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A numerical model based on the Multi-Level Multi-Integration technique has been developed to study
the adhesion between two surfaces. The model provides a self-consistent solution of surface separation
and contact pressure throughout an arbitrary surface contact (including random surface roughness) with
the adhesive interactions governed by the Lennard-Jones potential. Using this approach, the behaviour of
rough surfaces can be assessed with a deterministic description of the surface, and contact stresses
include valid adhesive interactions between all non-contacting surface nodes. The model is first com-
pared to similar analyses from smooth surface models, where good agreement with published results
is obtained. The model is then applied to randomly rough surfaces and shows both the significant impact
of roughness on adhesive behaviour and how individual surface asperities influence the loading–unload-
ing response of adhesive contacts. Lastly, the ability of the model to investigate nano-scale contacts is
assessed through comparisons with atomistic simulations previously published elsewhere. It is clearly
shown that our continuum mechanics-based model, in which an atomistic configuration is represented
by a discretised continuum representation of the surface using a hard-sphere atomic model, is capable
of reproducing many of the features identified through detailed atomistic simulations. The suitability
of the presented model for studying adhesive contacts from the nano-scale to much larger, soft contacts,
where adhesive forces can alter the contact mechanics, is demonstrated. The developed modelling tool
and the algorithms implemented by the authors open the possibility to perform fast and accurate
calculations using a deterministic description of the roughness for a wide variety of contact conditions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The terms adhesion or adherence are used when two bodies are
stuck, or attracted to one another, and require some force to be
separated. Adhesive forces are the attractive forces that can occur
between two surfaces and may act between any two bodies in
contact, whether or not they experience complete adherence. The
presence of these adhesive forces will alter the mechanics of the
contact to some extent. In many situations of interest, the effect
of these adhesive forces is small compared to that of other contact
forces and, consequently, can be neglected. However, this is not
always the case. Two commonly cited examples are contacts
between compliant (e.g. rubber) materials and contacts between
bodies of nanometer dimensions. In both of these situations, adhe-
sive forces should be accounted for in any valid contact analysis.
Before returning to these examples in detail, it is useful to consider
the physics of adhesive forces.
The Lennard-Jones potential, conventionally used to model sim-
ple interactions between two particles (atoms) in atomistic simu-
lations, is also often used to describe adhesive forces in contact
mechanics. The model is representative of van der Waals forces
and neglects the possible influences of any electrostatic and capil-
lary forces that may exist, but is a sensible representation for many
cases of interest here. The Lennard-Jones potential is commonly
expressed as:
V ¼ 4e
r0

rs

� �12

� r0

rs

� �6
( )

ð1Þ
where rs is the separation of the two particles, r0 is the separation at
which the potential is minimum and e indicates the strength of the
interaction (the minimum potential with respect to the zero poten-
tial at an infinite separation). Differentiation of this potential with
respect to r results in an expression for the force between two par-
ticles. This, in turn, can be integrated over a surface area to provide
an expression that is more conveniently applied to a continuum
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description of contact mechanics. Thus the pressure acting between
two infinite, parallel surfaces separated by a distance z is given by:

p ¼ 8w
3z0

z0

z

� �9
� z0

z

� �3
� �

ð2Þ

where z0 is the equilibrium separation, w the work of adhesion. The
work of adhesion indicates the possible strength of adhesive forces
between two materials; it is equal to the work required to separate
two infinite surfaces from equilibrium to an infinite distance and
expressed in units of energy per unit area. This force-separation
curve is shown in Fig. 1, from which a number of observations
can be made. Firstly, there is a maximum value of adhesive pressure
acting between any two materials, whilst the repulsive pressure has
no such limit. Secondly, the attractive force reaches a maximum at a
separation of ð1=3Þ1=6z0, and decreases rapidly as the separation
increases, being just 4% of its peak value at a separation of 4z0.
These two aspects alone can explain the circumstances in which
adhesive forces can and cannot be neglected, irrespective of the
type of contact and the examples given above.

Since the maximum adhesive force has a fundamental limit, the
contribution of adhesion in a contact will be negligible if the
applied pressure is significantly larger than this value. For this rea-
son, the effect of adhesive forces is more evident in contacts for
which the net force is low, which generally applies to smaller con-
tacts, of order nanometers for most engineering materials. The lim-
ited range of surface separation for which adhesive forces are non-
trivial also accounts for observations of low adhesion. For adhesive
forces to be noticeable at the scale of the overall contact, a signif-
icant portion of the surfaces must be separated by distances within
this range. Once again, this requires contacts of nanometer scale,
since values for z0 are of <1 nm. It is also apparent that contact
between rough surfaces will have a greater distribution of surface
gaps, which would suggest that rough surfaces will experience
lower adhesion – a fact well-reported. However, the details of this
phenomenon are perhaps more complex and will be examined in
the later discussion.

Early research of adhesion in the field of contact mechanics
included that of Bradley (1932) but it was in the 1970s that signif-
icant progress was made. Any review of the literature on adhesive
contacts will highlight the acrimonious (Johnson, 1998) disagree-
ment between proponents of two analytical models developed in
this period, the JKR model (Johnson et al., 1971) and the DMT
model (Derjaguin et al., 1975). Both models considered adhesive
contact between a smooth sphere and a flat body, but with differ-
ent approaches and making significantly different assumptions.
The idea that the two models are both correct (or both incorrect)
for different types of contact was put forward by Tabor (1977)
who identified a characteristic parameter, now known as the Tabor
parameter, of which one form is given by:
Fig. 1. Force-separation relationship for the parallel surface representation of the
Lennard-Jones potential. The dashed line indicates an approximate solution for the
repulsive forces.
l ¼ Rw2

E�2z3
0

 !1
3

where R is the radius of the sphere and E⁄ is the effective elastic
modulus.

The JKR model was found to be representative only for contacts
with a large value for the Tabor parameter (�5) and the DMT
model for contacts with a small value (�0.1). This is regularly
summarised by stating that the JKR model is suitable for larger,
compliant contacts and the DMT for smaller, stiffer contacts. How-
ever, it must be recognised that neither model gives a full and
accurate account of the contact mechanics; the assumptions made
in each model become more or less valid depending upon the
Tabor parameter, but each model remains an approximation of
the true contact state and some local values for stress or displace-
ment will be inaccurate. Moreover, there exists a transition region
in which neither model is adequate. Muller et al. (1980) made pro-
gress in bridging the two models by removing the problematic
assumptions and developing a self-consistent analysis of adhesive
contact between a sphere and a flat. Greenwood later continued
this approach with similar analyses to a higher level of accuracy
and providing more detail of the method (Greenwood, 1997).
Whilst these models seem to provide the solution to contact
mechanics of smooth adhesive contacts, the complexity and
numerical basis of the models hindered exploitation and alterna-
tive models were developed. Maugis applied a Dugdale-type anal-
ysis (from fracture mechanics to contact mechanics) to the
problem (Maugis, 1992), replacing the true adhesive forces with
a constant adhesive force acting between the surfaces at all points
separated less than a critical distance. Greenwood and Johnson
used a ‘‘double-Hertz’’ analysis to similarly simplify the solution
and provide results suitable for analytical manipulation
(Greenwood and Johnson, 1998). These methods may offer a step
forward in analytical capabilities, but are a step back in accuracy
from the Muller and Greenwood analyses, to which we will return
for the development of our numerical model.

Finite element models for adhesive contact problems have also
been developed, where the contact description obtained using the
Lennard-Jones potential is incorporated into the framework of
nonlinear continuum mechanics (Sauer and Li, 2007; Sauer and
Wriggers, 2009), also in the presence of plasticity (Du et al.,
2007) and within the context of multi-scale simulations, e.g. (Eid
et al., 2011; Luan and Robbins, 2009). Alternative approaches have
also been developed based on the boundary element method,
which incorporates adhesion through energy minimisation
(Carbone and Mangialardi, 2004; Carbone and Mangialardi, 2008).

Most of the models discussed above were developed for or
applied to smooth surface contact, nominally between a sphere
and a flat. Since a common justification for neglecting adhesive
forces is the existence of surface roughness, a model is required
that can account for the effects of surface roughness. An early
and significant analysis was carried out by Fuller and Tabor
(1975). Through a theoretical analysis based on an asperity model
of roughness, it was shown that the adhesive influence could be
described by an ‘‘adhesion parameter’’:

h ¼ E�r3
2

b
1
2Dc

where b is the asperity radius, r the centre line average roughness
and Dc the surface energy (or work of adhesion).

This is, in effect, a ratio of the adhesive force of ‘‘lower’’ asper-
ities to the elastic push of ‘‘higher’’ asperities. The theory was
found to show reasonable agreement when fitted to experimental
results. Fuller and Tabor had used the JKR model on an asperity
level; Maugis repeated the analysis using the DMT model and
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found an additional load would be caused by adhesive forces
around each asperity (Maugis, 1996). Further advancements were
made through the inclusion of elastic–plastic representation of
the asperities, again based on the DMT model for asperity adhesion
(Chang et al., 1988). Other attempts have been recently made to
incorporate the effect of thin films (Adams et al., 2006), and to
extend the validity of the maps proposed by Johnson and
Greenwood (1997) to account for the strength limit (Yao et al.,
2007).

Looking at other non-deterministic models of multi-asperities
contacts Persson and Tosatti considered adhesion through a fractal
representation of surface roughness and showed that adhesion
dropped significantly at higher fractal dimensions (Persson and
Tosatti, 2001). They suggested that the simpler analysis of Fuller
and Tabor, and their adhesion parameter, adequately described
the full detachment stage of a particle. Further discussion about
the comparison between Persson stochastic roughness model and
deterministic calculations is reported in Carbone et al. (2009).

These rough surface models (or asperity models) are limited to
stochastic description of the surfaces and cannot provide a com-
plete contact mechanics solution. A deterministic model is needed
to compare different forms of surface roughness and investigate
specific surfaces of interest. Molecular dynamics simulations of
contacts can provide an extremely deterministic description of
adhesive forces in a contact. Yong et al. found examples of neck for-
mation and dislocations not identified through continuum analy-
ses (Yong et al., 1822). Luan and Robbins demonstrated how
small changes to lattice structure could alter the adhesive contact
behaviour of AFM tips with a more simplified atomistic model
(Luan and Robbins, 2006). Whilst it is likely such models will pro-
vide the most accurate representation of adhesive contacts in the
long term, the number of atoms that can be included in a molecular
dynamics simulation is limited and so only the smallest of contacts
can be studied in the short term.

There is thus a need for a contact mechanics model that can
provide a deterministic analysis of contact between surfaces of
arbitrary shape and roughness, of small and large scale, and capa-
ble of providing accurate information for contact forces and surface
displacements throughout the contact. The foundations of this
model are readily found in the literature; rough surface contact
models are abundant and well described. The self-consistent
(locally-valid) analysis of adhesion in contacts was described by
Muller et al. (1980). In the following section, these foundations
are expanded upon and a method by which they can be used to
model contact between rough surfaces with adhesion is described.
We then verify this model through comparisons with the smooth-
sphere analyses performed by Greenwood (1997) before putting
the model to full use with examples of contact between rough sur-
faces where adhesion may or may not play a role. Finally, we
examine how the continuum-founded model can be applied to
the smallest contacts where atomic-scale features are important
– comparisons with atomistic simulations of AFM tips by Luan
and Robbins (2006) are presented.
2. Model

The model is derived from a rough surface contact solver devel-
oped by the authors and presented in Medina et al. (2012), which
was based on an original methodology developed by Venner and
Lubrecht (2000). The model uses the Multi-Level Multi-Integration
(MLMI) technique to solve for the contact pressures for an arbitrary
surface described by a uniform rectangular mesh of surface profile
data. Further details can be found in Venner and Lubrecht (2000),
but most of the assumptions made within this model extend to
the current adhesive model:
(1) The surfaces can be described by a composite roughness,
which combines the roughness and macro-geometry of both
surfaces. Each node in the surface mesh is therefore assigned
a height value, h, equal to the separation between the two
non-deformed (rigid) surfaces at the point of first contact.

(2) Both bodies are homogeneous and elastic, and can be repre-
sented by an effective elastic modulus, E⁄.

(3) The pressure at each node is taken to be uniform and act
over a rectangular area corresponding to the mesh spacing.

(4) The area of contact is small compared to the dimensions of
the bodies, such that each body can be considered as an infi-
nite half-space. The elastic normal displacements at a node i
can then be calculated as:

v i ¼
X
all j

Kijpj ð3Þ

where v is the normal elastic displacement and Kij is the influence
coefficient for the displacement of node i due to the pressure at
node j.

For contact analysis in which adhesive forces can be ignored,
the problem to be solved is to find a set of positive contact pres-
sures that satisfy the Signorini conditions:

pi > 0jri ¼ 0 ð4aÞ

pi ¼ 0jri > 0 ð4bÞ

for each node, i, where r is the residual separation between the
loaded or deformed surfaces and given by

ri ¼ hi þ v i � d ð5Þ

where d is the imposed approach of the two bodies.
Various methods have been used to solve this problem and the

MLMI technique provides a fast and sufficiently accurate solution
that is well suited to extending the problem to account for adhe-
sive forces. The MLMI method uses ‘‘stacks’’ of grids of varying
coarseness. The finest grid has a node corresponding to each node
of the discretised surface. Subsequent grids halve the number of
nodes in each (x, y) direction. Two aspects to the MLMI method
make use of this stack. The ‘‘multi-integration’’ part of the method
refers to the method of calculating the nodal displacements from a
set of nodal pressures (Brandt and Lubrecht, 1990). The method
reduces the computational time required compared to direct
calculation of Eq. (3), and the routine is implemented identically
in the adhesive and non-adhesive versions of the contact solver.

The MLMI method uses a distributed relaxation process in
which the contact pressures are adjusted according to the current
error state in an iterative process repeated until the solution con-
verges to an acceptable tolerance. The coarser grids help in reach-
ing a converged solution sooner; an accurate explanation of how
this is achieved can be found in the book by Brandt and Lubrecht.
However, modifications to this process are used and are described
later. The ‘‘full multi-grid’’ method builds upon this multi-grid
implementation by initially solving the contact on the coarsest grid
before interpolating the pressure solution to the next finer grid, to
be used as the initial estimate of contact pressures.

To extend the model to accurately include adhesive forces, the
Lennard-Jones potential is introduced in the form of Eq. (2). Note
that this form adds a further assumption to the model – adhesive
pressures between nodes must be adequately described by the
pressure existing between two infinite parallel surfaces at the
same separation. This has been called the Derjaguin approximation
(Greenwood, 1997), and is consistent with the prior assumptions of
half-space geometry and composite roughness.

At this point, a distinction must be made between the contin-
uum and atomic use of the term ‘‘surface separation’’. Referring
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Fig. 2. Solution algorithm (a) basic, (b) modified. Wider borders summarise multiple steps.
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to Fig. 1, z is the separation between surfaces in the atomic (Len-
nard-Jones) description of the surface. However, this separation
differs from the continuum definition of separation, r, used in
Eqs. (4), (5) and elsewhere. The continuum description of the sur-
face requires zero separation (r = 0) wherever positive pressures
exist. The atomic description, in contrast, has a finite value
(z = z0) at equilibrium (zero pressure) and lower values correspond
to positive pressures. If the repulsive portion of the atomic force-
separation curve is, temporarily, approximated by the dashed line
in Fig. 1, the atomic and continuum versions of separation can
therefore related by:

r ¼ z� z0 ð6Þ

The non-adhesive problem as described by Eq. (4) can now be
reformed into an adhesive problem described by.

pi > 0; ri ¼ 0 ð7aÞ
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Fig. 3. Example of surface separation and pressures at a boundary between positive
and adhesive pressures. The surface is described by the heights at each node. If the
pressure for each element is calculated from the height at these nodes (the blue
lines) then the total adhesive force is not representative of the true adhesive
pressure distribution (the black curve). The red lines show the pressure allocated to
each element based on the integral of the true pressure distribution for each
element. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
pi ¼
8w
3z0

z0

ri þ z0

� �9

� z0

ri þ z0

� �3
( )

; ri > 0 ð7bÞ

Thus a further assumption has been introduced into the model,
by approximating the repulsive portion of the force-separation
curve. With the steep gradient of the true curve, this approxima-
tion can often be tolerated. Moreover, this approximation may be
removed by replacing Eq. (7a) with:

pi > 0; ri ¼ f ðpiÞ ð8Þ

where the function f is the cubic solution for z in Eq. (2). This is, in
fact, a convoluted way of describing Eq. (2) itself, but the reason for
this particular formulation (Eqs. (7b) and (8)) is apparent from the
solution method that follows, in which the positive pressure and
adhesive portions of the contact are solved separately. With Eq.
(8), the intended or target residual separation, r, becomes a function
of the current nodal pressure rather than zero, but the process itself
is unchanged.

Muller et al. (1980) and Greenwood (1997) obtained a self-con-
sistent solution to Eq. (2) for a spherical contact. The solution was
achieved by use of an iterative procedure involving numerical inte-
gration and elliptical integrals that could be applied to that partic-
ular geometry. As an axisymmetric problem, the solution can be
described completely with respect to the distance from the contact
centre and thus a 1-dimensional mesh is sufficient. Despite this
relative simplification, Greenwood identified numerous difficulties
in achieving convergence of the solution and obtaining complete
loading and unloading data. Overcoming these difficulties in a
two-dimensional, arbitrary geometry formulation is a complex
challenge. Initially, a crude iteration process was implemented,
as represented in Fig. 2a. This was found to work for the most
favourable contacts (with very low Tabor parameter and suitable
roughness), but failed to converge for most cases. Fig. 2a does,
however, indicate the basic principle of the model: (1) positive
pressures are relaxed with the same process as a non-adhesive
contact, but with surface deformations computed with the
assumed adhesive pressures included; (2) at nodes where a sepa-
ration exists, the adhesive pressures are set using Eq. (2); (3) the
process is repeated until the assumed adhesive pressures are con-
verged and the residual at points of positive pressure is zero.

A number of modifications to the solution algorithm and formu-
lation were used to improve the robustness and speed of the pro-
cess. An outline of the modified algorithm is shown in Fig. 2b and
some of the details follow. However, it should be noted that the
process is essentially a method of obtaining a solution to the prob-
lem described by Eq. (7), and other techniques may be equally
suitable.
The most obvious and problematic issue that arises from the
two-dimensional, multi-asperity contact is the number of nodes
required. The number of nodes must be large enough to adequately
describe the pressure variation over each asperity yet be small
enough to maintain an acceptable solution time. In an adhesive
contact this balance is even more critical since the pressure varia-
tion of adhesive forces can be confined to a small region (requiring
a fine mesh) and the iteration cycle is significantly more computa-
tionally demanding (slower) than for a non-adhesive contact. The
need for sufficient nodes to describe the adhesive forces can be
seen through Fig. 3, which shows an example of the surface sepa-
ration and contact pressures at the edge of an asperity. If the sur-
face separation shown by the upper black markers is assumed to
exist, the nodal contact pressures obtained from Eq. (2) are repre-
sented by the blue markers. If these contact pressures are then
taken to represent the uniform pressure over the element (blue
lines), it is clear that the total adhesive force (the integral of the
pressure profile) does not characterise the adhesive force for the
true pressure profile (the black line). This is a fundamentally differ-
ent problem to that of mesh refinement in non-adhesive contacts
where the pressures may be blurred between nodes and fail to
accurately describe the true solution. In this case, the errors can
not only lead to inaccurately converged solutions but can also pre-
vent convergence completely if the local adhesive force continues
to oscillate due to the small fluctuations in the nodal separation.
In order to partially overcome this problem, the expected adhesive
pressure calculated for a node can be modified to better account for
the full pressure integral as follows. Consider the surface profile
formed by linearly interpolating the nodal values and shown by
the upper black lines in Fig. 3. The pressure profile for each seg-
ment is given by Eq. (2) and this can be integrated over each linear
segment as:

Z x2

x1
pðxÞdx ¼

Z z2

z1
pðzÞ dx

dz
dz ¼ x2 � x1

z2 � z1

4w
3z0

z3
0

z2
2

� z9
0

4z8
2

� z3
0

z2
1

þ z9
0

4z8
1

� 	

This integral represents the total force acting on the linear
segment. Dividing this elemental force by the area of the linear
segment provides a better representation of the true pressure
profile, as shown by the red lines; the total adhesive force is the
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same irrespective of the precise location of the nodes. Therefore,
instead of using Eq. (2) directly to calculate the pressure for a cer-
tain surface separation, the integral over the elemental area is
taken. In two dimensions, a surface integral would ideally be
(a)

(b)

(c)

Fig. 4. Loading behaviour of a smooth spherical contact, showing comparison with re
approximate representation of repulsive forces, (c) higher tabor parameter showing jump
dimensionless load.
employed but this is not straightforward. Instead, an average is
taken of the one-dimensional integrals (defined above) for the four
adjacent nodes (non-diagonal neighbours). This is able to capture
the adhesion peak without significantly impacting on computa-
W*

αα*

W*

α*

W*

α*

sults of Greenwood (1997). (a) Low Tabor parameter, (b) comparison of full and
-on/off behaviour. a⁄ = a/z0 is the dimensionless approach and W⁄ = W/(2pRw) is the
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tional performance. Finally, it must be emphasised that the mesh,
ideally, would have more nodes to capture the adhesive region
than those shown in the schematic presented in Fig. 3.

In the process of relaxing contact pressures, a relaxation coeffi-
cient is chosen to aid convergence. In the algorithm of Venner and
Lubrecht this is chosen as a constant; they report data showing
speed and accuracy of convergence for different values. Too high
a relaxation coefficient can lead to divergence and a failure to find
a solution; too low a value can lead to prolonged solution times.
Our algorithm for non-adhesive contact utilised a method for mon-
itoring the solution progress and adjusting the relaxation coeffi-
cient accordingly. The algorithm developed was found to provide
a reasonably fast and highly robust route to obtaining a converged
solution. For the adhesive version, there are two distinct relaxation
processes requiring two separate, and unrelated, relaxation
Fig. 5. Load ratio and area ratio for different contact configurations showi

Fig. 6. Contact pressures for a smooth and rough s
coefficients. These were independently monitored and optimised.
However, this approach required an additional modification to
the basic solution routine. To ensure that the adhesive (negative)
and contact (positive) pressures could be relaxed independently,
adhesive and contact pressures were stored independently and
summed only upon calculating the resultant displacements. This
technique was found to improve the ability to relax the adhesive
pressures consistently. Additionally, the relaxation of the positive
pressures was repeated until convergence within each adhesive
iteration cycle; this was found to be necessary since small changes
in residuals can lead to significant changes in adhesive pressures.

The final, and perhaps most critical, issue that must be
addressed is the means of assessing convergence. This, again, has
two components: convergence of the positive pressure relaxation
process and convergence of the overall adhesive contact solution.
ng the relative importance of adhesion in smooth spherical contacts.

urfaces of different rms at the same net load.
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Convergence of the positive pressures was identified using the sur-
face error rms used in Medina et al. (2012), that is the rms of the
residual at each node where the net pressures is positive. It was
found that a very small tolerance was required for the positive
pressures and a value of 0.0001 zo was typically used. A higher
error tolerance would lead to reasonably small changes in residual
separation but significant variations in the corresponding ‘‘target’’
adhesive pressure. For overall convergence, a criterion was
required that examines the self-consistency of the current solution.
The criterion applied here compares the surface residuals of the
assumed solution with the residuals that would be obtained if
the adhesive pressures were replaced with the exact values
corresponding to the current residuals (through Eq. (2)). The
process to quantify the error is thus:

(1) Obtain the surface residuals at each node, ri, using the
assumed solution pressures.

(2) Calculate the true adhesive pressures that should exist at
each node given the current surface residual, ri.

(3) Temporarily replace the trial solution adhesive pressures
with those calculated in step 2, and calculate new residuals,
r’, using this pressure distribution.

(4) Calculate the rms of the change in residuals: ETotal ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðri � r0iÞ

2
=n

q
.

A convergence criterion of 0.0001 z0 was sought for all analyses;
in some cases this was could not be achieved without further mesh
refinement, and the solution was taken upon the total error reach-
ing a steady value. In all these cases, the error rms remained less
than 0.001 z0.
Fig. 7. Effect of roughness on (a) pull-off force and (b) adhesive load and area ratios
(at a load of 0.05 mN) for two values of the Tabor parameter.

Fig. 8. Surface form and contact pressures through adhesive contacts of differing
elastic modulus. The reference case is that of Fig. 6 with rms = 2z0.
3. Analysis

3.1. Smooth surfaces

The model was initially verified through comparisons with the
work of Greenwood, which used the same self-consistent force-
seperation criteria and Lennard-Jones interaction relationship as
our model, albeit in a form limited to spherical contacts. The model
was used with both forms of positive pressure requirement – zero
overlap (Eq. (7a)) and the full Lennard-Jones (L–J) curve (Eq. (8)).
Fig. 4 shows comparisons with our models using the full L–J curve
and the results presented in Greenwood (1997). Fig. 4b shows a
comparison between the zero-overlap approximation and the full
L–J curve solution. It is clear that using the full L–J curve gives
results which match the full solution of Greenwood. Interestingly,
the use of zero overlap corresponds to the DMT solution in this
example. This is a result of the assumptions of the Hertzian contact
solution (upon which the DMT model is based), in which there is
also a requirement of zero separation at points of contact. With
the low Tabor parameter value of 0.02 in the case shown, the
DMT model is valid and no further differences are caused by the
model’s additional approximations.

In Fig. 4a and b, the full loading cycle was obtained directly as
described above. However, as the Tabor parameter increases, the
loading process becomes more complex, and the load-approach
curve forms an S shaped region (Fig. 4c). Greenwood describes
how this behaviour will manifest in practise: the contact will jump
from one portion of the loading curve to another in a manner
dependent upon the form of loading (load or displacement con-
trolled) and the test-rig stiffness. In order to produce the full
load-approach curve, Greenwood altered the solution procedure
by fixing the imposed displacement at the centre of the contact,
whilst allowing the approach to vary accordingly. We have
obtained similar data through the same process of fixing the
displacement at the central node, and these are shown by the
unshaded markers. It should be noted that this is only possible
for a smooth, spherical contact, and could not be easily transferred
to a rough surface contact, where the points of maximum loading
may be varied and multiple. For rough contacts, the analysis as
described in the previous section will reproduce the ‘‘jump on/
off’’ phenomena described in Greenwood (1997) as though the
surfaces are loaded through displacement control within a rig of
infinite stiffness. The solution obtained from our model without
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controlling the central node separation is indicated by the filled
markers in Fig. 4c. At some values of approach, two different load
values are possible and occur on loading and unloading. This is pro-
duced within our model by using the contact pressures from the
previous loading stage as the starting point of our iteration cycle,
and this is indicated by the arrows showing the direction of
loading.

At this point, it is helpful to introduce some ways to quantify
the adhesive state of a contact which can then be used to assess
the adhesive performance of rough surfaces. We define an adhesive
load ratio as the ratio of the integral of adhesive (negative) pres-
sures to the integral of the modulus of all pressures. This therefore
varies between 0 and 1: an adhesive load ratio of 1 means that
α

W*

α*

Fig. 9. (a) Loading and unloading of a rough surface for different rms. (b) Pressure di
rms = 2z0.
there are no positive contact pressures, a ratio of 0.5 means that
the negative and positive pressures are equal and there is no net
force between the two bodies, and 0 implies there is no adhesive
force contribution. Adhesive pressures at nodes with large separa-
tions (where the adhesive pressure is less than 1% of the maximum
adhesive pressure) are not included in this calculation. This ratio
gives an indication of the significance of adhesion in the overall
contact mechanics of the particular problem. A second indication
is the adhesive area ratio, which is the ratio of nodes that have
adhesive pressures, to the total number of contacting and adhesive
force nodes – again neglecting those nodes at large separations and
negligible adhesive pressure. Fig. 5 shows these adhesive ratios for
smooth contacts of various sizes and loading conditions. Some
α

W*

α*

0

z0

2z0

3z0

4z0

5z0

stributions at different stages of loading and unloading of the rough surface with
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comparisons can be drawn between the cases highlighted in the
figure: as an example, the first two sets of results show the effect
of changing the elastic modulus while maintaining the other
parameters unaltered. Other cases are also indicated showing the
effect of e.g. changing load or radius of curvature. One interesting
comparison can be made between the first and the fifth set of
results (see arrow in the inset of the figure): this shows that for
contacts characterised by the same Tabor parameter, load and
radius of curvature, the adhesive contribution changes depending
on the magnitude of the work of the adhesion and the elastic mod-
ulus. This implies that the Tabor parameter is not sufficient (on its
own) to characterise the adhesive strength of the contact.

3.2. Rough surface

Rough surfaces were numerically generated to provide a Gauss-
ian distribution of surface heights. One particular surface was
scaled in the vertical direction to produce surfaces with different
rms values but identical spatial distributions of peaks and valleys.
Using this technique, vertical scaling of the same random surface,
enables the effect of varying roughness rms to be better isolated,
(a)

(b)

Fig. 10. (a) Discrete continuum representation of AFM tips with dif
and removes the variability that would be caused by the random-
ness of asperity locations. It must also be recognised that different
rough surfaces (even with the same rms) will respond differently
to adhesive loading, and results obtained from one random surface
cannot be quantitatively transferred to another.

Fig. 6 shows the contact pressures for contact between a
smooth sphere of radius 100 lm and the same random surface
scaled to different rms for the same load of 0.05 mN (E⁄ = 50 GPa,
z0 = 0.3 nm, w = 0.29 J/m2, giving l = 5). It has long been known
that even the smallest amount of roughness can reduce adhesive
forces to negligible amounts and thus we initially focus on small
roughness values, of order of the atomic spacing. Fig. 7 shows
the adhesive load and area ratios and for a net applied load of
0.05 mN, together with the pull-off force, as the rms is varied to
10 z0. Initially, at very low rms values, the adhesive load increases
compared to the smooth equivalent. From the pressure distribu-
tion of rms = z0 shown in Fig. 6 it is apparent that the small amount
of roughness causes a large region within the macro contact to
experience a small degree of separation, where the adhesive force
is maximum. This increase in adhesion with small rms was recog-
nised by Kesari et al. (2010) and Kesari and Lew (2011). As the
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Fig. 11. Atomic force v position for different tip configuration and a comparison
with results from molecular dynamics simulations (Luan and Robbins, 2006).
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severity of roughness increases further, the majority of the poten-
tial contact region is separated by greater distances and experi-
ences low adhesive forces; only local regions around positive
asperity contacts are in the zone for a high adhesive force. Simul-
taneously, the values of the positive contact pressures increase
and the relative scale of the adhesive pressures decrease (note
the decreasing proportion of the blue values within the scales of
Fig. 6).

Fig. 8 shows the surface form and contact pressures through a
cross section of the contact represented in Fig. 6 (rms = 2z0) along-
side similar results for a contact of higher elastic modulus only, and
of higher elastic modulus and work of adhesion such that the Tabor
parameter is maintained. All results are for the same load of
0.05 mN. With a high elastic modulus and identical work of adhe-
sion, the deformed surface gradients around an asperity are stee-
per than for the softer (Reference, low E) material and this
reduces the region over which the surface separation produces sig-
nificant adhesive force. Similarly, the overall contact dimension is
smaller, decreasing the average radius (and thus area) of the
strongly adhesive regions. Let us now compare the results if we
also increase the work of adhesion to preserve the Tabor parame-
ter: the adhesive forces increase in strength but the contact area is
still smaller than for the softer material. An alternative comparison
can be made by looking at the case in which the approach is kept
the same for each condition rather than the load; then, for the same
Tabor parameter the deformation is such that the surface separa-
tion is identical for both the stiff and soft materials – both the con-
tact pressures and adhesive pressures are proportionally higher for
the stiff material resulting in identical separation and identical
adhesive load and area ratios. This confirms that the Tabor param-
eter is useful in determining the form of adhesion even in rough
surfaces but this only applies provided that R and z0 are kept
constant.

The jump-off and jump-on phenomena identified for smooth
surfaces above are less pronounced for rough contacts. This could
be expected from a simple consideration of the different scales
involved as follows. The jump on/off is most significant for high
Tabor parameters and thus contacts of larger radius, as shown in
Fig. 4. Within a rough surface, the macro-contact is broken into
multiple micro-asperity contacts. Each asperity therefore has a
smaller effective radius and Tabor parameter than the nominal
Tabor parameter of the macro-contact. In addition, the jump of
each asperity will contribute only a small amount to the overall
loading cycle. Since each asperity will come into contact at differ-
ent stages in the loading process, this reduces the opportunity for
significant adhesive ‘‘jumps’’ and prevents the S shaped loading
curves of Fig. 4c. However, some individual asperity jumps can
be identified by the differences in loading and unloading curves
shown in Fig. 9a. Fig. 9b identifies some of the asperities that con-
tribute to the loading feature identified at points A–C and E.
Despite the surfaces being brought together between A-B (increas-
ing approach), the net load has reduced due to the adhesive forces
associated with the asperities on the right hand side (see circled
areas in the figure). At C, the positive contact has increased suffi-
ciently to offset this extra adhesive force and the net load returns
to the value in A. As the surfaces are brought closer together,
additional asperities are brought into contact (particularly those
highlighted in the circled area). On unloading from D to E, the addi-
tional adhesive forces experienced at D act to maintain the asperity
interaction and are such that the net load at E is more negative
than at the same approach on initial loading (A).

3.3. Atomic scale contact

Since adhesion forces act on at the atomic level, the suitability
of a continuum approach to modelling the behaviour should be
evaluated. Molecular dynamics simulations of the contact between
AFM probes have been carried out by Luan and Robbins (2006) and
identified differences in adhesive contact behaviour between probe
tips of different atomic form. They addressed the disparity
between the time scales of atomistic and continuum simulations
by performing the atomistic simulation at equilibrium, i.e. by
allowing the system to equilibrate after every load increment
before taking measurements. Each tip was described as smooth
on a continuum scale, but the arrangement of atoms at the surface
differed between (a) a bent commensurate tip, formed by distort-
ing (bending) a regular cubic lattice into the required tip radius,
the lattice having identical atomic spacing as the counter-surface;
(b) a bent incommensurate tip formed likewise but with an incom-
mensurate lattice spacing; (c) a tip cut from an amorphous block;
(d) a tip cut from a regular cubic lattice. Whilst these are indeed
smooth from a traditional continuum description, if the atomic
structure is represented through a hard-sphere atomic model, the
surface profile can instead be described by the uppermost edge
of each surface atom, and would thus include an account of the
atomic structure. The continuum representation of each tip profile
is shown in Fig. 10a. Fig. 10b shows the pressure contours of each
surface under loaded conditions identical to those used in Luan and
Robbins (2006). Direct comparisons with the results of Luan and
Robbins cannot be made in this format, but a comparison is
achieved by integrating the pressure for all nodes representing a
particular atom. Fig. 11 shows such a comparison. Although the
configurations of the contacts are not identical, similar characteris-
tics are shown for each tip form. The bent commensurate tip, for
which the exact configuration can be determined, shows near iden-
tical results. The bent incommensurate tip shows similarities
towards the edge but at the centre approaches the results of the
commensurate tip; this is due to our alignment of the central
atoms – different alignments would produce different results. Note
that we have included atoms that contribute to the surface
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definition but are not within the uppermost layer of atoms, and
hence many atoms with negligible adhesion can be seen at all radii
– these are from the second or third layers of atoms. In comparing
the different tip configurations, Luan and Robbins used two
approaches: one in which the Lennard-Jones potential was kept
identical for each tip and one in which the potential was varied
to recreate the same work of adhesion for each tip. This highlights
a complication both for experimental data analysis, and the mea-
surement and use of values for work of adhesion. The work of
adhesion used within our analyses is a value appropriate to two
completely smooth, flat and parallel surfaces; this representative
work of adhesion may, and will, differ from the work of adhesion
calculated within an analysis. The work of adhesion used as the
computational input is a reference value for Eq. (2) and related
to the Lennard-Jones potential. Fan et al. (2011) show how the
energy and spatial parameters of the Lennard-Jones equation, e
and r (Eq. (1)) are related to those in Eq. (2) (w and z0); we have
used work of adhesion values calculated in this manner, thus:

z0 ¼
ffiffiffiffiffiffi
2

15
6

r
r0

w ¼ 9e
2pz2

0

Fig. 12 shows radius and pull-off curves for each tip and ranks
the effective work of adhesion for each tip (the area under the
pull-off curve load axis) in the same order as Luan and Robbins.
Fig. 12. (a) Contact radius vs. load, and (b) pull
A more exact match would be unexpected since our atomic
configurations are not identical, but the degree to which the
quantitative results differ suggest that the continuum description
does indeed provide a suitable representation of nano-scale
contact problems.

4. Discussion

Analysis of a series of rough surface contacts has directly quan-
tified the contribution of adhesive forces as the scale of the rough-
ness varies, and how this is dependent upon the Tabor parameter.
The two-dimensional contour plots of contact pressures help
explain more directly the reason for this behaviour. Tabor
describes rough surface adhesion as a competition between the
elastic asperities pushing the surfaces apart and the adhesive
forces pulling the surfaces together. It is suggested that as the
roughness increases, the surfaces are pushed further apart and
the adhesive forces reduced. The effect of increasing the compli-
ance of the bodies is often described as allowing the surfaces to
form around the asperities and so mitigate their effect of reducing
adhesion. Whilst these facts are indeed true, these effects can per-
haps be attributed more directly to the local gradient of the sur-
faces around asperities (or zones of positive contact pressure).
For adhesive forces to have any significant influence on the contact,
a sizeable area of the contact must be separated by distances of less
than around 4z0 and this is achieved when the surface separation
gradient is small. This is visible in Fig. 8, where the surface gradi-
-off curves for different tip configurations.
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ents around each contact patch is shallower for the lower modulus
reference case. A small roughness value also promotes this shallow
gradient around asperity contacts. Low elastic modulus also has
the effect of increasing the size of each asperity contact (for a given
load) and thus increasing the effective radius at which the annulus
of adhesive forces occurs and thus also the area of high adhesive
force and the contribution of adhesion.

Another factor that can be considered is that the adhesive forces
that occur on initial contact are capable of altering the deformed
profile and thus contact area. These initial adhesive forces act to
pull the surfaces closer and create more regions of high adhesive
force (as occurs for jump-on). This effect is clearly amplified for
low modulus materials, for which the relatively low adhesive
forces can significantly alter the surface profile. The effect of adhe-
sive contact area on the overall contribution of adhesion is evident
in Fig. 6, where the surfaces of roughness z0 and 2 z0 have a greater
adhesive contribution than the smooth surface.

Despite being founded on a continuum model of elasticity, the
model has shown good agreement with molecular dynamics simu-
lations of atomic scale contacts. The use of a hard-sphere contin-
uum description of an atomic structure enables the geometric
effect of atom positioning to be captured sufficiently well to repre-
sent much of the atomic level interactions. Although the model is
not capable of identifying the tangential and plastic behaviour of
adhesive contacts that molecular simulations allow in its present
form, it is better suited to larger scale contacts that would be
overly demanding for current computational limits of MDS. Values
for work of adhesion, both from an experimental and modelling
aspect, must be identified with some consideration. As shown in
the atomistic analyses of Luan and Robbins (2006), a given inter-
atomic potential can results in different calculated values of work
of adhesion depending upon the exact surface form. The work of
adhesion used in Eq. (2) is based upon a particular calculation from
the L–J potential and for perfect parallel surfaces; thus the value for
w in Eq. (2) will differ from the calculated ‘‘work of adhesion’’
defined as the energy to separate two particular surfaces. Similarly,
experimental determination or use of work of adhesion values
must also account for the particular surface form, and clearly dis-
tinguish between material and surface effects.

Finally, in its current form, the model is particularly well suited
to analyse rough contacts and smooth contacts with low Tabor
parameter. However, low under-relaxation coefficients are needed
for contacts of high Tabor parameter, therefore requiring larger
computational costs in order to guarantee convergence. Further-
more, the incorporation of tangential loading and plasticity is part
of our ongoing effort to study the effect of adhesion on the fric-
tional response of rough contacts.

5. Conclusions

The effect of surface roughness on the adhesive behaviour of
contacts has long been understood. It has been described qualita-
tively (Fuller and Tabor, 1975) and quantitatively with a stochastic
view (Maugis, 1996; Chang et al., 1988; Persson and Tosatti, 2001),
but the current model allows a deterministic analysis of known
rough surface geometries. It is possible to examine the localised
stresses and surface displacements which can be of benefit to
experimental studies of nano-scale and soft contacts by shedding
some light on the mechanisms responsible for hysteresis in adhe-
sive contacts. The model is also able to compare different forms
of surface roughness to a level that simple analytical or fractal-type
asperity models cannot. The results have shown excellent agree-
ment with similar models of spherical geometry contact and com-
parisons with molecular dynamics simulations suggest the model
is suitable for even the smallest of adhesive contacts.
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