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We construct a class of theories which are scale-invariant on quantum level in all orders of perturbation
theory. In a subclass of these models scale invariance is spontaneously broken, leading to the existence of
a massless dilaton. The applications of these results to the problem of stability of the electroweak scale
against quantum corrections, to the cosmological constant problem and to dark energy are discussed.
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1. Introduction

If in any theory all dimensionfull parameters (generically de-
noted by M), including masses of elementary particles, Newton’s
gravitational constant, ΛQCD and alike are rescaled by the same
amount M → Mσ , this cannot be measured by any observation.
Indeed, this change, supplemented by a dilatation of space–time
coordinates xμ → σ xμ and an appropriate redefinition of the fields
does not change the complete quantum effective action of the the-
ory. However, the symmetry transformations in quantum field the-
ory only act on fields and not on parameters of the Lagrangian. The
realization of scale invariance happens to be a non-trivial problem.
A classical field theory which does not contain any dimensionfull
parameters is invariant under the substitution

Φ(x) → σ nΦ(σ x), (1)

where n is the canonical mass dimension of the field Φ . This di-
latational symmetry turns out to be anomalous on quantum level
for all realistic renormalizable quantum field theories (for a review
see [1]). The divergence of the dilatation current Jμ is non-zero
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and is proportional to the β-functions of the couplings. For ex-
ample, in pure gluodynamics, scale-invariant on the classical level,
one has

∂μ Jμ ∝ β(g)Ga
αβ Gαβ a, (2)

where Ga
αβ is the non-Abelian gauge field strength.

At the same time, it is very tempting to have a theory which
is scale-invariant (SI) on the quantum level, as this would solve
a number of puzzles in high energy physics. Most notably, these
problems include two tremendous fine-tunings, facing the Stan-
dard Model (SM). The first one is related to the stability of the
Higgs mass against radiative corrections and the second one to
the cosmological constant problem. If the full quantum theory,
including gravity, is indeed scale-invariant, and SI is broken spon-
taneously, the Higgs mass is protected from radiative corrections
by an exact dilatational symmetry.

Moreover, as we have shown in [2], the classical theory with SI
broken spontaneously and given by the action (we omit from the
Lagrangian of [2] all degrees of freedom which are irrelevant for
the present discussion and keep only the gravity part, the Higgs
field h and the dilaton χ ):

Ltot = LG + L, (3)

where
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LG = −(
ξχχ2 + ξhh2) R

2
, (4)

L = 1

2

[
(∂μχ)2 + (∂μh)2] − λ

(
h2 − ζ 2χ2)2

, (5)

not only has zero cosmological constant but also gives a source
for dynamical dark energy, provided that gravity is unimodular, i.e.
the determinant of the metric is fixed to be −1. (Here R is the
scalar curvature and ξχ , ξh, λ and ζ are dimensionless coupling
constants.) In this theory all mass parameters (on the tree level)
come from one and the same source — the vacuum expectation
value of the dilaton field 〈χ 〉 = χ0, which is exactly massless. In
addition, the primordial inflation is a natural consequence of (3),
with a Higgs field playing the role of the inflaton [3].

It looks like all these findings are ruined by quantum correc-
tions. The aim of this Letter is to show that this is not the case.
We will construct a class of effective field theories, which obey
the following properties:

(i) Scale invariance is preserved on quantum level in all orders of
perturbation theory.

(ii) Scale invariance is broken spontaneously, leading to a massless
dilaton.

(iii) The effective running of coupling constants is automatically
reproduced at low energies.

In other words, the benefits of classical SI theories (no correc-
tions to the Higgs mass, zero cosmological constant, presence of
dark energy and primordial inflation) can all be present on the
quantum level. At the same time, the standard results of quantum
field theory, such as the running of coupling constants, remain in
place. Whether the theories we construct are renormalizable1 and
unitary is not known to us (though we will formulate some conjec-
tures on this point). However, the renormalizability is not essential
for the validity of the results.

The Letter is organized as follows. In Section 2 we explain our
main idea with the use of a simple model of two scalar fields.
In Section 3 we describe its generalization to an arbitrary case.
In Section 4 we discuss the inclusion of gravity and present our
conclusions in Section 5.

2. Scalar field example

We will explain our idea using the example of a simple sys-
tem containing two scalar fields and described in classical theory
by the Lagrangian (5) without gravity. The construction is essen-
tially perturbative and based on the dimensional regularization of
’t Hooft and Veltman [4] (for a discussion of the hierarchy problem
within this scheme see, e.g. [5]).

At the classical level the theory (5) is scale-invariant. In fact,
the requirement of dilatational symmetry does not forbid the pres-
ence of an additional term βχ4 in (5). If β < 0, the theory does
not have a stable ground state, for β > 0 the ground state is
unique and corresponds to h = χ = 0. At the classical level one
would conclude that the theory contains two scalar massless ex-
citations for the ground state respecting scale-invariance. For the
case β = 0 the potential contains two flat directions h = ±ζχ
and the vacuum is degenerate. If χ = χ0 �= 0, the dilatational
invariance is spontaneously broken. Then the theory contains a
massive Higgs boson, m2

H (χ0) = 2λζ 2(1 + ζ 2)χ2
0 and a massless

dilaton. So, the only choice for β , interesting for phenomenology,
is β = 0, otherwise the vacuum does not exist or the theory does
not contain any massive particles2. In what follows we will also

1 The precise sense of this word in the present context will be specified later.
2 More discussion of β > 0 case will be given at the end of this section.
assume that ζ ≪ 1, which is true for phenomenological applica-
tions: χ0 ∼ M P = 2.44 × 1018 GeV is related to the Planck scale,
and h0 = ζχ0 ∼ MW ∼ 100 GeV to the electroweak scale. However,
the smallness of ζ is not essential for the theoretical construction.

It is well known what happens in this theory if the standard
renormalization procedure is applied. In d-dimensional space–time
(we use the convention d = 4 − 2ε) the mass dimension of the
scalar fields is 1 − ε , and that of the coupling constant λ is 2ε .
Introducing a (finite) dimensionless coupling λR , one can write

λ = μ2ε

[
λR +

∞∑
n=1

an

εn

]
, (6)

where μ is a dimensionfull parameter and the Laurent series in ε
corresponds to counter-terms. The parameters an are to be fixed by
the requirement that renormalized Green’s functions are finite in
every order of perturbation theory. Similar replacements are to be
done with other parameters of the theory, and the factors Zχ , Zh ,
related to the renormalization of fields must be introduced (they
do not appear at one-loop level in our scalar theory). Then, in the
MS subtraction scheme, the one-loop effective potential along the
flat direction has the form

V 1(χ) = m4
H (χ)

64π2

[
log

m2
H (χ)

μ2
− 3

2

]
, (7)

spoiling its degeneracy, and leading thus to explicit breaking of the
dilatational symmetry. The vacuum expectation value of the field
χ can be fixed by renormalization conditions [6]. The dilaton ac-
quires a nonzero mass. It is the mismatch in mass dimensions of
bare (λ) and renormalized couplings (λR ) which leads to the di-
latational anomaly and thus to explicit breaking of scale invariance
(see [7] for a recent discussion).

Let us now use another prescription, which we will call the “SI
prescription”.3 Replace μ2ε in (6) and in all other similar relations
by (different, in general) combinations of fields χ and h, which
have the correct mass dimension:

μ2ε → χ
2ε

1−ε Fε(x), (8)

where x = h/χ and Fε(x) is a function depending on the pa-
rameter ε with the property F0(x) = 1. In principle, one can use
different functions Fε(x) for the various couplings. The resulting
field theory, by construction, is scale-invariant for any number of
space–time dimensions d. This means, that if for instance the MS
subtraction scheme is used for calculations, the renormalized the-
ory is also scale-invariant in any order of perturbation theory.

The requirement of scale invariance itself does not fix the de-
tails of the prescription. However, the form of the couplings of the
scalar fields χ and h to gravity as in Eq. (4) indicates that the
combination

ξχχ2 + ξhh2 ≡ ω2 (9)

plays a special role, being the effective Planck constant. Therefore,
we arrive to a simple “GR–SI prescription”, in which

μ2ε → [
ω2] ε

1−ε , (10)

corresponding to the choice of the function Fε(x) = (ξχ + ξhx2)
ε

1−ε .
We will apply the GR–SI prescription to the one-loop analysis of
our scalar theory below. In Appendix A we will consider a modified
variant of the procedure.

The SI construction is entirely perturbative and can in fact be
used only if SI is spontaneously broken. In other words, in order to

3 A similar procedure was suggested in [8] in connection with the conformal
anomaly. We thank Thomas Hertog who pointed out this reference to us after our
work has been submitted to hep-th.
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use the GR–SI prescription the ground state has to be (h0,χ0) �=
(0,0), because otherwise it is impossible to perform an expansion
of (10). Indeed, consider the exact effective potential V eff(h,χ) of
our theory, constructed using the prescription (8) or (10) in the
limit ε → 0. Because of exact SI, it can be written as

V eff(h,χ) = χ4 Vχ (x) = h4 Vh(x). (11)

For the ground state to exist, we must have Vχ (x) � 0 (or, what
is the same, Vh(x) � 0) for all x. For the minimum of V eff(h,χ) to
lie in the region where χ �= 0 (or h �= 0), we must have Vχ (x0) = 0
(Vh(x0) = 0), where x0 is a solution of V ′

χ (x0) = 0 (V ′
h(x0) = 0) and

prime denotes the derivative with respect to x. If these conditions
are satisfied, the theory has an infinite set of ground states corre-
sponding to the spontaneous breakdown of dilatational invariance.
The dilaton is massless in all orders of perturbation theory. In this
case one can develop the perturbation theory around the vacuum
state corresponding to χ0 �= 0, h0 = x0χ0 with arbitrary χ0 (or
h0 �= 0, χ0 = h/x0 with arbitrary h0).

To summarize: the use of prescriptions (8) or (10) supple-
mented by the requirement Vχ,h(x0) = 0 leads to a new class of
theories exhibiting spontaneously broken scale invariance, which
is exact on quantum level. These theories can be called renormal-
izable if the introduction of a finite number of counter-terms is
sufficient to remove all divergences and guarantee the existence of
a flat direction in the potential. The check whether this is indeed
the case goes beyond the scope of the present Letter. In principle,
we cannot exclude the possibility that, in order to remove all di-
vergences, a new type of counter-terms containing non-polynomial
interactions (such as h6/χ2) is required. But, even if this is the
case, scale invariance is maintained in all orders of perturbation
theory and can be spontaneously broken. Another potential issue
is unitarity. We do not know whether higher derivative terms in
the effective action, dangerous from this point of view, would re-
quire the introduction of corresponding counter-terms. However,
the functional arbitrariness in the choice of Fε(x) for potential and
kinetic terms may give enough freedom to remove the unwanted
contributions.

The theories we construct are quite different from ordinary
renormalizable theories. Their physics is determined not only by
the values of “classical” coupling constants (λ and ζ in our case),
but also by “hidden” parameters contained in the functions Fε(x).
Still, as we will see shortly, for the SI–GR prescription, in the limit
ζ ≪ 1 and for small energies E � χ0, only “classical” parameters
matter. Moreover, they automatically acquire the necessary renor-
malization group running.

To this end, we carry out a one-loop analysis of the theory (5)
with the GR–SI prescription. We write the d-dimensional general-
ization of the classical potential as4

U = λR

4

[
ω2] ε

1−ε
[
h2 − ζ 2

R χ2]2
, (12)

and introduce the counter-terms

Ucc = [
ω2] ε

1−ε

[
Ah2χ2

(
1

ε̄
+ a

)
+ Bχ4

(
1

ε̄
+ b

)
+ Ch4

(
1

ε̄
+ c

)]
,

(13)

where 1
ε̄ = 1

ε − γ + log(4π), γ is the Euler constant and a, b, c, A,
B , and C are arbitrary for the moment. We do not introduce any
modification of the kinetic terms since no wave function renormal-
ization is expected at the one loop level.

4 If we define the parameters α ≡ √
λ and β ≡ √

λζ 2, the classical potential takes

the form U = 1
4 (αh2 − βχ2)2. In this notation the GR–SI prescription corresponds

to the substitutions α → [ω2] ε
2(1−ε) αR and β → [ω2] ε

2(1−ε) βR .
It is straightforward to find the one-loop effective potential for
this theory. The counter-terms removing the divergences coincide
with those of the standard prescription and are given by:

A → −λ2
Rζ 2

R
3ζ 4

R − 4ζ 2
R + 3

32π2
,

B → λ2
Rζ 4

R
9ζ 4

R + 1

64π2
, C → λ2

R
ζ 4

R + 9

64π2
. (14)

The potential itself has a generic form U1 = χ4W1(x) and is given
by a rather lengthy expression (we do not present it here, since
it is not very illuminating), which also depends on the “hidden”
parameters. For a generic choice of a, b, and c the classical flat di-
rection x0 = ζR is lifted by quantum effects. However, the require-
ment W1(ζR) = W ′

1(ζR) = 0 allows to fix two of these parameters
in a way such that the one-loop potential has exactly the same flat
direction. For ζR ≪ 1 this requirement leads to5

b = 3a + 2 log

(
2λRζ 2

R

ξχ

)
+ O

(
ζ 2

R

)
,

c = 1

3

[
a + 2 − 2 log

(
2λRζ 2

R

ξχ

)]
+ O

(
ζ 2

R

)
. (15)

The function W1(x) is positive near the flat direction, provided a +
2 + 2 log(2λRζ 2

R /ξχ ) > 0.
It is interesting to look at the one-loop effective potential as a

function of h for χ = χ0, h ∼ ζRχ0 ≡ v and ζ ≪ 1, i.e. h0 ≪ χ0.
One finds

U1 = m4(h)

64π2

[
log

m2(h)

v2
+ O

(
ζ 2

R

)]

+ λ2
R

64π2

[
C0 v4 + C2 v2h2 + C4h4] + O

(
h6

χ2

)
, (16)

where m2(h) = λR(3h2 − v2) and

C0 = 3

2

[
2a − 1 + 2 log

(
ζ 2

R

ξχ

)
+ 4

3
log 2λR + O

(
ζ 2

R

)]
,

C2 = −3

[
2a − 3 + 2 log

(
ζ 2

R

ξχ

)
+ O

(
ζ 2

R

)]
,

C4 = 3

2

[
2a − 5 + 2 log

(
ζ 2

R

ξχ

)
− 4 log 2λR + O

(
ζ 2

R

)]
. (17)

The first term in (16) is exactly the standard effective potential for
the theory (5) with the dynamical field χ replaced by a constant
χ0, while the rest is a quartic polynomial of h and comes from our
GR–SI prescription, leading to redefinition of coupling constants,
masses, and the vacuum energy.

One can see from (16) that the quantum corrections to the
Higgs mass are proportional to v2 ∝ ζ 2

Rχ2. This means that they
are small compared to the classical value. Moreover, the poten-
tially dangerous corrections of the type λnχ2

0 to the Higgs mass
cannot appear in higher orders of perturbation theory. Indeed,
for ζ = 0 the Higgs field decouples from the dilaton at the clas-
sical level and the dilaton field is described by a free theory.
Therefore, if ζ = 0 the value of the (large) field χ can appear
only through log’s in the effective potential, coming from the ex-
pansion of [ω2]ε/1−ε in Eq. (12), or at most as ζ 2

R χ2 if ζ �= 0.
Hence, in this theory there is no problem of instability of the
Higgs mass against quantum corrections, appearing in the Stan-
dard Model.

5 The truncation only serves to shorten the expressions. There is no difficulty in
finding the exact relations.
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Consider now the high energy (
√

s � v but
√

s � χ0) behavior
of scattering amplitudes with the example of Higgs–Higgs scatter-
ing (assuming, as usual, that ζR ≪ 1). It is easy to see that in
one-loop approximation one gets for the 4-point function

Γ4 = λR + 9λ2
R

64π2

[
log

(
s

ξχχ2
0

)
+ const

]
+ O

(
ζ 2

R

)
. (18)

This implies that at v � √
s � χ0 the effective Higgs self-coupling

runs in a way prescribed by the ordinary renormalization group.
Not only the tree Higgs mass is determined by the vev of the dila-
ton, but also all ΛQCD-like parameters. We expect that these results
remain valid in higher orders of perturbation theory.

Let us comment now on the case when the flat direction does
not exist at the quantum level (classically this corresponds to
β > 0). Then the ground state of the theory is scale-invariant. The-
ories of this type do not in general contain asymptotic particle
states (for a review see, e.g. [10]). If they do (this would corre-
spond to anomalous dimensions for the fields equal to zero), the
propagators will coincide with the free ones, leading to a theory
with a trivial S-matrix [11,12]. In other words, the requirement
that the scale-invariant quantum field theory can be used for the
description of interacting particles, existing as asymptotic states,
singles out the class of theories with spontaneous breaking of
scale-invariance.

3. Scale-invariant quantum field theory: General formulation

It is straightforward to generalize the construction presented
above to the case of theories containing fermions and gauge fields,
such as the Standard Model. The mass dimension of a fermionic
field is 3

2 − ε , leading to the dimension of bare Yukawa couplings
F B equal to ε . The mass dimension of the gauge field can be
fixed to 1 for any number of space–time dimensions d, leading
to the dimensionality of the bare gauge coupling gB equal to ε . So,
in the standard procedure one chooses F B ∝ με F R , gB ∝ με gR ,
where the index R refers to renormalized couplings. For the SI
or GR–SI prescription one replaces με by a combination of scalar
fields of appropriate dimension, as in (8) or in (10). For the per-
turbation theory to make sense, one has to choose counter-terms
in such a way that the full effective potential has a flat direc-
tion corresponding to spontaneously broken dilatational invari-
ance.

4. Inclusion of gravity

The inclusion of scale-invariant gravity is carried out precisely
along the same lines. The metric tensor gμν is dimensionless for
any number of space–time dimensions and R always has mass
dimension 2. Therefore, the non-minimal couplings ξχ , ξh (see
Eq. (4)) are dimensionless and thus can only be multiplied by func-
tions Fε(x) of the type defined in (8). In addition to (4), the grav-
itational action may contain the operators R2, Rμν Rμν , �R and

Rμνρσ Rμνρσ , multiplied by χ
−2ε
1−ε Fε(x) (here Rμν and Rμνρσ are

the Ricci and Riemann curvature tensors). These operators are ac-
tually needed for renormalization of field theory in curved space–
time (for a review see [9]).

The presence of gravity is crucial for phenomenological applica-
tions. Since Newton’s constant is dynamically generated, the dila-
ton decouples from the particles of the Standard Model [2,13–16],
and thus satisfies all laboratory and astrophysical constraints. As
we found in [2], if gravity is unimodular, the absence of a cosmo-
logical constant and the existence of dynamical dark energy are
automatic consequences of the theory. It is interesting to note that
the action of unimodular gravity is polynomial with respect to the
metric tensor. This leads us to the conjecture that the SI unimod-
ular gravity with matter fields may happen to be a renormalizable
theory in the sense described in Section 2.

5. Conclusions

In this Letter we constructed a class of theories, which are
scale-invariant on the quantum level. If dilatational symmetry is
spontaneously broken, all mass scales in these models are gener-
ated simultaneously and originate from one and the same source.
In these theories the effective cutoff scale depends on the back-
ground dilaton field, as was already proposed in [16], which is
essential for inflation [3] and dark energy [2]. The cosmological
constant is absent and the mass of the Higgs boson is protected
from large radiative corrections by the dilatational symmetry. Dy-
namical dark energy is a remnant of initial conditions in unimod-
ular gravity.

There are still many questions to be understood. Here is a par-
tial list of them. Our construction is essentially perturbative. How
to make it work non-perturbatively?6 Though the stability of the
electroweak scale against quantum corrections is achieved, it is ab-
solutely unclear why the electroweak scale is so much smaller than
the Planck scale (or why ζ ≪ 1). It remains to be seen if this new
class of theories is renormalizable and unitary (note, though, that
renormalizability is not essential for the construction). At large
momentum transfer p � M P the perturbation theory diverges and
thus is not applicable. What is the high energy limit of these the-
ories?
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Appendix A

For the GR–SI prescription considered in the Letter physics well
below the Planck scale associated with the dilaton vev χ0 was
the same as for the ordinary renormalizable scalar theory con-
taining the Higgs field h only. This is not necessarily the case if
the SI prescription given by Eq. (8) is used. Indeed, consider now
a distinct way of continuing the scalar potential to d-dimensional
space–time:7

U = λR

4

[
h

2−ε
1−ε xa1ε − ζ 2

Rχ
2−ε
1−ε xb1ε

]2
, (19)

and introduce counter-terms for all terms appearing in the poten-
tial:

Ucc =
[

A

(
1

ε̄
+ a

)
h

2−ε
1−ε χ

2−ε
1−ε x(a1+b1)ε

+ B

(
1

ε̄
+ b

)
χ

4−2ε
1−ε x2b1ε + C

(
1

ε̄
+ c

)
h

4−2ε
1−ε x2a1ε

]
. (20)

As before, we do not introduce any modification of the kinetic
terms. Now we have more freedom in comparison with the GR–
SI prescription due to existence of new arbitrary parameters a1
and b1.

The coefficients A, B , and C are fixed as in Eq. (14). The pa-
rameters a1 and b1 can be chosen in such a way that the one-loop
effective potential does not contain terms χ6/h2 and h6/χ2, which
are singular at (0,0). These conditions lead to a1 = 0, b1 = 0. Then

6 A proposal based on lattice regularization has been recently discussed in [17].
7 In the notation with α ≡ √

λ and β ≡ √
λζ 2, the prescription used here corre-

sponds to the substitutions α → h
ε

1−ε xa1εαR and β → χ
ε

1−ε xb1εβR .
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the requirement that the classical flat direction x0 = ζ is not lifted
by quantum effects gives (for ζ ≪ 1):

b = 3a − 7 + 2 log(2λR) + O
(
ζ 2

R

)
,

c = 1

3

[
a + 7 − 2 log(2λR)

] + O
(
ζ 2

R

)
. (21)

With all these conditions satisfied the one-loop effective poten-
tial as a function of h for χ = χ0 fixed, h ∼ ζχ0 = v and ζ ≪ 1 is
different from that in Eq. (16):

U1 = m4(h)

64π2

[
log

m2(h)

v2
+ O

(
ζ 2

R

)] + P1 log
h2

v2
+ P2, (22)

where P1, P2 are quadratic polynomials of h2 and v2. Though the
first term is exactly the standard effective potential for the theory
(5) with the dynamical field χ replaced by a constant χ0, the rest
is not simply a redefinition of the coupling constants of the the-
ory due to the presence of log h2

v2 . In other words, even the low
energy physics is modified in comparison with ordinary renormal-
izable theories.
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