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Singularly Perturbed Markov Chains with Two Small
Parameters: A Matched Asymptotic Expansion
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This work is concerned with asymptotic properties of solutions to forward
equations for singularly perturbed Markov chains with two small parameters. It
is motivated by the model of a cost-minimizing firm involving production plan-
ning and capacity expansion and a two-level hierarchical decomposition. Our
effort focuses on obtaining asymptotic expansions of the solutions to the forward
equation. Different from previous work on singularly perturbed Markov chains,
the inner expansion terms are constructed by solving certain partial differential
equations. The methods of undetermined coefficients are used. The error bound is
obtained.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Much of the current interest stems from the motivation of various
applications in manufacturing systems. In such applications, one aims to
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find the optimal production-planning strategies and to use Markov jump
structures in the modeling of uncertainty (e.g., machine capacity). In many
applications, one often needs to deal with large-scale systems. Even for a
seemingly not so complex system, the optimal control can be very difficult
to obtain (see [12, Sect. 5.2]), not to mention the added difficulty of a very
large dimensional state space involved. In fact, not only is it an impossible
task to obtain analytic solutions, but also the direct numerical approxi-
mation can be overwhelming and the straightforward use of numerical
methods may not be adequate. Naturally, one seeks to break the large job
into small pieces with the hope that certain decompositions and aggrega-
tions will lead to a simplification of the intractable systems; see Simon and
Ando [13]. A viable alternative calls for taking advantage of the high con-
trast rates (some states vary an order of magnitude faster than the rest) of
changes in the physical systems and using a singular perturbation approach
as a tool to reduce the complexity of the underlying systems.
To have a thorough understanding of the problems, it is of the utmost

importance to learn the intrinsic structures and asymptotic properties of the
underlying Markov chains. Continuing effort has been devoted to studying
singularly perturbed Markov chains; see [3, 9–12] among others. Recently,
in [6], Khasminskii et al. used matched asymptotic expansion to establish the
convergence of a sequence of the probability vectors. Singularly perturbed
Markov chains with recurrent states, naturally divisible into a number of
classes, are then treated in [7]. This line of work has been continued in [15],
in which we have further derived asymptotic expansions for Markov chains
with the inclusion of transient states and absorbing states, and asymptotic
distributions for Markov chains having recurrent states.
In this work, we examine a continuous-time model with two small param-

eters. The use of multiple small parameters stems from consideration of
hierarchical structures of various stochastic systems in manufacturing
as well as in communication networks. The motivation comes from a
production-marketing system (see [Chap. 11]). The underlying problem is
concerned with a cost-minimizing firm involving production planning and
capacity expansion and a two-level hierarchical decomposition. In [12],
Sethi and Zhang have found the asymptotic optimal strategies by using the
limit distribution of the Markov chains. In this work, our main effort is
devoted to obtaining asymptotic properties of the solutions to the forward
equation satisfied by the probability vector. In previous work on singu-
larly perturbed Markov chains, the asymptotic expansions are obtained by
solving appropriate algebraic and ordinary differential equations, whereas
in this paper, partial differential equations are also involved. The results
are useful in the subsequent studies on Markov decision processes and
controlled Markovian systems involving multiple small parameters. To
proceed, let us begin with an example of the manufacturing system.
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Example 1.1. Consider a production-marketing system that produces
a single product type using a two-state production capacity α�t� ∈ �0� 1�.
Let u�t� denote the production rate subject to the production constraints
0 ≤ u�t� ≤ α�t�. Let x�t� ∈ �1 denote the total surplus and let z�t� ∈
�z1� z2� denote a two-state stochastic demand rate. The system is given by

ẋ�t� = u�t� − z�t�� x�0� = x� (1.1)

where x ∈ �1 is the initial surplus. Let w�t� ∈ �1 denote the rate of adver-
tising satisfying 0 ≤ w�t� ≤ K, with K representing an upper bound on the
advertising rate. The profit functional J�·� is defined by

J�x� α� z� u�·�� w�·��
= E

∫ ∞

0
e−ρt�πz�t� − �h1�x�t�� + cu�t� +w�t���dt� (1.2)

where ρ > 0 is the discount rate, π is the revenue per unit sale, h1�·� is the
surplus cost function, and c < π is the unit production cost. The problem
is to find a control �u�t�� w�t��� t ≥ 0, that maximizes J�x� α� z� u�·�� w�·��.

Let � = ��0� z1�� �1� z1�� �0� z2�� �1� z2�� denote the state space of the
pair �α�t�� z�t��. Then as in [12], the process �α�t�� z�t�� can be formulated
as a Markov chain generated by

Qε�δ�u�w� = 1
ε
A�u� + 1

δ
B�w�

= 1
ε


−µ1 µ1 0 0
λ1�u� −λ1�u� 0 0
0 0 −µ1 µ1
0 0 λ1�u� −λ1�u�



+ 1
δ


−µ2�w� 0 µ2�w� 0

0 −µ2�w� 0 µ2�w�
λ2�w� 0 −λ2�w� 0

0 λ2�w� 0 −λ2�w�

 �

Here ε and δ are small parameters signifying the frequency of jumps of
α and z. Note here µ1 represents the machine repair rate and hence is
independent of production rate u. It is easily seen that

A�u� = diag
(
Q̃� Q̃

)
with Q̃ =

( −µ1 µ1
λ1�u� −λ1�u�

)
B�w� = �Q�w� ⊗ I2 with �Q�w� =

(−µ2�w� µ2�w�
λ2�w� −λ2�w�

)
�

where I2 denotes the 2× 2 identity matrix, and “⊗” denotes the usual Kro-
necker product (i.e., with X = �xij� and Y = �yij�, the ijth entry of X ⊗ Y
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is defined to be �X ⊗Y �ij = xijY ). In what follows, we shall generalize this
model to include many states and weak and strong interactions.

The rest of the paper is arranged as follows. Section 2 gives the precise
formulation of the problem. Section 3 proceeds with the construction of the
asymptotic expansion. Section 4 concentrates on the error analysis. Finally,
Section 5 concludes the paper with further remarks.

2. FORMULATION

2.1. Initial Formulation

We work with a finite horizon �0� T � for some T > 0. Recall that a genera-
tor Q�t� ∈ �m×m is said to be weakly irreducible (see [15]), if f �t�Q�t� = 0,
and

∑m
i=1 fi�t� = 1 has a unique nonnegative solution. The unique solution

is termed a quasi-stationary distribution.
The structure of the generator Qε�δ to be considered is motivated by

Example 1.1. To proceed, first generalize the setup in the example to
include many states. For ease of presentation, consider the stationary case.
Let αε� δ�t� be a Markov chain with αε� δ�t� = �αε

1�t�� αδ
2�t�� and state space

� = ��a1� b1�� � � � � �am0
� b1�� � � � � �a1� bl�� � � � � �am0

� bl��� where l and m0
are some positive integers. Denote m = lm0. Suppose the generator is
given by Qε�δ = �1/ε�A+ �1/δ�B, where

A = diag
(
Q̃� � � � Q̃

)
and B = �Q⊗ Im0

� (2.1)

with Q̃ = (
q̃ij

) ∈ �m0×m0 being a generator and �Q = �q̄ij� ∈ �l×l being
a generator and Im0

∈ �m0×m0 is an m0 × m0 dimensional identity matrix.
Henceforth, we use the symbol diag to denote a diagonal block matrix with
appropriate entries. Suppose that Q̃ and �Q are both weakly irreducible.
Let ν̃ denote the stationary distribution corresponding to Q̃. Then it is easy
to see that diag�ν̃� � � � � ν̃�Qε�δ�̃ = �Q/δ. This demonstrates that �Q/δ is the
generator of the Markov chain αδ

2�t� with state space �b1� � � � � bl�. Similarly,
we can show αε

1�t� is a Markov chain generated by Q̃/ε with state space
�a1� � � � � am0

�. We next generalize this idea further for nonstationary cases
and to include weak and strong interactions.

2.2. More General Formulation

Suppose ε > 0 and δ > 0 are small parameters, αε� δ�t� is a finite state
Markov chain with state space � = �1� � � � �m� generated by Qε�δ�t�, and
the row vector pε�δ�t� = (

P�αε� δ�t� = 1�� � � � � P�αε� δ�t� = m�) ∈ �1×m

denotes the probability distribution of the Markov chain at time t. It is well
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known that pε�δ�·� is a solution to the forward equation

dpε� δ�t�
dt

= pε�δ�t�Qε�δ�t�� pε� δ�0� = p0� (2.2)

where p0
i ≥ 0 for each i and

∑
p0

i = 1 is the initial probability distribution.
Assume that the generator Qε�δ�t� ∈ �m×m has the form

Qε�δ�t� = 1
ε
A�t� + 1

δ
B�t� + Q̂�t�� (2.3)

Assume that A�t� and B�t� have the same partitioned form and the same
form of Kronecker product as in (2.1) with Q̃ and �Q replaced by time
dependent Q̃�t� and �Q�t�, respectively. The slowly changing motion is
described by the generator

Q̂�t� =

 q̂11�t�Im0
� � � q̂1l�t�Im0

���
���

q̂l1�t�Im0
� � � q̂ll�t�Im0

 � (2.4)

Throughout the rest of the paper, unless otherwise noted, we always work
with (2.3) with time-varying generators. In addition, we often use the notion
�j = �1� � � � � 1�′ ∈ �j×1, for some integer j. We make the following assump-
tions:

(A1) For each t ∈ �0� T �, Q̃�t� and �Q�t� = �q̄ij�t�� are weekly irre-
ducible.

(A2) For some n ≥ 0, A�·�, B�·�, and Q̂�·� are �n + 1�-time
continuously differentiable on [0, T]. In addition, �dn+1/dtn+1�A�·�,
�dn+1/dtn+1�B�·�, and �dn+1/dtn+1�Q̂�·� are Lipschitz on [0,T].

Define an operator Lε�δ by

Lε�δf = df

dt
− f

(
1
ε
A�t� + 1

δ
B�t� + Q̂�t�

)
(2.5)

for any smooth vector-valued function f �·�. Then Lε�δf = 0 if and only if
f is a solution to the differential equation (2.2). We are now in a position
to analyze the solution to (2.2).

3. ASYMPTOTIC EXPANSION

Using singular perturbation techniques, to approximate the solution to
(2.2), we seek outer–inner expansions of the form

pε�δ�t� = ϕε� δ� n�t� + ψε�δ� n
( t

ε
�
t

δ

)
+ eε� δ� n�t�� (3.1)
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where eε� δ� n�t� is the remainder, and the outer (regular part) and initial
layer correction terms are given by

ϕε� δ� n�t� =
n∑

i+j=0

εiδjϕ�i� j��t�

and ψε�δ� n
( t

ε
�
t

δ

)
=

n∑
i+j=0

εiδjψ�i� j�
( t

ε
�
t

δ

)
� (3.2)

respectively, such that eε� δ� n�t� is small and the error bound holds uniformly
in t. The main theorem is recorded below.

Theorem 3.1. Assume (A1) and (A2). For small parameters ε > 0 and
δ > 0, denote the unique solution to (2.2) by pε�δ�·�. Then for 0 ≤ i+ j ≤ n,
we can construct ϕ�i� j��·� and ψ�i� j��·� ·� such that

(a) ϕ�i�j��·� is twice differentiable on �0� T �.
(b) For each i, there are κ1 > 0 and κ2 > 0 such that∣∣∣ψ�i�j�

( t

ε
�
ε

δ

)∣∣∣ ≤ K1 exp
(
−κ1t

ε

)
+K2 exp

(
−κ2t

δ

)
�

(c) Suppose there exist constants h1 > 0 and h2 > 0 such that h1ε ≤ δ ≤
h2ε. Then the following estimate holds

sup
t∈�0� T �

∣∣∣∣pε�δ�t� −
n∑

i+j=0

εiδjϕ�i� j��t� −
n∑

i+j=0

εiδjψ�i� j�
( t

ε
�
t

δ

)∣∣∣∣
≤ K

(
εn+1 + δn+1)� (3.3)

When i = j = 0 in the above theorem, we obtain the limit of pε�δ�t� for
t > 0.

Corollary 3.2. Suppose Qε�δ�·� is continuously differentiable on �0� T �,
which satisfies (A1), and �d/dt�Q�·� is Lipschitz on �0� T �. Then for all t > 0,
limε� δ→0 p

ε�δ�t� = ϕ�0� 0��t�.
To obtain the desired result, we obtain the outer and inner expansion

terms by direct construction in what follows. They involve solutions to
algebraic-differential equations.

3.1. Outer Expansion

We begin with the construction of ϕε� δ� n+1�·� in the asymptotic expan-
sion. Consider the differential equation Lε�δϕε� δ� n+1�t� = 0� where Lε�δ is
given by (2.5).
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Equating coefficients of εiδj , we have for i+ j = 0,

ε−1δ0 � 0 = ϕ�0� 0��t�A�t��
ε0δ−1 � 0 = ϕ�0� 0��t�B�t��
ε0δ0 � dϕ�0� 0��t�

dt
= ϕ�1� 0��t�A�t� + ϕ�0� 1��t�B�t�

+ϕ�0� 0��t�Q̂�t��
ε1δ−1 � 0 = ϕ�1� 0��t�B�t��
ε−1δ1 � 0 = ϕ�0� 1��t�A�t��

(3.4)

and for 1 ≤ i+ j ≤ n,
ε2δ−1 � 0 = ϕ�2� 0��t�B�t��
ε1δ0 � dϕ�0� 1��t�

dt
= ϕ�2� 0��t�A�t� + ϕ�1� 1��t�B�t�

+ϕ�1� 0��t�Q̂�t��
ε0δ1 � dϕ�0� 1��t�

dt
= ϕ�1� 1��t�A�t� + ϕ�0� 2��t�B�t�

+ϕ�0� 1��t�Q̂�t��
ε−1δ2 � 0 = ϕ�0� 2��t�A�t��
· · · ·

(3.5)

We construct the solutions to (3.4). For construction of solutions to sys-
tems with higher order, the approach is similar, only the notation is more
involved. The main idea is as follows. We separate the equations in (3.4)
into two groups. The first group consists of the first two equations. We
show that they share a common solution. In fact, this common solution is
the limit as ε → 0 and δ → 0. The second group includes the rest of the
three equations. To solve the equations in the second group, we use the
methods of undetermined coefficients. First, assume the solution to the last
two equations is of particular form with certain functions (“multiplier”) to
be determined. Then our task reduces to finding these functions by using
the third equation. Such an idea is used in the construction of initial layer
corrections as well as higher order terms.

3.1.1. Construction of ϕ�0� 0��t�
Based on (A1), Q̃�t� and �Q�t� are irreducible. Let π�t� and λ�t�

be their quasi-stationary distributions, respectively. Denote πλ�t� =(
λ1�t�π�t�� � � � � λl�t�π�t�

) ∈ �m. According to assumption (A2), the
vector-valued functions λ�t�, π�t� and πλ�t� are (n+ 1)-times continuously
differentiable. We claim that the vector-valued function ϕ�0� 0��t� = πλ�t�
solves the first two equations of the system (3.4). Note that π�t�Q̃�t� = 0, so

ϕ�0� 0��t�A�t� = (
λ1�t�π�t�� � � � � λl�t�π�t�

)
diag

(
Q̃�t�� � � � � Q̃�t�)

= (
λ1�t�π�t�Q̃�t�� � � � � λl�t�π�t�Q̃�t�) = 0�
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where A�t� = diag�Q̃�t�� � � � � Q̃�t��. As for the second equation, λ�t�
�Q�t� = 0; that is,

∑l
i=1 λi�t�q̄ij�t� = 0� for all 1 ≤ j ≤ l. Thus,

ϕ�0� 0��t�B�t�= (λ1�t�π�t�� � � � � λl�t�π�t�
) q̄11�t�Im0

� � � q̄1l�t�Im0
���

���
q̄l1�t�Im0

� � � q̄ll�t�Im0


=
(

l∑
i=1

λi�t�π�t�q̄i1�t�Im0
� � � � �

l∑
i=1

λi�t�π�t�q̄il�t�Im0

)

=
((

l∑
i=1

λi�t�q̄i1�t�
)
π�t�� � � � �

(
l∑

i=1

λi�t�q̄il�t�
)
π�t�

)
= 0�

In addition, since
∑l

i=1 λi�t� = 1 and
∑m0

i=1 πi�t� = 1� ϕ�0� 0��t��m =∑m
i=1 ϕ

�0� 0�
i �t� = 1�

3.1.2. Construction of ϕ�1� 0��t�
To obtain the desired solutions, we use the methods of undetermined

coefficients. We postulate that the fourth and fifth equations of (3.4) are
given by

ϕ�1� 0��t� = �λ1�t�x�t�� � � � � λl�t�x�t��� and

ϕ�0� 1��t� = �y1�t�π�t�� � � � � yl�t�π�t���

where π�t� and λ�t� are the quasi-stationary distributions of Q̃�t�
and �Q�t�, respectively, and where the vector-valued functions x�t� =
�x1�t�� � � � � xm0

�t�� ∈ �1×m0 and y�t� = �y1�t�� � � � � yl�t�� ∈ �1×l are
to be determined. In addition, ϕ�1� 0��t��m = ∑m

i=1 ϕ
�1� 0�
i �t� = 0, and

ϕ�0� 1��t��m =∑m
i=1 ϕ

�0� 1�
i �t� = 0.

The fourth and fifth equations of (3.4) are not enough to determine x�t�
and y�t�. We also need to use the third equation of (3.4), which can be
written as

ϕ�1� 0��t�A�t� + ϕ�0� 1��t�B�t� = dϕ�0� 0��t�
dt

− ϕ�0� 0��t�Q̂�t��

The right-hand side of the above equation can be expressed as

dϕ�0� 0��t�
dt

− ϕ�0� 0��t�Q̂�t� = dπλ�t�
dt

− πλ�t�Q̂�t�

=
(
λ1�t�

dπ�t�
dt

� � � � � λl�t�
dπ�t�
dt

)
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+
(
dλ1�t�
dt

π�t�� � � � � dλl�t�
dt

π�t�
)

−
( l∑

i=1

λi�t�q̂i1�t�π�t�� � � � �
l∑

i=1

λi�t�q̂il�t�π�t�
)
�

Two equations may be derived from the third equation of (3.4). They are

ϕ�1� 0��t�A�t� =
(
λ1�t�

dπ�t�
dt

� � � � � λl�t�
dπ�t�
dt

)
� (3.6)

and

ϕ�0� 1��t�B�t� =
(
dλ1�t�
dt

π�t�� � � � � dλl�t�
dt

π�t�
)

−
( l∑

i=1

λi�t�q̂i1�t�π�t�� � � � �
l∑

i=1

λi�t�q̂il�t�π�t�
)
� (3.7)

Consider (3.6). In view of the block diagonal form of A�t�, (3.6) is equiv-
alent to

λ1�t�x�t�Q̃�t� = λ1�t�
dπ�t�
dt

�

· · ·
λl�t�x�t�Q̃�t� = λl�t�

dπ�t�
dt

�

It suffices to show that the following system has a solution

x�t�Q̃�t� = dπ�t�
dt

and
m0∑
i=1

xi�t� = 0� (3.8)

Denote the null space of Q̃�t� by N�Q̃�t��. The weak irreducibility of Q̃�t�
implies that rank �Q̃�t�� = m0 − 1� and hence dim�N�Q̃�t��� = 1� Note that
N�Q̃�t�� is spanned by �m0

. By virtue of the well-known Fredholm alter-
native, the first equation in (3.8) has a solution only if its right-hand side
is orthogonal to N�Q̃�t��. Since N�Q̃�t�� is spanned by �m0

, π�t��m0
= 1

and dπ�t�
dt

�m0
= d�π�t��m0

�
dt

= 0, so the orthogonality is verified. Next we
show that the system (3.8) has a unique solution. To this end, let us rewrite
the system (3.8) as

q̃11�t�x1�t� + · · · + q̃m0� 1�t�xm0
�t� = dπ1�t�

dt
�

� � �

q̃1�m0
�t�x1�t� + · · · + q̃m0m0

�t�xm0
�t� = dπm0

�t�
dt

�

x1�t� + · · · + xm0
�t� = 0�

(3.9)
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The existence and uniqueness of the solution to (3.9) follows from the weak
irreducibility and Fredholm alternative. Denote Q̃c�t� = ��m0

���Q̃�t��. Then
the solution can be expressed as

x�t� = dπ�t�
dt

Q̃′
c�t��Q̃c�t�Q̃′

c�t��−1�

Moreover x�t� is n-times continuously differentiable on �0� T �. Conse-
quently, (3.6) has a unique solution ϕ�1� 0��t� = �λ1�t�x�t�� � � � � λl�t�x�t��
with the condition

∑m
i=1 ϕ

�1� 0��t� = 0. In addition, ϕ�1� 0��t� is n-times
continuously differentiable.

3.1.3. Construction of ϕ�0� 1��t�
Examine (3.7). Rewrite Eq. (3.7) in its component form

l∑
i=1

yi�t�q̄ij�t�π�t� =
dλj�t�
dt

π�t� −
l∑

i=1

λi�t�q̂ij�t�π�t� for j = 1� � � � � l�

To establish the existence of a solution, it suffices to show that

y�t��Q�t� = dλ�t�
dt

− λ�t�Qh�t� (3.10)

has a solution, where Qh�t� = �q̂ij� ∈ �l×l. Since
∑l

i=1 λi�t� = 1,
��d/dt�λ�t���l = �d/dt��λ�t��l�� = 0. Owing to Qh�t��l = 0

( dλ�t�
dt

−
λ�t�Qh�t�)�l = 0; i.e., the right-hand side of (3.10) is orthogonal to �l. By
(A1), rank��Q�t�� = l − 1. An argument similar to that of (3.8) confirms
that

y�t��Q�t� = dλ�t�
dt

− λ�t�Qh�t��
l∑

i=1

yi�t� = 0� (3.11)

has a unique solution y�t� = �y1�t�� � � � � yl�t��. Hence ϕ�0� 1��t� =
�y1�t�π�t�� � � � � yl�t�π�t�� solve (3.7). It is easy to see that ϕ�0� 1��t� is
n-times continuously differentiable. In addition, we have

∑m
i=1 ϕ

�0� 1�
i �t� =∑l

j=1 yj�t��
∑m0

k=1 πk�t�� =
∑l

j=1 yj�t� = 0.

3.1.4. Construction of ϕ�i� j��t� for 2 ≤ i+ j ≤ n+ 1

In essentially the same way, we can construct ϕ�i�j��t� for 2 ≤ i + j ≤
n+ 1. The details are thus omitted. To summarize, we state the following
theorem.
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Theorem 3.3. Assume (A1) and (A2) hold. Then there exist ��n + 1� −
�i+ j��-times continuously differentiable solutions ϕ�i� j��t�, 0 ≤ i+ j ≤ n+ 1,
for (3.4) and (3.5). In addition, the following conditions are satisfied:

m∑
k=1

ϕ
�0� 0�
k �t� = 1�

m∑
k=1

ϕ
�i� j�
k �t� = 0� for 1 ≤ i+ j ≤ n+ 1� (3.12)

Remark 3.4. The conditions in (3.12) imply that, for 1 ≤ i + j ≤ n+ 1,
ϕ�i� j��0��m = 0; i.e., ϕ�i� j��0� is orthogonal to �m. This fact will help us to
obtain the desired exponential decay property of the initial layer terms.

3.2. Inner Expansion

In this section, we construct the initial layer terms ψ�i� j��·� ·�. It consists
of two parts. First, we obtain the sequence ψ�i� j��·� ·� by solving a system
of partial differential equations. Then we present the exponential decay
property of the solutions.

3.2.1. Construction of ψ�i� j��·� ·�
Following the idea in singular perturbation, define the stretched time

variables as follows:

τ = t

ε
� µ = t

δ
� (3.13)

Note that τ → ∞ as ε → 0, and µ → ∞ as δ → 0 for any t > 0.
Consider the differential equation Lε�δψε� δ� n+1�τ�µ� = 0� where the

operator Lε�δ is defined in (2.5) and ψε�δ� n+1�τ�µ� is defined in (3.2).
Thus the above equation can be written as(

1
ε

∂

∂τ
+ 1

δ

∂

∂µ

)
ψε�δ� n+1�τ�µ� = ψε�δ� n+1�τ�µ�Qε�δ�τ�µ�� (3.14)

Taking Taylor expansions of Qε�δ�t� about t = 0,

Qε�δ�t� =
n+1∑
k=0

tk

k!
dkQ�0�
dtk

+ R�n+1��t�

=
n+1∑
k=0

(
ε−1 t

k

k!
dkA�0�

dtk
+ δ−1 t

k

k!
dkB�0�
dtk

+ tk

k!
dkQ̂�0�
dtk

)
+ R�n+1��t�

=
n+1∑
k=0

(
εk−1 �t/ε�k

k!
dkA�0�

dtk
+ δk−1 �t/δ�k

k!
dkB�0�
dtk

+ δk �t/δ�k
k!

dkQ̂�0�
dtk

)
+ R�n+1��t��
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where R�n+1��t� = O�tn+2� uniformly for t ∈ �0� T �. Using τ and µ, we can
write the above equation as

Qε�δ�τ�µ� =
n+1∑
k=0

(
εk−1 τ

k

k!
dkA�0�

dtk
+ δk−1µ

k

k!
dkB�0�
dtk

+ δkµ
k

k!
dkQ̂�0�
dtk

)
+R�n+1��τ�µ��

Dropping the term R�n+1��τ�µ� in Qε�δ�t�, it follows from (3.14)(
ε−1 ∂

∂τ
+δ−1 ∂

∂µ

)
ψε�δ�n+1�τ�µ�

=ψε�δ�n+1�τ�µ�
n+1∑
k=0

(
εk−1 τ

k

k!
dkA�0�

dtk
+δk−1µ

k

k!
dkB�0�
dtk

+δkµ
k

k!
dkQ̂�0�
dtk

)
�

That is,

n+1∑
i+j=0

(
ε−1 ∂

∂τ
+ δ−1 ∂

∂µ

)
εiδjψ�i� j��τ�µ�

=
n+1∑
k=0

εiδjψ�i� j��τ�µ�

×
n+1∑

i+j=0

(
εk−1 τ

k

k!
dkA�0�

dtk
+ δk−1µ

k

k!
dkB�0�
dtk

+ δkµ
k

k!
dkQ̂�0�
dtk

)
�

Equating the coefficients of εiδj , we have for i+ j = 0,

ε−1δ0 � ∂ψ�0� 0��τ�µ�
∂τ

= ψ�0� 0��τ�µ�A�0��

ε0δ−1 � ∂ψ�0� 0��τ�µ�
∂µ

= ψ�0� 0��τ�µ�B�0��

ε0δ0 � ∂ψ�1� 0��τ�µ�
∂τ

+ ∂ψ�0� 1��τ�µ�
∂µ

= ψ�0� 0��τ�µ�D�τ�µ� + ψ�1� 0��τ�µ�A�0�
+ψ�0� 1��τ�µ�B�0�

ε1δ−1 � ∂ψ�1� 0��τ�µ�
∂µ

= ψ�1� 0��τ�µ�B�0��

ε−1δ1 � ∂ψ�0� 1��τ�µ�
∂τ

= ψ�0� 1��τ�µ�A�0��

(3.15)
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and for 1 ≤ i+ j ≤ n,

ε2δ−1 � ∂ψ�2� 0��τ�µ�
∂µ

= ψ�2� 0��τ�µ�B�0��

ε1δ0 � ∂ψ�2� 0��τ�µ�
∂τ

+ ∂ψ�1� 1��τ�µ�
∂µ

= ψ�0� 0��τ�µ�d
2A�0�
dt2

τ2 + ψ�1� 0��τ�µ�D�τ�µ�

+ψ�2� 0��τ�µ�A�0� + ψ�1� 1��τ�µ�B�0�

ε0δ1 � ∂ψ�1� 1��τ�µ�
∂τ

+ ∂ψ�0� 2��τ�µ�
∂µ

= ψ�0� 0��τ�µ�d
2B�0�
dt2

µ2 + ψ�0� 1��τ�µ�D�τ�µ�

+ψ�1� 1��τ�µ�A�0� + ψ�0� 2��τ�µ�B�0�

ε−1δ2 � ∂ψ�0� 2��τ�µ�
∂τ

= ψ�0� 2��τ�µ�A�0��
� � � �

(3.16)

where

D�τ�µ� = τ
dA�0�
dt

+ µ
dB�0�
dt

+ Q̂�0��
We will construct ψ�i�j��·� ·� by solving (3.15) and (3.16).

Theorem 3.5. Assume (A1) and (A2). Then there exist continuously dif-
ferentiable solutions ψ�i� j��t�. 0 ≤ i+ j ≤ n for the systems (3.15) and (3.16).
The solution to (3.15) can be expressed as

ψ�0� 0��τ�µ�= (p0 − ϕ�0� 0��0�) exp�A�0�τ + B�0�µ��
ψ�1� 0��τ�µ�=H�1� 0��τ� exp�A�0�τ + B�0�µ��
ψ�0� 1��τ�µ�=H�0� 1��µ� exp�A�0�τ + B�0�µ��

(3.17)

where the row vectors H�1� 0��τ� and H�0� 1��µ� are given by

H�1� 0��τ�= �p0 − ϕ�0� 0��0��
∫ τ

0
exp�A�0�s�dA�0�

dt

× exp�−A�0�s�s ds − ϕ�1� 0��0��

H�0� 1��µ�= 1
2
µ2(p0 − ϕ�0� 0��0�)dB�0�

dt

+µ�p0 − ϕ�0� 0��0��Q̂�0� − ϕ�0� 1��0��

(3.18)

For 2 ≤ i+ j ≤ n+ 1, the functions ψ�i�j��·� ·� can be expressed similarly.
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Proof. Construction of ψi�j�τ�µ� for 0 ≤ i + j ≤ 1: Let us determine
ψ�0� 0��τ�µ� from the first two equations of (3.15). First, ψ�0� 0��τ�µ� can be
taken as

ψ�0� 0��τ�µ� = C�0� 0� exp�A�0�τ + B�0�µ�� (3.19)

where C�0� 0� is a constant vector to be determined by the initial value. From
the first equation of (3.15), we have

ψ�0� 0��τ�µ� = C1�µ� exp�A�0�τ�� (3.20)

where C1�µ� is a vector-valued function. To determine C1�µ�, substituting
(3.20) into the second equation of (3.15), we obtain that

dC1�µ�
dµ

exp�A�0�τ� = C1�µ� exp�A�0�τ�B�0��

Since A�0� and B�0� commute, exp�A�0�τ�B�0� = B�0� exp�A�0�τ�, and
dC1�µ�

dµ
exp�A�0�τ� = C1�µ�B�0� exp�A�0�τ�� (3.21)

Note that exp�A�0�τ� is invertible for any matrix A�0� and its inverse is
exp�−A�0�τ�. Postmultiplying exp�−A�0�τ� to both sides of (3.21), we ob-
tain dC1�µ�

dµ
= C1�µ�B�0�� It follows that C1�µ� = C�0� 0� exp�B�0�µ�, where

C�0� 0� is a constant vector. Substituting C1�µ� into (3.20), ψ�0� 0��τ�µ�
= C�0� 0� exp�B�0�µ� exp�A�0�τ�. Note that exp�B�0�µ� exp�A�0�τ� =
exp�A�0�τ + B�0�µ�. It follows that ψ�0� 0��τ�µ� = C�0� 0� exp�A�0�τ +
B�0�µ�. Thus (3.19) is obtained.
To solve for ψ�1� 0��τ�µ� and ψ�0� 1��τ�µ�, start with the fourth and fifth

equations in (3.15). Assume that the solutions can be written as

ψ�1� 0��τ�µ� = H�1� 0��τ� exp�A�0�τ + B�0�µ�
ψ�0� 1��τ�µ� = H�0� 1��µ� exp�A�0�τ + B�0�µ��

where H�1� 0��·� and H�0� 1��·� are vector-valued functions to be determined
later. As in the construction of the outer expansion terms, H�1� 0��·� and
H�0� 1��·� need to be determined by the use of the third equation in (3.15).
In fact,(

dH�1� 0��τ�
dτ

+ dH�0� 1��µ�
dµ

)
exp�A�0�τ + B�0�µ�

= τC�0� 0� exp�A�0�τ + B�0�µ�dA�0�
dt

+ µC�0� 0� exp�A�0�τ

+B�0�µ�dB�0�
dt

+ C�0� 0� exp�A�0�τ + B�0�µ�Q̂�0��
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We separate the above equation into two equations

dH�1� 0��τ�
dτ

exp�A�0�τ + B�0�µ� = τC�0� 0� exp�A�0�τ + B�0�µ�dA�0�
dt

�

dH�0� 1��µ�
dµ

exp�A�0�τ + B�0�µ� = µC�0� 0� exp�A�0�τ + B�0�µ�dB�0�
dt

+C�0� 0� exp�A�0�τ + B�0�µ�Q̂�0��
Note that exp�A�0�τ+B�0�µ� is invertible and its inverse is exp�−A�0�τ−
B�0�µ�. By postmultiplying exp�−A�0�τ − B�0�µ� to both sides of the
above two equations, we have

dH�1� 0��τ�
dτ

= τC�0� 0� exp�A�0�τ + B�0�µ�dA�0�
dt

exp�−A�0�τ − B�0�µ��

dH�0� 1��µ�
dµ

= µC�0� 0� exp�A�0�τ + B�0�µ�dB�0�
dt

exp�−A�0�τ − B�0�µ�

+C�0� 0� exp�A�0�τ + B�0�µ�Q̂�0� exp�−A�0�τ − B�0�µ��
In addition, the following communitivity holds

dA�0�
dt

exp�B�0�µ� = exp�B�0�µ�dA�0�
dt

�

dB�0�
dt

exp�A�0�τ + B�0�µ� = exp�A�0�τ + B�0�µ�dB�0�
dt

�

Q̂�t� exp�A�0�τ + B�0�µ� = exp�A�0�τ + B�0�µ�Q̂�t��
It follows that

dH�1� 0��τ�
dτ

= τC�0� 0� exp�A�0�τ�dA�0�
dt

exp�−A�0�τ��

dH�0� 1��µ�
dµ

= µC�0� 0� dB�0�
dt

+ C�0� 0�Q̂�0��
The solutions to the above equations are

H�1� 0��τ� = C�0� 0�
∫ τ

0
exp�A�0�s�dA�0�

dt
exp�−A�0�s�s ds + C�1� 0��

H�0� 1��µ� = 1
2
µ2C�0� 0� dB�0�

dt
+ µC�0� 0�Q̂�0� + C�0� 1��

(3.22)

where C�1� 0� and C�0� 1� are constant row vectors to be determined by the
initial data. Choosing matched (between outer and inner terms) initial con-
ditions leads to

ϕ�0� 0��0� + ψ�0� 0��0� 0� = p0� ϕ�1� 0��0� + ψ�1� 0��0� 0� = 0�

ϕ�0� 1��0� + ψ�0� 1��0� 0� = 0�
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The first equation together with (3.19) gives C�0� 0� = p0 − ϕ�0� 0��0� and
the second and third equations together with (3.22) imply that C�1� 0� =
−ϕ�1� 0��0�, and C�0� 1� = −ϕ�0� 1��0�. Substituting C�0� 0�, C�1� 0�, and C�0� 1�

into (3.22), we get

H�1� 0��τ� = (
p0 − ϕ�0� 0��0�) ∫ τ

0
exp�A�0�s�dA�0�

dt

× exp�−A�0�s�s ds − ϕ�1� 0��0��

H�0� 1��µ� = 1
2
µ2(p0 − ϕ�0� 0��0�)dB�0�

dt
+ µ

(
p0 − ϕ�0� 0��0�)Q̂�0�

−ϕ�0� 1��0��
This completes the construction of ψ�i�j��·� ·� for 0 ≤ i+ j ≤ 1.

The construction of the solutions for 2 ≤ i + j ≤ n + 1 is similar. We
omit the details.

3.2.2. Exponential Decay of ψ�i� j��·� ·�
We obtained the asymptotic series ψ�i� j��·� ·� in Theorem 3.5. In this sec-

tion, we will verify the exponential decay properties of the solutions. Similar
to Lemma A.2 in [15, p.300], we have the following result.

Lemma 3.6. Suppose that assumptions (A1) and (A2) are satisfied.

(a) Suppose P�s� is the solution to the differential equation:
dP�s�
ds

= P�s�A�0�� P�0� = I� (3.23)

Then P�s� → �PA as s → ∞ and∣∣exp�A�0�s� − �PA

∣∣ ≤ KA exp�−κAs�� for some κA > 0� (3.24)

where �PA = diag��m0
ν�0�� � � � ��m0

ν�0�� and ν�0� = �ν1�0�� � � � � νm0
�0�� ∈

�1×m0 is the quasi-stationary distribution corresponding to the generator Q̃�0�.
(b) Suppose P�s� is the solution to the differential equation:

dP�s�
ds

= P�s�B�0�� P�0� = I� (3.25)

Then P�s� → �PB as s → ∞ and∣∣exp�B�0�s� − �PB

∣∣ ≤ KB exp�−κBs�� for some κB > 0� (3.26)

where

�PB =

λ1�0�Im0
� � � λl�0�Im0

���
���

λ1�0�Im0
� � � λl�0�Im0

 (3.27)

and λ�0� = �λ1�0�� � � � � λl�0�� is the quasi-stationary distribution of the gen-
erator �Q�0� = �q̄ij�0��.
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Proof. To prove (a), note that �m0
ν�0� has identical rows �ν1�0�� � � � �

νm0
�0��. In view of the block-diagonal structure of A�0�, we have

P�s� = exp�A�0�s� = diag�exp�Q̃�0�s�� � � � � exp�Q̃�0�s���
By using Lemma A.2 in [15, p. 300], it is readily seen that there exist
constants KA > 0 and κA > 0 such that � exp�Q̃�0�s� − �m0

ν�0�� ≤
KA exp�−κAs�. Thus P�s� → PA as s → ∞ and � exp�Ã�0�s� − �PA� ≤
KA exp�−κAs�. The first result is proved.
To prove (b), note that after some rows and columns are interchanged,

B�0� becomes the block diagonal form B∗�0� = diag��Q�0�� � � � � �Q�0��. That
is, there is an invertible constant matrix R ∈ �m×m such that RB�0�R−1 =
B∗�0�� Similar to the first part of this lemma, we have

exp�B∗�0�s� → diag��lλ�0�� � � � ��lλ�0�� ∈ �m×m def= �PB� as s → ∞�

where diag��lλ�0�� � � � ��lλ�0�� is a block diagonal matrix with m0 blocks.
Consequently,

R−1 exp�B∗�0�s�R → R−1diag��lλ�0� � � � � ��1λ�0��R� as s → ∞�

Note that

R−1 exp�B∗�0�s�R = exp�R−1B∗�0�Rs� = exp�B�0�s�
and �PB has the form given by (3.27). Thus we have exp�B�0�s� → �PB as
s → ∞ with the desired convergence rate. This completes the proof.

Lemma 3.7. Suppose that assumptions (A1) and (A2) are satisfied. Let
PA and PB be defined as in Lemma 3.6. Then there exist constants KA > 0,
KB > 0, κA > 0, and κB > 0 such that � exp�A�0�s + B�0�t� − �PA

�PB� ≤
KA exp�−κAs� +KB exp�−κBt�.
Proof. Notice the fact that A�t� and B�t� commute. We start with the

inequality:∣∣exp�A�0�s + B�0�t� − �PA
�PB

∣∣
= ∣∣exp�A�0�s + B�0�t� − exp�A�0�s��PB + exp�A�0�s��PB − �PA

�PB

∣∣
= ∣∣exp�A�0�s��exp�B�0�t� − �PB� + �exp�A�0�s� − �PA��PB

∣∣
≤ ∣∣exp�A�0�s�∣∣∣∣exp�B�0�t� − �PB

∣∣+ ∣∣exp�A�0�s� − �PA

∣∣∣∣�PB

∣∣�
By Lemma 3.6, there exist constants K′

A > 0, K′
B > 0, κA > 0, and κB > 0

such that ∣∣exp�A�0�s� − �PA

∣∣ ≤ K′
A exp�−κAs�� and∣∣exp�B�0�t� − �PB

∣∣ ≤ K′
B exp�−κBt��
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Since ��PB� ≤ MB for some constant MB > 0 and �exp�A�0�s� ≤ MA for
some constant MA > 0, we have∣∣exp�A�0�s + B�0�t� − �PA

�PB

∣∣ ≤ MAK
′
B exp�−κBt� +MBK

′
A exp�−κAs�

≤ KB exp�−κBt� +KA exp�−κAs��
This completes the proof.

Now we are in a position to state the result about the exponential decay
of ψ�i�j��·� ·�.
Theorem 3.8. Under the conditions of Theorem 3.1, for each i, j with 0 ≤

i + j ≤ n + 1, there exist polynomials c
i�j
A �τ�µ� and c

i�j
B �τ�µ�, and positive

numbers κA and κB such that∣∣ψ�i�j��τ�µ�∣∣ ≤ c
�i�j�
A �τ�µ� exp�−κAτ� + c

�i�j�
B �τ�µ� exp�−κBµ�� (3.28)

Proof. Note that
∑m

i=1 p
0
i = 1� and

∑m
i=1 ϕ

�0� 0�
i �0� = 1. It follows that∑m

i=1 ψ
�0� 0�
i �0� 0� = ∑m

i=1 p
0
i − ∑m

i=1 ϕ
�0� 0�
i �0� = 0� That is, ψ

�0� 0�
i �0� 0�

is orthogonal to �m. Let �PA and �PB be defined in Lemma 3.6.
Recall the forms of �PA and �PB. Then

�PA
�PB =

λ1�0��m0
π�0� � � � λl�0��m0

π�0�
� � �

λ1�0��m0
π�0� � � � λl�0��m0

π�0�


=�m�λ1�0�π�0�� � � � � λl�0�π�0�� = �mπλ�0��

As a Consequence, ψ�0� 0��0� 0��PA
�PB = ψ�0� 0��0� 0��mπλ�0� = 0� i.e.,

ψ�0� 0��0� is orthogonal to πλ�0�. By virtue of Lemma 3.7,∣∣ψ�0� 0��τ�µ�∣∣ = ∣∣ψ�0� 0��0� 0� exp�A�0�τ + B�0�µ�∣∣
= ∣∣ψ�0� 0��0� 0��PA

�PB − ψ�0� 0��0� 0��PA
�PB

+ψ�0� 0��0� 0� exp�A�0�τ + B�0�µ�∣∣
≤ ∣∣ψ�0� 0��0� 0��PA

�PB

∣∣
+∣∣ψ�0� 0��0� 0��exp�A�0�τ + B�0�µ� − �PA

�PB�
∣∣

= ∣∣ψ�0� 0��0� 0��exp�A�0�τ + B�0�µ� − �PA
�PB�

∣∣
≤ ∣∣ψ�0� 0��0� 0�∣∣�KA exp�−κAτ� +KB exp�−κBµ��
≤ K̃A exp�−κAτ� + K̃B exp�−κBµ�� (3.29)

That is, ψ0� 0�τ�µ� decays exponentially fast.
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Next consider ψ�0� 1��τ�µ�. Recall that ψ�0� 1��τ�µ� = H�0� 1��µ� exp�A�0�
τ + B�0�µ�, where

H�0�1��µ�= 1
2
µ2(p0−ϕ�0�0��0�)dB�0�

dt
+µ

(
p0−ϕ�0�0��0�)Q̂�0�−ϕ�0�1��0��

Note that ϕ�0� 1��0�� =∑m
i=0 ϕ

�0� 1�
i �0� = 0� Since Q̂�0� and B(0) are gener-

ators, Q̂�0��m = 0, and dB�0�
dt

�m = d�B�0��m�
dt

= 0. Thus we obtain

H�0� 1��µ��m =
(
1
2
µ2�p0 − ϕ�0� 0��0�

)
dB�0�
dt

+µ
(
p0 − ϕ�0� 0��0�)Q̂�0� − ϕ�0� 1��0���m

= 1
2
µ2(p0 − ϕ�0� 0��0�)dB�0�

dt
�m

+µ
(
p0 − ϕ�0� 0��0�)Q̂�0��m − ϕ�0� 1��0��m = 0�

i.e., H�0� 1��µ� is orthogonal to �m. Hence,∣∣ψ�0�1��0�0�∣∣= ∣∣H�0�1��µ�exp�A�0�τ+B�0�µ�∣∣
= ∣∣H�0�1��µ��PA

�PB+H�0�1��µ�(exp�A�0�τ+B�0�µ�−�PA
�PB

)∣∣
= ∣∣H�0�1��µ�(exp�A�0�τ+B�0�µ�−�PA

�PB

)∣∣
≤ ∣∣H�0�1��µ�∣∣∣∣exp�A�0�τ+B�0�µ�−�PA

�PB

∣∣
= ∣∣H�0�1��µ�∣∣�KAexp�−κAτ�+KBexp�−κBµ��
≤c

�0�1�
A �µ�exp�−κAτ�+c

�0�1�
B �µ�exp�−κBµ��

where c
�0� 1�
A �µ� and c

�0� 1�
B �µ� are polynomials of degree 2. Thus, ψ�0� 1��τ�µ�

also decays exponentially fast.
Next we show the exponential decay of ψ�1� 0��τ�µ�. Recall that

ψ�1� 0��τ�µ� = H�1� 0��τ� exp�A�0�τ + B�0�µ��
where

H�1� 0��τ� = (
p0 − ϕ�0� 0��0�) ∫ τ

0
exp�A�0�s�dA�0�

dt
exp�−A�0�s�s ds

−ϕ�1� 0��0��
Since ϕ�1� 0��0� is orthogonal to �m, and

dA�0�
dt

exp�−A�0�s��= dA�0�
dt

( ∞∑
n=0

�−1�nsn
n!

�A�0��n
)

�m

= dA�0�
dt

∞∑
n=0

�−1�nsn
n!

��A�0��n�m�
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= dA�0�
dt

(
Im�m− s

1!
�A�0���m+ s2

2!
�A�0��2�m+···

)
= dA�0�

dt
�Im�m�=

dA�0�
dt

�m=0�

H�1� 0��τ��m =
(
�p0 − ϕ�0� 0��0��

∫ τ

0
exp�A�0�s�dA�0�

dt
exp�−A�0�s�s ds

−ϕ�1� 0��0�
)

�m

= (
p0 − ϕ�0� 0��0�) ∫ τ

0
exp�A�0�s�dA�0�

dt
exp�−A�0�s��s ds

−ϕ�1� 0��0��m = 0�

So we have shown that H�1� 0��τ� is orthogonal to �m. Thus we have∣∣ψ�1� 0��0� 0�∣∣ = ∣∣H�1� 0��µ� exp�A�0�τ + B�0�µ�∣∣
= ∣∣H�1� 0��µ��exp�A�0�τ + B�0�µ� − �PA

�PB�
∣∣

≤ ∣∣H�1� 0��µ�∣∣∣∣ exp�A�0�τ + B�0�µ� − �PA
�PB

∣∣
= ∣∣H�1� 0��µ�∣∣�KA exp�−κAτ� +KB exp�−κBµ��
≤ c

�1� 0�
A �µ� exp�−κAτ� + c

�1� 0�
B �µ� exp�−κBµ��

where c
�1� 0�
A �µ� and c

�1� 0�
B �µ� are polynomials of degree 2.

The proof for the cases of 2 ≤ i + j ≤ n + 1 are similar to the above.
Hence we omit the details. The theorem is proved.
Since the growth of c

�1� 0�
A �µ� and c

�1� 0�
B �µ� are much slower than expo-

nential, we have the following two corollaries.

Corollary 3.9. For 0 ≤ i + j ≤ n + 1, we have
∣∣ψ�i� j��τ�µ�∣∣ ≤

KA exp�−κA� +KB exp�−κB��
Corollary 3.10. Suppose there exist constants h1 > 0 and h2 > 0 such

that h1ε ≤ δ ≤ h2ε. Then for any integers 0 ≤ i+ j ≤ n+ 1, �τψ�i� j��τ�µ�� ≤
K1, and �µψ�i� j��τ�µ�� ≤ K2� for some constants K1 > 0 and K2 > 0.

4. ERROR ANALYSIS

In this section we will validate the asymptotic expansion. Recall that the
operator Lε�δ is defined by (2.5). We first prove a lemma.
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Lemma 4.1. Suppose that for some 0 ≤ k ≤ n + 1, supt∈�0� T � �Lε�δvε� δ

�t�� = O�εk + δk� and vε� δ�0� = 0. Then supt∈�0�T �
∣∣vε� δ�t�∣∣ ≤ O�εk + δk�.

Proof. Let ηε� δ�t� be a vector-valued function satisfy supt∈�0� T �
∣∣ηε� δ

�t�∣∣O�εk + δk�� Consider the differential equation

Lε�δvε� δ�t� = ηε� δ�t�� vε� δ�0� = 0� (4.1)

Now the solution of the above equation is given by vε� δ�t� =∫ t
0 η

ε� δ�s�Xε�δ�t� s�ds, where Xε�δ�t� s� is a principal matrix solution.
Since Xε�δ�t� s� is a transition probability matrix, �Xε�δ�t� s�� ≤ K, for all
t� s ∈ �0� T �. Therefore, we have the inequality

sup
t∈�0�T �

∣∣vε� δ�t�∣∣ ≤ K sup
t∈�0�T �

∫ t

0

∣∣ηε� δ�s�∣∣ds ≤ K�εk + δk��

This completes the proof.

In view of (3.1), eε� δ� k�t� is defined as eε� δ� k�t� = pε�δ�t� − ϕε� δ� k�t� −
ψε�δ� k�t/ε� t/δ�� where pε�δ�·� is the solution to (2.2), and ϕε� δ� k�·� and
ψε�δ� k�·� ·� are constructed in previous sections. We will estimate the error
term eε� δ� n�t�. We have the following result.

Proposition 4.2. Assume (A1) and (A2). Suppose there exist con-
stants h1 > 0 and h2 > 0 such that h1ε ≤ δ ≤ h2ε. Then, for 0 ≤ i ≤ n,
supt∈�0�T �

∣∣eε� δ� i�t�∣∣ = O�εi+1 + δi+1�.
Proof. We first prove the result for

eε� δ� 1�t� = pε�δ�t� −
1∑

i+j=0

εiδjϕ�i� j��t� −
1∑

i+j=0

εiδjψ�i� j�
( t

ε
�
t

δ

)
�

It is easy to see that eε� δ� 1�0� = 0, and hence the condition of Lemma 4.1
on the initial data holds. By the definition of Lε�δ, Lε�δpε� δ�t� = 0. Conse-
quently, we have

Lε�δeε� δ�1�t� = Lε�δpε� δ�t� − Lε�δ

( 1∑
i+j=0

εiδjϕ�i� j��t�
)

−Lε�δ

(
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))

= −Lε�δ

(
1∑

i+j=0

εiδjϕ�i� j��t�
)
− Lε�δ

(
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))

= −
[
d

dt

(
1∑

i+j=0

εiδjϕ�i� j��t�
)
−

1∑
i+j=0

εiδjϕ�i� j��t�Qε�δ�t�
]
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−
[
d

dt

(
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))

−
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
Qε�δ�t�

]
�

Based on the smoothness of ϕ�i� j��·� on �0� T � and the defining equation
(3.4),

d

dt

(
1∑

i+j=0

εiδjϕ�i� j��t�
)
−

1∑
i+j=0

εiδjϕ�i� j��t�Qε�δ�t�

= ε

(
dϕ�1� 0��t�

dt
− ϕ�1� 0��t�Q̂�t�

)
+ δ

(
dϕ�0� 1��t�

dt
− ϕ�0� 1��t�Q̂�t�

)
= O�ε+ δ��

Now let us estimate the terms containing ψ�i� j��·� ·�. Recall that

Qε�δ�t� = 1
ε
A�0� + 1

δ
B�0� +

(
τ
dA�0�
dt

+ µ
dB�0�
dt

+ Q̂�0�
)

+O�ετ2 + δµ2 + δµ��
where τ = t/ε and µ = t/δ. According to the exponential decay property
of ψ�i� j��·� ·� and the defining equations (3.15) and (3.16),

d

dt

(
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))
−

1∑
i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
Qε�δ�t�

= d

dt

(
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))
−

1∑
i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)

×
(
1
ε
A�0� + 1

δ
B�0� +

(
τ
dA�0�
dt

+ µ
dB�0�
dt

+ Q̂�0�
)
+O�ετ + δµ�

)
= −�εψ�1� 0��τ�µ� + δψ�0� 1��τ�µ��

(
τ
dA�0�
dt

+ µ
dB�0�
dt

+ Q̂�0�
)

−
1∑

i+j=0

εiδjψ�i� j��τ�µ�O�ετ2 + δµ2 + δµ��

Based on the exponential decay of ψ�i� j��·� ·� and Corollary 3.10, we obtain

d

dt

(
1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))
−

1∑
i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
Qε�δ�t� = O�ε+ δ��
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Thus we have proved that Lε�δeε� δ� 1�t� = O�ε + δ� uniformly in �0� T �.
By Lemma 4.1, we have eε� δ� 1�t� = O�ε+ δ� uniformly in �0� T �. Next we
show the result holds for i = j = 0. Note that

eε� δ� 1�t� = eε� δ� 0�t� − εϕ�1� 0��t� − δϕ�0� 1��t� − εψ�1� 0�
(
t

ε
�
t

δ

)
− δψ�0� 1�

(
t

ε
�
t

δ

)
�

By Corollary 3.10 we have

εϕ�1� 0��t� + δϕ�0� 1��t� + εψ�1� 0�
(
t

ε
�
t

δ

)
+ δψ�0� 1�

(
t

ε
�
t

δ

)
= O�ε+ δ��

uniformly in t ∈ �0� T �. Thus eε� δ� 0�t� = O�ε+ δ� uniformly in t ∈ �0� T �.
Similarly, we can estimate eε� δ� n�t�. In fact, from

eε� δ� n+1�t� = pε�δ�t� −
n+1∑

i+j=0

εiδjϕ�i� j��t� −
n+1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
�

we see that eε�δ�n+1�0� = 0, and

Lε�δeε�δ�n+1�t�=Lε�δ

(
pε�δ�t�−

n+1∑
i+j=0

εiδjϕ�i�j��t�−
n+1∑

i+j=0

εiδjψ�i�j�
(
t

ε
�
t

δ

))

=−Lε�δ

(
n+1∑

i+j=0

εiδjϕ�i�j��t�
)
−Lε�δ

(
n+1∑

i+j=0

εiδjψ�i�j�
(
t

ε
�
t

δ

))

=−
[
d

dt

(
n+1∑

i+j=0

εiδjϕ�i�j��t�
)
−

n+1∑
i+j=0

εiδjϕ�i�j��t�Qε�δ�t�
]

−
[
d

dt

(
n+1∑

i+j=0

εiδjψ�i�j�
(
t

ε
�
t

δ

))

−
n+1∑

i+j=0

εiδjψ�i�j�
(
t

ε
�
t

δ

)
Qε�δ�t�

]
�

It follows from the defining equations of ϕ�i� j��·�,
d

dt

(
n+1∑

i+j=0

εiδjϕ�i� j��t�
)
−

n+1∑
i+j=0

εiδjϕ�i� j��t�Qε�δ�t�

= εn+1
(
dϕ�1� 0��t�

dt
− ϕ�1� 0��t�Q̂�t�

)
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+ εnδ

(
dϕ�n� 1��t�

dt
− ϕ�n� 1��t�Q̂�t�

)
+ · · · + δn+1

(
dϕ�0� n+1��t�

dt
− ϕ�0� n+1��t�Q̂�t�

)
�

Based on the smoothness of ϕ�i� j��·� on �0� T � and the assumption h1ε ≤
δ ≤ h2ε, we have

d

dt

(
n+1∑

i+j=0

εiδjϕ�i� j��t�
)
−

n+1∑
i+j=0

εiδjϕ�i� j��t�Qε�δ�t� = O
(
εn+1 + δn+1)

uniformly in t.
Now we estimate the terms containing ψ�i� j��·� ·�. According to the expo-

nential decay property and the expansion of Qε�δ�·� ·�,
d

dt

(
n+1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))
−

n+1∑
i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
Qε�δ�t�

= d

dt

(
n+1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

))
−

n+1∑
i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)

×
n+1∑
k=0

(
εk−1 τ

k

k!
dkA�0�

dtk
+ δk−1µ

k

k!
dkB�0�
dtk

+ δkµ
k

k!
dkQ̂�0�
dtk

)

−
n+1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
O�εn+1τn+2 + δn+1µn+2�

= O�εn+1 + δn+1� +
n+1∑

i+j=0

εiδjψ�i� j�
(
t

ε
�
t

δ

)
O
(
εn+1τn+2 + δn+1µn+2)

= O�εn+1 + δn+1��
so we have Lε�δeε� δ� n+1�t� = O�εn+1 + δn+1� uniformly in �0� T �. By
Lemma 4.1, we have eε� δ� n+1�t� = O�εn+1 + δn+1� uniformly in �0� T �.
Finally, from the expression of eε� δ� n+1�t�, we have eε� δ� n+1�t� =
eε� δ� n�t� + O�εn+1 + δn+1�. This implies that eε� δ� n�t� = O�εn+1 + δn+1�
uniformly in t. This completes the proof of the corollary and hence the
proof of Theorem 3.1.

5. FURTHER REMARKS

5.1. Asymptotic Expansions for ε/δ = o�1�
In the previous sections we have constructed expansions for Markov

chains with generators that have two small independent parameters such
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that ε/δ is bounded. In this section, we consider the case ε/δ = o�1�; i.e.,
ε goes to zero much faster than δ. To be more specific, let ε = δ2.

Suppose that the generator is of the form (2.3) with ε = δ2, where A�t�,
B�t�, and Q̂�t� are as before. We seek asymptotic expansion of the form
pδ�t� = ϕδ�n�t� + ψδ�n�t/δ2� + eδ� n�t�, where the regular part the initial
layer corrections are

ϕδ�n�t� =
n∑

i=0

δiϕ�i��t�� ψδ� n
( t

δ2

)
=

n∑
i=0

δiψ�i�
( t

δ2

)
�

respectively, and eδ� n�t� is the remainder.

5.1.1. Outer Expansion

Consider the differential equation dϕδ� n�t�
dt

= ϕδ�n�t�Qδ�t�; that is,
n∑

i=0

δi dϕ
�i��t�
dt

=
n∑

i=0

δiϕ�i��t�
(

1
δ2A�t� + 1

δ
B�t� + Q̂�t�

)
�

Equating the coefficients of δi, we have the following system of equations

δ−2 � 0 = ϕ�0��t�A�t��
δ−1 � 0 = ϕ�1��t�A�t� + ϕ�0��t�B�t��

δ0 � dϕ�0��t�
dt

= ϕ�2��t�A�t� + ϕ�1��t�B�t� + ϕ�0��t�Q̂�t��

δ1 � dϕ�1��t�
dt

= ϕ�3��t�A�t� + ϕ�2��t�B�t� + ϕ�1��t�Q̂�t��
� � � �

(5.1)

It is easy to see that ϕ�0��t� = πλ�t� = �λ1�t�π�t�� � � � � λl�t�π�t��� where
λ�·� and π�·� are as defined previously. In addition, we have, for any t ∈
�0� T �, ∑m

i=1 ϕ
�0�
i �t� = 1.

To find the solution ϕ�1��t�, we first notice that ϕ�0��t�B�t� = πλ�t�B�t� =
0. Now from the second equation of (5.1), we have ϕ�1��t�A�t� = 0� Hence
the vector-valued function ϕ�1��t� = �x1�t�π�t�� � � � � xl�t�π�t�� is a solution
to the second equation in (5.1), where x�t� ∈ �1×l is any vector-valued
function that satisfies the condition

∑l
i=1 xi�t� = 0.

To obtain ϕ�2��t�, we examine the third equation in (5.1). By substituting
ϕ�0��t� and ϕ�1��t� into the equation, we have(

dλ1�t�
dt

π�t�� � � � � dλl�t�
dt

π�t�
)
+
(
λ1�t�

dπ�t�
dt

� � � � � λ1�t�
dπ�t�
dt

)
= ϕ�2��t�A�t� + �x1�t�π�t�� � � � � xl�t�π�t��B�t�

+ �λ1�t�π�t�� � � � � λl�t�π�t��Q̂�t�� (5.2)
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To solve (5.2), it suffices to solve the following two equations derived from
it, (

λ1�t�
dπ�t�
dt

� � � � � λ1�t�
dπ�t�
dt

)
= ϕ�2��t�A�t� and (5.3)

(
dλ1�t�
dt

π�t�� � � � � dλl�t�
dt

π�t�
)
= �x1�t�π�t�� � � � � xl�t�π�t��B�t�

+ �λ1�t�π�t�� � � � � λl�t�π�t��Q̂�t�� (5.4)

We first look at (5.4). It can be reduced to

(
dλ1�t�
dt

� � � � �
dλl�t�
dt

)
= �x1�t�� � � � � xl�t���q̄ij�t��

+ �λ1�t�� � � � � λl�t��t���q̂ij�t���
Note that � dλ1�t�

dt
� � � � � dλl�t�

dt
��l = 0� and �q̂ij�t���l = 0� By the weak irre-

ducibility of �q̄ij�t��, we can uniquely solve the equation for x�t� with the
condition

∑l
i=1 xi�t� = 0. The last equality implies

∑m
i=1 ϕ

�1�
i �t� = 0. Sim-

ilarly, we can solve (5.3) for ϕ�2��t� so that
∑m

i=1 ϕ
�2�
i �t� = 0. For i ≥ 3,

ϕ�i��t� can be obtained similarly.

5.1.2. Initial Layer Correction

To construct the boundary layer terms, we consider another time scale
τ = t/δ2� Consider the differential equation

dψε�n�t/δ2�
dt

= ψε�n�t/δ2�
(

1
δ2A�t� + 1

δ
B�t� + Q̂�t�

)
� (5.5)

Taking Taylor expansion of Qδ�t� at t = 0, we have

Qδ�δ2τ� =
n+1∑
k=0

(
δ2k−2 τ

k

k!
dkA�0�

dtk
+ δ2k−1 τ

k

k!
dkB�0�
dtk

+ δ2k τ
k

k!
dkQ̂�0�
dtk

)
+R�n+1��δ2τ��

where R�n+1��t� = O�tn+2�. Drop the term R�n+1��δ2τ� and substitute the
rest of the terms into (5.5),

d

dτ

( n+1∑
i=0

δiψ�i��τ�
)
=

n+1∑
i=0

δiψ�i��τ�
n+1∑
k=0

(
δ2k−2 τ

k

k!
dkA�0�

dtk

+ δ2k−1µ
k

k!
dkB�0�
dtk

+ δkµ
k

k!
dkQ̂�0�
dtk

)
�
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Equating the coefficients of δi, we obtain

d

dτ
ψ�0��τ� = ψ�0��τ�A�0��

d

dτ
ψ�1��τ� = ψ�1��τ�A�0� + ψ�0��τ�B�0��

d

dτ
ψ�2��τ� = ψ�2��τ�A�0� + ψ�1��τ�B�0� + ψ�0��τ�

×
(
τ
dA�0�
dt

+ Q̂�0�
)
�

� � � �

(5.6)

The solutions to (5.6) are

ψ�0��τ� = ψ�0��0� exp�A�0�τ��
ψ�1��t� = ψ�1��0� exp�A�0�τ�

+
∫ τ

0
ψ�0��s�B�s� exp�A�0��τ − s��ds�

ψ�2��t� = ψ�2��0� exp�A�0�τ� (5.7)

+
∫ τ

0
�ψ�1��s�B�s� + ψ�0��s�D�s��

× exp�A�0��τ − s��ds�
� � � �

where D�s� = �s dA�0�
dt

+ Q̂�0��. The initial values of ψ�i��0� satisfy ψ�0��0� =
p0 − ϕ�0��0�, ψ�i��0� = −ϕ�i��0�, for i ≥ 1�

Denote �PA = diag��m0
ν�0�� � � � ��m0

ν�0��. Similar to the previous sec-
tions, � exp�A�0�s� − �PA� ≤ KA exp�−κAs� for some κA > 0� In addition,
we have the following exponential decay properties of ψ�i��·�. The proof
of the following proposition is similar to that of Lemma 3.7 and is thus
omitted.

Proposition 5.1. For each i = 0� 1� � � � � n + 1, there exist a polynomial
c�i��τ� and positive number κ such that

∣∣ψ�i��τ�∣∣ ≤ c�i��τ� exp�−κτ�.
By virtue of Proposition 5.1, we have for any i = 1� � � � � n + 1,

�τkψ�i��τ�� ≤ K� for some K > 0 and i = 1� � � � � n+ 1.

5.1.3. Asymptotic Validation

Now we give the estimate for the error term eδ� n�t� = pδ�t� −∑n
i=0 ϕ

�i��t� − ∑n
i=0 ψ

�i��t/δ2�� The next proposition is the asymptotic
property of the expansion.
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Proposition 5.2. Assume (A1) and (A2). Then, for 0 ≤ i ≤ n,
supt∈�0� T � �eδ� i�t�� = O�δi+1�.
The proof of the proposition follows from Proposition 3.7 and the proof

of Proposition 5.1. Thus we omit the details here. As a corollary of the
above proposition, we have limδ→0 p

δ�t� = ϕ�0��t� = πλ�t�.

5.2. Concluding Remarks

In this paper, we have developed asymptotic expansions of the proba-
bility vector. The results obtained will be useful for many optimal control
problems that involve singularly perturbed Markovian models with multiple
time scales. The choice of the generators A�t� and B�t� is largely motivated
by the applications in control and optimization of manufacturing systems.
If A�t� and B�t� are both weakly irreducible (i.e., consisting of one block),
the asymptotic expansion similar to the development discussed in this paper
can be obtained. Such a treatment can be used for certain reducible matri-
ces having different forms than those of this paper. However, if A�t� and
B�t� have different partitions in the most general form, it appears that the
construction of the asymptotic expansion cannot be done as here since the
algebraic and differential equations involved may not be consistent. Future
study can be directed to the investigation of further probabilistic properties
of the model.
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