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This paper is mainly concerned with positive sets and positive functions in a finite linear 
function space. Our two main results characterize positive functions and minimal positive sets. 
We then show that certain nrq&isms preserve both the cone of positive functions and minimal 
positive sets. Finally we specialize these results to the case of measures on a hypergraph. 

In this paper we continue the work begun in [ll] where we considered finite 
linear function spaces and measures on hypergraphs. A finite linear function 
space (FLFS) is a pair (X, V), where X is a nonempty finite set and V is a linear 
space of real-valued functions on X. In various applicatio,ls it is important to 
know when f E V is in the cone V+ of positive functions on X. For example, in the 
case of measures on a hypergraph H, the elements of V+ correspond to 
unnormalized states (or stochastic functions) on W. The linear subspace J spanned 
by V+ is called the space of Jordan functions. The elements of J are precisely 
those functions f E V which admit a Jordan decomposition f = fi -f2, fi , f2 E V+ . 
Our first main result gives a characterization of Jordan fuatctions. 

A subset Y G X is called a positive set if it determines positive functions. That 
is, if f E V and f(y) 3 0 for all y E Y imply f E V+. Such sets are useful since they 
reduce the labor required to find whether a function is positive or not. Of 
particular importance are the minimal positive sets, and our second main result 
characterizes such zc is L We next we psxitiuc Ms to characterize when V+ is a 
simplicial cone. 

In _a subsequent section we consider morphisms between FLFS’s. We show that 
certain types of morphisms preserve V+, positive sets, and minimal positive sets. 
Finally, we specialize these results to the case of measures on a hypergraph. This 
case is not only important in hypergraph theory [2,10,13,18], but also in 
operational statistics [3,4,5,16], quantum logic [ 1,6,7,12,14,15,17,20], and 
possibly elementary particle physics [8,9). 

* On leave from University of Berne. Institute of Mathcmatisa! Statistics, Sidsrsitasse 5. CH-3012 
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Let V be a finite-dimensional real linear space. We denote the linear hull of a 
subset S of V by lin S. The positive hull, pos S, is the set of all linear 
combinations of elements of S with nonnegative coefficients. By convention 
posfl={O}. A subset WK Vis a wedge if W+WsWand R+WsW, where 
W + = {II E R : h 2 0). Clearly, pos S is a wedge for any S c V. A wedge W is 
generating in V if V = W - W. A hone is a wedge W satisfying W n (- W) = (0). 
Let (VI, V,, (0, l )) be a dual pair of finite-dimensional real linear spaces. For 
A c V, , B c I$, define , 

A ‘“={s~V~:(f,g)~Oforallf~A}, 

B, = (f E VI: (f, g) 3 0 for all g E B}. 

It IS clear that A” is a wedge in V, and B, is a wedge in V,. The bipolar theorem 
[ 191 yields 44: = cl pos A, B; = cl pos B, where the closure (cl) is taken in the 
Euclidean topology of the finite-dimensional vector spaces V, , Vz, respectively. 

Let X be a ncnempty finite set and let V be a nonempty set of real-valued 
fidnctions on X which is closed under scalar multiplication and pointwise addition. 
Then V is a real linear space with dim V G 1x1. We call (X, V) a finite linear 
function qxxe (FLFS) [ll]. We denote the dual of V by V*. For x E X, define 
e,(x) =x* E V* by x*(f) =f(x) f or all f E V. If Y c X, the V-closure of Y is 
defined by 

F={xEX:f,gEV,f JYyg[ Y$f(x)=g(x)). 

We say that Y EX is V-dense if Y= X. One of the important properties of 
minimal V-dense sets is that they can be used to determine dim V. In fact, it is 
shown in [ll] that a V-dense set Y c X is minimal V-dense if and only if 
dim V = IYI. 

Ftir a FLFS (X, V) we define 

v+ = {f EV:f(+Ofor alixEV}. 

Then V+ is a cone in V. We define the subspace J of V by J = lin V+ = V+ - V+. 
e say that (X, V) is Jordan if V+ is a generating, cone; that is, if J = V. We also 

define 

K={~EX:f(x)=Oforallf EV+}, 

N = (w E X: f (x) = 0 for all f E V}. 

K == X if and only if V+ = {0}, M’ = X if and onlv if V = (0). It is 
ents are equwalent: (a) J = 
say that V is nucleonic if for every x 

0 for every y E X! (x}. If V is 
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hypergraph have been studied in [13]. F’or Y e X write 

Y+ = {f E V: f (y) 3 0 for all y 46 Y}. 

Pf Y, Z c X we call Y a Z-positizse set if Y+ = Z+. An X-positive set is sizrply 
called a positive set. 

It is not hard to show that the set X = {ker f: f E V+} is a lattice under the 
ordering s. Indeed, if A = ker f, =kerg, f, gEV+, then 

AAB=ker(f +g)=AnB. 

Moreover, 

AvB=/\{kerf:AUBckerf} 

In this lattice, the infimum coincides with the set-intersection, X is the largest 
element and K is the leapt element. Clearly, the following are equivalent: 1.X1 = 1, 
X = K, V+ = (0). Denote by & the collection of atoms in the lattice (x, c). 

Let (XI, VI) and (& Vz) be FLFS’s. A map T : Xl -+ X2 is a morph&n if for 
everyf EVzwehavefoTEV1. If RX1 -X2 is a morphism, we define the linear 
map T : V+ VI by ff (x) = f (Tx) for all n E XI, f E V,. We also define the linear 
map P : ‘Vz --, Vq by p*F(f) = F(ff) for all F E Vr, f E V,. It is not hard to 
show that T*eVI =e,T. If T:X, +X2 is bijective and both T and T-’ are 
morphisms, we call T an isomorphism and say that (XI, VI), (X2, V2) are 
isomorphic. It is easy to check that if T is an isomorphism, tihen p and 2?* are 
linear isomorphisms and that (F-l)* = (p*)-‘. 

In the sequel, (X, V) will always denote a FLFS. The complement of a subset 
A of X will be denoted by A’. 

. (a) pose&C’) is a cone in V*. 
(b) e&K’), is a gep!er&tig wedge in V. 

(a) Clearly, pose&C’) is a wedge. Let 

F E posv (K’) f7 [-pose&K’)]. 

Then for suitable scalars s,, tx 2 0 we have 

F = 2 sxev(x) = - t,e&). 
XEK' , 

This shows that for every f E V+, F(f) 2 0 and F(f 
c xEKp sxf (x) = 0 for all f E ‘V+ 
F=O. 
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(b) Suppose that +(K’), is not generating. Then there exists 0 # F E V* such 
that 

ev(K% - e”(K’), G ker F. 

y the bipolar theorem we have . 

fF E ev(K’)E = pose,(K’). 

By Part (a), pos eV( K ‘) is a cone, so F = 0. This is a contradiction. Cl 

e0 Let (X, V) be a FLFS and let f E V. Then the following statements are 
equivalent.‘(a) f E J, (b) K \N gg kerf, (c) K c ker f. 

(W(W3( j c, are obvious. We now show that (c)+(a). If K = X, then 
c ker f implies f = 0. ence, f E J. We now assume that K’ # 0. Select for each 

x E K’ an .f, E V+ such that L(X) r 0 and define fo = ~XcK& Thien fo E V+ and 
$,(x) > 0 for all x E K’. Suppose K s ker$ Then f E nyEK ker e,,(y). Since, by 
Lemma l(b), Cam is a generating wedge, there exist g,, g2 Ed”, such 
that f = g, -g2. Notice that fo E ev(K’), as well. Define 

ti = nlaX&(.X)/~(X), i = 1,2. 
XEK’ 

Then tl, t2 3 0 and for all x E K’ we have 

0 g gi(X) 6 tifo(X), i = 1, 2. 

Now for all x E K’ we have 

- cti + t2)hCx) Gf (x) s (t* + t21fo(x)* 

Letting s = ti + t2, we conclude that 

~6 -f, f -IL sf;l E ev(K’), n y~‘I ker e"(y), 

since f0 E J c nyekC ker e”(y). But 

f = l(f + sfo) - acsf, -f ), 

and 

‘jw n ycK ker e(y) s V,. 

s,fEv+-+~= 

set Y is a ly if 0s e”(Y). 
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f Y is a Z-positive set, then ek-( Y), 5 e,,(Z )w* Applying the bipolar 
theorem, we conclude that 

pose&T) = e&)z E ev(Y)Z = pas ev(Y). 

The converse is easily shown. 0 

. A positive set is V-dense. 

If Y is a positive set, then applying Lemma 3 we have 

VW, = pos ev(X) c pos ev( Y). 

But v+ = v”,, is a cone and hence Y”, is a generating wedge of V*. Thus 
V’ = lin ey( Y). It follows from [ 11, Lemma I] that Y is V-dense. Cl 

The next theorem, which is our main result, characterizes minimal positive sets. 

Let (X, V) be a FLFS with V+ # (0). Then YE X is a minimal 

(a) (YTr(A\K)(=1foreveryAE~; 
(b) Y n (K\N) is a minimal (K- \ N)-positive set; 
(c) YnN-0. 

We first show that if Y is a positive set, then Y n (A \K) # 4b for every 
AEJIQ and Y n (K\N) is a (K\N)-positive set. If K 
Y n (K\ N) is a (K\N)-positivt; set so suppose K\N # 
ev( y ) # 0. Since Y is positive, we have 

p~se~(X)=pose~(Y)=pose~(YnK’)+pose~[Yn(K\N)] 

= pos e”(K’) + pos ev[Y n (K\ N)]. 

If Y n (K\N) = 0, then e”(y) = xxEKP s,e&) for suitable scalars s, 2 0. Then for 
every f E I!+ we have 

0 = ev(y)(f j =z z sxf (x). 
XEK' 

I, which implies ey( y ) = 0, a contradiction. ‘Fherefore, 

XEK' 

for suitable scalars r,, tX 3 0. Again, for every f E V+ we have 

= ev(Y )(f I= 5s (4 + 
XEK' z~Yn(K\Nj 
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and it follows that r, = 0 far a!! X 5 K’. Hence, q(y) E pas e,iY fl (K\N)j. Thus, 

pm e&WV) c pos e,[Y n @WV)], 

and by Lemma 3 we conclude that Y n ( \N) is a (K\N)-positive set. 
therwise Y s making K a positive 

f hence f E V+. t follows that J = V+. 
cone and .I is a linear subspace of V so V+ = (0) which is a contradiction. 

RKn nAVPr rrL”r”“. “1, “III- cinw V is a positive set, we have 

V+={f EJ:f(y)~OforallyEYnK’}. 

Thus, in the duality (J, J*) we have V+ = [eJ(Y n K’)],@ and hence, V”,’ = 
pos Q(Y n K’). Now let f E V+ satisfy ker f E & and se!ect x E ker f \K. Then 

e,(x) = C t,e,rIYh 
YEYWC 

for suitable scalars ty a 0. Since e,(x) # 0, there exists y’ E Y n K’ with tyq > 0. 
Then 

O=f(d= IiI t,f(Y) 
yEYnK’ 

implies that f (y ‘) = 0. Thus, 

y’ E kerf n (Y n K) = Y 19 (kerf \K). 

e conclude that Y n (A \K) # 0 for any A E al. 
To complete the proof we show that a subset Y c X satisfying conditions (a), 

and (c) is a positive set. Let h E V and suppose that h(y) 2 0 for all y E Y. 
n, in particular, 

h E [poseE’(Yr! (K\N)],. 

) is a (&XV)-positive set, so by [ 11, Lemma 24 we have 

W)] = pas c,(K\\N) = %r, @WV). 

en by eorem 2 we have 

)lW = (f c I-‘: F(f) 2 0 for all F E iin zV( 

= {f E V: F(f) = 0 for all FE lin eV( 

of its faces is expmed [ 191. Let Ii” be a 
imensional face) of t e cone Vq’. Then F # 0 
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G(f) > 0 for aii 0 # 6‘ E pos eJ(K’ ence, F = 0 which is a contradiction. 
Suppose there exists g E V+ with c kerf, K#kerg. Let x E kerg\K. 

n e,(x) # 0 and x E ker f. rice, e,(x) = txF for some tx > 0. If y E 
n e,(y) = tyF for some ty Then e,(x) = seJ( y ) for some s > 0. 

have 0 =g(x) = q(y) so g(y) = 0. ence, y E ker g which proves that ker g = 
kerf. 

Now let y E Yn (kerf \K). gain, we have e,( y ) = tF for some scalar t > 0. 
is proves that pos eJ( Y n K’) contains the nerators of the extreme rays of the 

cone V”,’ and hence Vy’ = pos e,(Y n K’). have shown above that if h E V 
satisfies h(y) 2 0 for all y E Y, then h E J. But then e,(y)(h) 3 0 and 

h E [pos eJ( Y n K’)],# = VW,;. - V+. Cl 

IfAl,..., -4, are disjoint sets, we use the notation 0 Ai for U 

. Let (X, V) be a FLFS and let Y c X be a minimal positive set. Then 

(a) Ynr= l+j [Yn(A\K)]; 
AEd 

(b) I&( = IYn K’I. 

WemayassumethatXPK. IfA,,AZ~~andA,fAz, theraK=A+ 
A2 = Al n A2 and hence, (A,\K) n (A&K) = 0. By Theorem 5 is now follows 
that 

lj [m(A\Kj]lj[Yn(K\Nj] 
AEd 

is a minimal positive set and thus equals Y. Condition (a) follows immediately. 
Condition (b) is a straightforward consequence of (a). Cl 

core 7. Let (X, V) b e a Jordan FLFS with V+ # (0). Then V is nucleonic if 
and only if X is a minimal positive set. 

Let V be nuclesaic. It follows that K = 0, By definition, each singleton set 
(x}, x E X, is an atom in the lattice 3’. rice, by Theorem 5, X is a rLiiima1 
positive set. Conversely, slzpgosc t&t X i minimal positive set. Since (X, V) is 
Jordan, it follows that K = N. ut XnN=@, hence, 
Corollary 6, there exists an A d such that x E A. If 

n ..4 I> 1, contradicting the assumption that X is 
. Thus, {x} =A so {x} E Z-. ence, there exists an f 
en clearly V is nucleonic. Cl 

t 

n 
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P If X= K, then V+ = (0) and the assertions hold (for Y = X). We now 
assume that X# K. Suppose Y c X has the required properties. Then, as in the 
proof of Theorem 5, we get V”,’ ‘). Also, .t?,(Y n 
independent set in J*. es (positive hull 
cone a/y’, we conclude that for each extreme ray, there exists y E Y n 

with IF! +e,(y). Notice that if x1, x2 E Y n ’ and x1#x22 then 

2 = {x E Y n K’: R +e,(x) is an extreme ray of If”+‘}. 

Then pose,(Z) = VW,‘. Suppose there exists a y E Y n K’ \Z. Then e,(y) = 
CxaZ t,eJ(x) for suitable scalars tx 3 0. Since e,(y) # 0, this contradicts the linear 
independence of e,(Y n K’). ‘Thus Y n K’ = 2 and the number of extreme ra~j;s 
equais dim J* which equals dim V”,’ (since VW, ’ is a generating cone). This proves 
that V!f and, by duality, V+ is a simplicial cone. 

Conversely, suppose that V+ and hence VW,’ are simplicial cones. Since 
VW,’ = pose,(P), to each extreme ray there corresponds a z E K’ such that it 
coincides with R+e&). Select for each extreme ray exactly one such z and 
denote the set of z’s by 2. Since Vy’ is a simylicial cone, it follows that e,(Z) is 
linearly independent. Then Y = Z U K is a positive set. Indeed, if f(x) 3 0 for all 
.1c E Z U K then, in particular, f(x) a 0 for all x E K. Thus, by [ll, Lemma 22) we 
have 

f E [pos ev(K)lw = [lin e&Jwo 

ence, f(x) = 0 for all x E K. By Theorem 2, we conclude that f E J. But f (x) 3 0 
for all x E 2, so 

f E [pos e,(Z)lwt = VW,;,. 

us,f EV+.ThenZ=Yn ’ and since pos e,(Z) = V+, we conclude that 2 is a 
J-dense set. ence, by the observation above, 2 is minimal J-dense. Cl 

hen considering two 1, VI) aad (X2, V2J subscripted sets such as 
Ni, i = I, 2, refer to subsets o as usual. 
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and f E v,, then f(T- 

nd f E V2+, then by 

. Let T :X1-+X2 be an komorphism: (a) f(V,,) = VI+; (6) 
T*(Vr+) = VT+; (c) T( ) = N2, and (d) T( 

For x, y E X, if f tx) = f (y) for all f e V we write x -y. 
equivalence relation. A map T : -+X2 is -surjective if for every y E X2 there 
exists an x E X1 such that Tx - 
-surjective, then f is injective- 

t can be shown [ll, Theorem 1Sj that if T is 

. Let T :X1-, X2 be a -surjective morphism. If Y c is a positive set, 
then T(Y) s X2 is a positive set. 

Suppose Y c X1 is a positive set and suppose f E V, satisfies f (Ty) 2 0 for 
all y E Y. Then ff (y) 3 0 for all y E Y so ff E VI +. If x2 E X2 there exists an 
x1 E X such that Txl -x2. Hence, 

f(x2)=f(Tx,)= pf(x,)aO. 

Thus, f E V2+ so T(Y) is a positive set. Cl 

Let T:X+X be a -surjective morphism. (a) f(V+) = V+; (b) 
and (c) if Y c X is a minimal positive set, then T(Y) is a minimal 

positive set. 

It follows from our previous remark that T : V + V is injective. 
ctive. Moreover, f* is bijective. (a) Applying Lemma 9(a), we have 

?(V+) s V+. Now let g E V+. Then there e an f c V such that ff = g. If 
y E X, then there exists an x E X with TX - y. 

ffl#\ F flT..=\ - +pr \ .5# 

; Pb 1 
-J\k”” -_ $,\~)==<&)--t.!, 

Therefore ,feV+ anIt $(V+)=V+. 

is a minimal positive set. 

ts an f E V \ V+ such that f(y) 
e fact that $ is bijective 

)\(z) is not a 
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In this section we shall consider an example of an FLFS, namely a hypergraph 
together with its set of measures. We shall then specialize our previous results to 
this example. 

Let W = (X, 0) be a hypergraph [2]. A function p :X+ IR is a measure if there 
exists a constant fi E R such that zXEE p(xj = /i, for all E E 0. We denote the set 
of measures on H by M = M(H). It is clear that (X, M) is an FLFS. The set M+ 
consists of the positive measures on X. If p E M+ and p = 1, we call p a state (or 
stochasticfunctio~). The set of states is denoted by 52 = Q(H), and Q is a convex 
set which forms a base for M+ (i.e., M+ = R+Q). In this context, Q is of more 
importance and is more basic than M+. For this reason, some of the definitions 
are given in terms of Q instead of in terms of M+. However, the definitions are 
equivalent to those given earlier. For example, we say that Q is nucfeonic if for 
any x E X there exists a p E 51 such that p(x) = 0 and p(y) # 0 for all y E X\ {x}. 
We can now apply our previous results to hypergraphs. For example, we have the 
following results. 

2’. Let H be a hypergraph and let p E M. Then the following statements 
are equivalent: (a) p E J; 
(b) K\Nckerp, and (c:) Krkerpr 

eo 5’. Let H be a hypergraph with S2 # 8. Then Y s X is a minimal positive 
if only if 

(a) IYn(A\K)I=I,foreveryA~&; 
) is a minimal (K \ N)-positive set; 

7’. Let H be a Jordan hypergraph with Q # 0. Then Q is nucleonic if 
and only if X b a minima! positive set. 

1, 0,) and Ha = (X2, 02) be hypergraphs. A map T :X1-+X2 is a 
hypergraph komorphism if T is a bijection satisfying T(E) E OP if and only if 

orphism, then T is an 
Using our results in 

Section 4, the follo 

h&m for the hypergraphs 
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