically new phenomena occur when passing from 
IO-context-free to level-2 IO tree languages (tn the A-calculus f:Brmulation), since 
at level 2 nonterminals may have to be expanded before all actr:al parameters are 

given. Hence, in a situation where x defines some terminal f E fliii*” and x is called 
in a righz-hand side x’(x)& 6) (with type X’ := ((ii, i), (ii, i)‘)) in an IO-derivation 
we are forced t’o evaluate x before knowing which translation off we are to choose, 
since we do not yet have any information regarding the state of possible argu.ments 
for f. In fact, x’ might copy x to different posi!:ions. where different translations of 

f may be needed. The ‘guessing technique’ of Section a.5 does not work, since we 
are to simuhlte bottom-up translations. 

a. Hik!r8mM?s 

In this ch:ipter, we will prove the IO- and O&hierarchies to be infinite and derive 
sufficient conditions on a language family %! to establish strictness of hierarchies 
of the form yieZd’“‘(%). Examples of language families satisfying these conditions 

include deterministic top-down translations of regular tree languages and the 
1a:nguage families in the 01-hierarchy. In particular, this proves strictness of the 

IO-hierarchy. Moreover, we prove that the concept of recursion O?J Zeveb-n leads 
to a strict hetar& of program schemes. 

As a too; so capture the increase in copying power inherent in both hierarchies 

we use the ~&on& index, a complexity measure for languages introduced by 
B otisson, Courcelle, and Nivar [6], which, roughly speaking, measures the density 
of regular Frt-state components of a given language L as m varies. &fore precisely, 
the rationa!, index of L associates with a given number m of states the maximum 

of the distances between L and all m-state languages, where the distance of two 
languages ifi the leagth of the shortest word in their intersection. 

is given by 
‘rhe distance of two languages L1 and L2 with nonempty intersection 

d/L1, .L2) = min{depth (w :) 1 w E I, 1 n Lz}. 



The IO- and Or-hierarchies 195 

Let %E’S$., denote the class of languages recognized by Rabin/Scott automata wlith 

m states. The rational index of L, rat(L), is the function 

rat(L) : 0 + la+ 

We note, that an approach to the hierarchy question along dekty arguments 

would require the proof of (some sort of) pumping lemmata as e.g. in [::3], which 
seem to be cxlkemely hard to prove. On the other hand, to establish upper bsurids 

for the rational index of a language in some family 9, we have to prove closure 
of 2 under intersection with regular languages (within certain size-restrictions) and 

an assertion corresponding to the ‘downward pumping’ part of the pumping lemma, 
i.e. a bound on the length of the shortest word in a nonempty lan,guag,e in terms 
of the size of e.g. the grammar gc;;t,rating this language. Hence the results of the 

previous sections immediately give tipper bounds for the rational index of level-n 

languages. 

Notation. Let 9 denote the class of functions w + Iw,. 
Forf,gESdefine f<g iff 3moEu Vm~mOf(m)~g(nz). 
We denote by S?(S’) the class of languages whose rational index is majorized 

by some function in g’ c 9. 
Finally, 

Theorem 9.2. n - d&-, c JZ( KS!?@” (RW)). 

Proof. Let L = yield’“.‘(L(G)) for some G E rz - NR(n), and let R E 9WM,,@) with 

I_. n R # I% By Theorem 8.11 there exists an n-exponential bounded G’E n - NW9 
with yie!d’“‘(L(G’)) = L n R, hence by Theorem 8.7 

for some p E 909, and thus 

Thewem 9.3. n - 901 c Z’( ~~P2” (B?EZ)). 
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Pr(Paf. L,et L, = L.,(G) for some G E n - NA (a), and let R E %%W,&J) s,t. L n R # 0. 

By Tnt:cmw~ 7.2,“; there exists a polynomially bounded G’ E n - NA (d’Z) with L(G’) = 
L(G j (5 R, hence by Theorem 7.11 

2n 

/ .2 p,rsiztr(G’)) 2ii 

F 
, 2p,(p,Wze(Ci).m); 

3ttiE L depth(t)s2 * ’ 53” 

for some p1 : p2 E !RW9 and thus 

In 1611, Qeyaert gives an exaimple of a 5BOZ’(&&Z%) language, whose rational 
index grospr’zg at kast double-exponentially. Using techniques of this paper, we will 
general& ithis result to higher levels by proving that the raltiomal index of the 
sample Ienguag$: L, grows at least n-exponentially. To this, end, we consider 
intersections of 

with the regula*r languages 

& = Q-kl(kP)+a+(bP+‘)+ l l l U’(b2”-‘)+(a v b)* 

(for ii = 3, p = 2 an BI-grammar gene rating the intersection was given in the example 
in Secti.csn 7.5). It is easy to see, that R, can be recognized deterministically with 
$( p2 + !:! 1 states. 

Cona!,er some string w f L, n pi’,, 1, then the exponent k corresponding to w 
must fr: -* t ;f y 

h: + 1 is a multiple of p f 1, 

IC is a multiple of p + 2, 

k-p+1 is 8 multiple of 2p+l. 

To evaluate the exponent kp+l for the shortest word Wmin in L, nR,+1 we need 
the foll~~~k?g lemmata. 

Lerama@ 9.4. Lk?t k, p1, . . . , pk E w, hen 

min(m E w 1 m 21 hViE[k]pidividt?sm -pi}=lcm(pl,. . . ,pk). 

P~~oo%m It is obvious, that the least common multiple of pl, . . . , pk sati!&% p (In) = 

{Vi E [k-j pi di-{ides m -pi n m 2 1). To prove ezinimality, consider some m s.t. 

p(m) hr:Jds a,.rd assuke m <: lcm( pl, ., m . , pk), but then 

WE [k] ((pi divides m -pi) A (pi divides lcm(pl, . . . , pk)-pi))’ 
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and thus Vi E [k] pi divides km (~1, . . . , pk) - m, contradicting the definition of 

km. Cl 

Hence the exponent of Wmin EL, d'?p+l satisfies 

k p+~=zcm(p+l,p+2,...,2p+l)-(P+2). 

Lemma !M. 

1 
Vp~1’tlrnao -!* 

m 
l-J (p+l)dcm(p,p+l,...,p+m). 

ClSiSm 

Proof. Let 

P := I-J (p+i) and g :=gcd 
OSiSm 

L). l “p+m 

It is easy to see, that 

P=g l Icm(p,p+l, -. l ,p+d. 

For the @oaf of the lemma it is thus sufficient to show g G m !. To this end, consider 
4ori&...,m-l}andrE[m-- 

D’l 
P P 

I=---- 

p+l p+i+l’ 

Uy definition of g, g divides all 
proves 

1] the expressions Di defkd by 

0:.,I := D;-Ds+‘. 

0:. Moreover, a straightfsrward :,nduction or r 

d l P 
D’z(p+i) a.. V. (p+i+,ij* 

In particular, D”, = w!, kence g sm!. 0 

Theoaern 9.6. Vn 23 L,,Cf(EWn-l(~~~)). 

Proof. A straightforward induction on p 2 3 shows 

y+‘<(2p+1t!_(p+2) ( ) 

(p!)* l * 

Thus, fsr p 2 3, the exponent of the shortest string Wm!i,l in L, n &+I satisfies 

k ,+~=fcm(p+1,p+2,....,2p+l)-(p+2) Lemma !a.4 

(p+l)(p+W ’ l ’ l (2PW 
a- (p+2) Lemma 9.5 

P! 

(2p+lji_(p+2),2p-t1, 
= (p!)2 w 
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Since .R, E %!Ph’& r*ep)/2 this implies 

Since ,‘yf c*2J273. mJf-l/2 cannot be majorized by any polynomial m -a l m k this 

shows 

Since the rational index of level-n languages is 2n-exponentially bounded, &+I 
cannot be generated at the rrth level, hence both hierarchies are infinite. Let us 
recalt some characterizations of level-n languages to interpret this result. 
Mathematically this shows, that taking fixed-pointi on increasingly higher level 
fun&m s2ace.s allows to define more and more base objects. Operationally, the 
possibility of ‘storing information’ in more and more levels of parameters gives a 
strict increase in copying power. This is even more explicit in the characterization 
of 01 languages by level-n pushdown automata [44] proved in [22]: the possibility 
of pushing pushdown-lists, pushdown-lists of pushdown-lists . . . , etc. gives you 
increasingly powerriul storage-structures. VVe summarize the relation of the language 
classes sftudied in this pager in the following diagram, where all inclusions are strict 
for a monadic alphabet with at least two unary operation symbols (and n > 3). 

9.7. Mif~etarchythmrem. 

4w!~&. l.kmm~ 1 ,.I, Theorem 7.8, Ccjlrsllary 7.18, iCoroNary 7.26, Lemma 8.1, 
CoroIbr as/ O.6, Corollary 8.12, Theorem 9-2, Theorem 9.3, Theorem 9.6. 

Tht :_ ,,,I%- AS, t’&me IO-hierarchy starts witA the regular, context-free, arid IO-macro 
famguwges was proved in [28, Theorem X9]. U 
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In the OI-case, the fixed-point characterization gives a link betwrzen level-rt. 
langutiges and level-n schemes and thus (via the interpretation Algdj to semantics 
of ALGOL 68 programs with finite modes. Hence the hierarchy theorem implies, 
that ALGOL’ 68 programs with mode depth 2n + 1 cannot in general be simulaited 
by fomar!ly equitlalent programs (in the sense of [38]) with mode depth II. In fact, 
due to the uniformity of the definition of level+ schemes (as expressed in the 
results of the appendix) we can prove the sharper result, that level-n + 1 schemes 
cannot be translated to level-sa schemes, hence the concept of recursion on higher 
types induces a strict hierarchy of control-structures, In the theorem below we 
include the result proved in [17] that the class A of A-schemes (modelling untyped 
procedure calls) is more powerful than the class of level-n schemes. 

Theorem!M. tln~2~<:RPS<cz-il<n+1-h<A. 

Proof. By Corollary A.3 and Corollary A.7 we have for any D(l)-set $2 

0) PI -h(D(f2’v)(evi’wz i 1 --A(&?)‘. 

We now show 

(2) fil -A -n-i-f--A CQ vi-l-lbkc-n-l-2-A. 

Let S E y1 -t-2 -A (0) for some 0, then by (1) there exists S1 E n + 1 -A (D(n)j”v” 

s.t. S - S1. From the assumption in (2) we have in particular n - A (D(f2))‘e*i’-~ 

n + 1 -A ;D(&?j)“*“, thus there exists S2 E n -A (D(Ltj)‘“*” with S -” S1 - Sz. Again 
applying (1) yields an S’ E n + I- A (0) satisfying S -e S’. ‘To establish 

(3) n-A<n+l-A 

we note that Theore,ms 7.2 and 9.7 imply n -A (nj < 2n + 1 -A (~'2) for any D(I)-set 
Q satisfying I0”*“l> 1, 10”‘“) .a 2, IJY”~~)I 2 1 for some i E I, hence by* (2) we have 
proved (3)). 

To derive 

(4) ra-A<A 

we recall ir X(n) - rt -Ii? (In) s A (0) by Theorem A.8 and the main result in [20]. 
Strictness l’oll .~ws fro-m the: result proved in [28], that A (0,) interpreted over (8&j+. 
defines all recursively enumer:ible tree languages together with ThelDrem 7.2 and 
the decidability of the emptiness-problem for level-n 01: languages J’heorem 7.8). 

Finally 

(5) l-A(fl)-RPS(I’1) 

by the Chomsky-normalform theorem 4.12. 0 

Sillce the equivalence class of a scheme is characterized by its infinite tree, the 
above result shows, that the class of level-n trees form a strict hierarchy with 
incre asing n. 
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Cordsry 9.9. vn E w n - et7 4 22 + 1 - 3. 

Proof. Isamediate from Theorem 9.8 and Corollary 4.11. q 

We will close this section by showing, that IO-l&? hierarchies of the form 
yiekp”“‘($P?) are strict, provjided % satisfier; certain weak conditions. The proof is 
based cm m ana’lysis of what properties of BS% are needed to prove, that the 
IO-hierarchy does not collapse, and the observation, that, due to the uniformity 
of the d&nition, this is already sufficient to derive striciness. A natural example 
of such dn U&like hierarchy is discussed in [24]. Engelfriet defines macrcl-tree 
transduixrs (INIT’s) by canonically combining top-down tree transducers (T’s) and 
context-free tree grammars and proves, that MIT’s (working in IO-mode) can 
simulate the $ranslation of derivation trees (of a program, say) induced by attribute 
grammars. Using comb irt is shown., that a M’IT can be simulated at the second 
level as a composition of top-down tree transducers (in T) and yield. (We note, 
that in &Ire deterministic case these results have been obtained independenily by 
Courcelle and France-Zannetacci [9]; there deterministic macro-tree transducers 
are called primi,!it!e-recu&ve schemes with parameters). Moreover, by viewing the 
semantic functisns in denotational semantics %, %?$ . . . as states and storing the 
environm~ent in the parameters, DMIT’s can realize the translation induced by the 
denotational, semantics of a language (as discussed in the introduction) for 
sufficiendy simple languages as WHILE, To handle semantic equation; for more 
campliated languages, the MTT has to be extended by higher-level parameters. 
Clearl>, such transducers can be simulated at the nth level by considering the 
yield’” ’ -:‘mage of top-down transducers working on level-,n trees. The next theorem 
shows, that this leads to a strict hierarch:y of tree-transducers. 

Theorena 9.10. Let @ denote a family uj’ tree-languages satisfying 

(2) 9 is P-ckxed under intersection with regular tree languages, 
(3) I+ all ‘,generators’ G, if L(G) E 9 is nDnempty, then there e&ts t E L(G) s.t. 

depth(t) ~p(size(G)) for some p E 9 
and kt rp --9(O) := yieSd’“‘(~(i3”(n))“‘n’i’>. 

T&efi 

od. We prove firs; 

d*l) Pz-9?=n-+-l-9 n n+l-%=n+2--$$j. 
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Assu.me 1;1 -J?? = II -i l-S!. Clearly it suffices to prove n + 2 -@ cz n + 1 -- ,%!, so let 

L c n! + 2 --S(0), thus L = yieZd’“‘2’(L~) for some Loo B(Bn+‘-~~)b~~+2(‘)~. By the 

assumption, 

yield’” +I) (Lo) E n + 1 - 8?(D(I2)‘““) = n - 9?(D(O)“*“), 

and thus ..I!, E yieZd(n - S(D(f2)‘““)) = n + 1 -B(n). 

Friom (3) and Lemma 7.10 we immediately obtain the following ‘downward 
pumping’ result: 

(s 2) Let L = yieki’“‘(Lo) where Lo E 3 is generated by G, then 

p(site(G )) 

for some p E WY. 

Closure of n - 3 under intersection with regular languages is proved as in the 

IO-case usir,g Lemmas 8.9, 8.60. 

(*3) n -4 is n + k-exponentially closed under intersection with regular 
languages. 

As in the proof of Lemma 9.5, this gives a 2(n + k)-exFonentia1 upper bound 

on the rational index of a language in n - 9 : 

Now Fy (1) we have n-oI%;osn-B and thus L2(,n+k)+LE2(n+k)+I-~, but 

by (*4) and Theorem 9.6 &(n+k)+l~Z n -3 and thus n-9 s 2(n+k)-t-1-9. The 

assertion now follows from (*cl). 0 

Note, that ail language families in the O&hierarchy satisfy the canditions on 9, 

in particular, the IO-hierarchy is strict. 
The term ‘generator’ in the formulation of Theorem 9.1.0 is admittedly vague; 

the precise notion depends on 8. E.g. in the case ,%? = T(%%W). the gerxrators are 
pairs (A, G), where A is a top-down tree transducer and G a regula;. tree: grammar. 

Let us briefly check, that T(%%W) satisfies the assumption of the above theorem. 
Obviously (I) holds. For (a), we note, that RI n A(R2) = A(A-‘(R 1) n R2). Titus, 

since %%% is polynomially closed under inverse top-down transductions (as T c 
HOM 0 LB and %55’S is R!5’Z’-closed under B-l, see [23]), ‘Z”(BW) is R?%Y-closed 

under intersection with k*egular languages. Assumption (311 follows from the fact, 

that the domain of a top-down tree-transducer is recognizable [23] (thus downward 
pumping can be applied to the intersecti,on of the domain with the regular input 
language) and the observation, that a (finite-state) top-down tree-transducer can 

only increase the depth of a tree by a lconstant factor, thus :P can be chosen to be 

P&5?. Note, that thle same argumentation holds for 3 = DT(%W). 
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IO. Csncludm 

We have shown, how a careful analysis of the discussed concepts helped to solve 
a conmete problem for a concrete programming language within an area of formal 
language theory, w’hich is of interest in its own. We hope, that the techniques 
applied in this paper may be useful in treating other generalizations of string 
concepts induced by the diagram of the introducGon, as indicated for M’IT’s, and 
estabIishi,ng more connections between semantical problems for imperative 
LangGages and formal language theory. 

That: question remains open, in what sense the language-producing diagram 
possesses a ‘limit (when starting, say, with %%‘Y&, and how this !.anguage family 
could be characterized operationally. We conjecture, that the limit-class can be 
defined operationally (or denotationally) using the &calculus with reducing reflexitle 
types introduced in [a], ,whsre each nontertninal has a type defined using regular 
equations over ground types, X, and +, w’nich reduces to a ground type after a 
finite number of applications. 

Finally, we would like ts indicate, that strictness of the 01-hierarchy cannot be 
proved using the approach of this paper. To improve the upper bound for the 
rational index, it would be necessary to derive a lower complexity for decidability 
of emptiness. It is easy to s,ee, that an exponential improvement can be: obtained 
by considlering only chains in the proof of Theorem 7.11. However, due to the fact 
tha? decidability of emptiness for A,&? is complete in EXP-TIME [26] - this 
f0110ws from Theorem 50 in [X3] and [4] - we can at most hope for an exponential 
upper bound, which would only imply YE - &,I s pi+ 2 - .A& 
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