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This paper is mainly concerned with positive sets and positive functions in a finite linear
function space. Our two main results characterize positive functions and minimal positive sets.
We then show that certain mcrpihisms preserve both the cone of positive functions and minimal
positive sets. Finally we specialize these results to the case of measures on a hypergraph.

i. Introduction

in this paper we continue the work begun in [11] where we considered finite
linear function spaces and measures on hypergraphs. A finite linear function
space (FLFS) is a pair (X, V'), where X is a nonempty finite set and V is a linear
space of real-valued functions on X. In various applicatioas it is important tc
know when f € V is in the cone V., of positive functions on X. For example, in the
case of measures on a hypergraph H, the elements of V, correspond to
unnormalized states (or stochastic functions) on H. The linear subspace J spanned
by V. is called the space of Jordan functions. The elements of J are precisely
those functions f € V which admit a Jordan decomposition f =f, — f,, fi, L€ V..
Our first main result gives a characterization of Jordan functions.

A subset Y c X is called a positive set if it determines positive functions. That
is, if fe V and f(y)=0 for all y € Y imply f € V.. Such sets are useful since they
reduce the labor required to find whether a function is posiiive or not. Of
particular importance are the minimal positive sets, and our second main result
characterizes suchi s«ts. We ncxt use positive seis to characterize when V, is a
simplicial cone.

In a subsequent section we consider morphisms between FLFS’s. We show that
certain types of morphisms preseive V,, positive sets, and minimal positive sets.
Finally, we specialize these results to the case of measures on a hypergraph. This
case is not only important in hypergraph theory [2, 10,13, 18], but also in
operational statistics [3, 4,5, 16], quantum logic [1,6,7, 12, 14, 15, 17, 20], and
possibly elementary particle physics [8, 9].
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2. Notation and definitions

Let V be a finite-dimensional real linear space. We denote the linear hull of a
subset S of V by linS. The positive hull, posS, is the set of all linear
combinations of elements of S with nonnegative coefficients. By convention
pos@={0}. A subset W ¢ V is a wedge if W+ Wc W and R, W c W, where
R,={AeR:A=0}. Clearly, posS is a wedge for any ScV. A wedge W is
generating in V if V.=W — W. A cone is a wedge W satisfying W N (-W) = {0}.
Let (W, V3, (-, ) be a dual pair of finite-dimensional real linear spaces. For
AcV,, BcV,, define

A¥={geV, (f,g)=01orali f e A},
B.={f € V;:(f, g) =0 for all g € B}.

It 1s clear that A is a wedge in V, and B, is a wedge in V. The bipolar theorem
[19] yieids A}, =clpos A, By =clpos B, where the closure (cl) is taken in the
Euclidean topology of the finite-dimensional vector spaces V;, V,, respectively.

Let X be a ncnempty finite set and let V be a nonempty set of real-valued
functions on X which is closed under scalar multiplication and pointwise addition.
Then V is a real linear space with dim V <|X|. We call (X, V) a finite linear
function space (FLFS) [11]. We denote the dual of V by V*. For x € &, define
ev(x)=x*eV* by x*(f)=f(x) for all feV. If Yc X, the V-closure of Y is
defined by

Y={xeX:f,geV,fIY=¢g| Y>f(x)=g(x)}.

We say that Yc X is V-dense if Y=X. One of the important properties of
minimal V-dense sets is that they can be used to determine dim V. In fact, it is
shown in {11] that a V-dense set Y c X is minimal V-dense if and only if
dim V =|Y|.

Four a FLFS (X, V) we define

Vi={feV:f(x)=0 for ali x e V}.

Then V, is a cone in V. We define the subspace Jof Vby J=linV, =V, -V,.
We say that (X, V) is Jordan if V., is a generating cone; that is, if J = V. We also
define

K={ eX:f(x)=0forallfeV,},
N={xeX:f(x)=0forall feV}.

Clearly. Nc K, K= X if and only if V, = {0}, N= X if and only if V = {0}. It is
shown in [11] that the foliowing statements are equivalent: (a) J=V, (b) N =K,
(¢) IK\N|=<1, (d) VY is a cone. We say that V is nucleonic if for every x € X
there exists f eV, such that f(x)=0, f(y)#0 for every ye X\{x}. If V is
nucleonic, then of course V is separating. Nucleonic spaces of measures on a
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hypergraph have been studied in [13]. For Y ¢: X write
Y*={feV:f(y)=0forallyeY).

Y, ZcX we call Y a Z-positive set if Y* c Z*. An X-positive set is simply
called a positive set.

It is not hard to show that the set # = {kerf:feV,} is a lattice under the
ordering c. Indeed, if A =kerf, B=kerg, f, geV,, then

AAnB=ker(f+g)=ANB.
Moreover,
Av B=/\{kerf: AUB ckerf}

In this lattice, the infimum coincides with the set-intersection, X is the largest
element and K is the least element. Clearly, the following are equivalent: |#| =1,
X =K, V, ={0}. Denote by « the collection of atoms in the lattice (¥, c:).

Let (X, V}) and (X,, V,) be FLFS’s. A map T:X,— X, is a morphism if for
every f e V, we have foT e V,. If T:X,— X, is a morphism, we define the linear
map T:V,— V, by Tf(x) =f(Tx) for all x € X,, f € V5. We also define the linear
map T*:Vi— V3 by T*F(f)=F(Tf) for all FeV}, feV,. It is not hard to
show that T*ey,=e,,T. If T:X,— X, is bijective and both T and T~' ace
morphisms, we call T an isomorphism and say that (X;, V), (X,, ¥,) are
isomorphic. It is easy to check that if T is an isomorphism, then T and T* are
linear isomorphisms and that (7')* = (T%)~.

3. Positive sets

In the sequel, (X, V') will always denote a FLFS. The complement of a subset
A of X will be denoted by A'.

Lemma 1. (a) posey(K') is a cone in V*.
(b) ev(K'),, is a generating wedge in V.

Proof. (a) Clearly, posey(K') is a wedge. Let
F e posy (K') N [—pos ey (K")].

Then for suitable scalars s,, ¢, =0 we have

F= seep(x)=— > tey(x).
xeK’ xeK'
This shows that for every f € V,, F(f)=0 and F(f) <0, hence, F(f) =0. Thus,
Yiex: 8, f(x)=0 for all f eV, which implies s, =0 for all x € K’. Therefore,
F=0.
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(b) Suppose that ey (K'),, is not generating. Then there exists 0# F ¢ V* such
that
ev(K')w—ev(K')wcker F.
By the bipolar theorem we have
+F eey(K')y =posey(K’).
By Part (a), posey(K') is a cone, so F =0. This is a contradiction. O

Theorem 2. Let (X, V) be a FLFS and let f € V. Then the following statements are
equivalent. (a) f €J, (b) K\N ckerf, (c) K ckerf.

Proof. (a)=> (b)=> (c) are obvious. We now show that (c)=> (a). If K =X, then
K c ker f implies f = 0. Hence, f € J. We now assume that K’ #§. Select for each
» €K' an f, eV, such that f,(x)>0 and define =Y,k f.- Then feV, and
Jo(x)>0 for all x e K'. Suppose K ckerf. Then f e[ ),cxkerey(y). Since, by
Lemina 1{b), ¢, (K'), is a generating wedge, there exist g,, g, €ey(K’),, such
that f =g, — g,. Notice that f; € e, (K').,, as well. Defire

;= max g(x)folx), i=1,2.
xeK'
Then ¢,, t,=0 and for all x € K’ we have
O=<g@)=<tfilx), i=1,2.
Now for all x € K’ we have

~t fo(x) < g1(x) <t fo(x), b folx) = —ga(x) < 62 fo(x),
so it follows that

= (t; + t)folx) <f(x) < (t, + 2)fo(x).

Letting s =t; + t,, we conclude that

So=F, f+sfocev(K)wN () kerey(y),

since foeJ = )yex kerey(y). But
f=3f +sfo) = 3sfo— 1),

and
ev(K')w N ﬂxker ev(y)c V..
ye€

Thus, feV, -V, =J. 3

Lemma 3. A subset ¥ is a Z-positive set if and only if pos ey (Z) < pos ey (Y).
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Proef. If Y is a Z-positive set, then ¢, (Y), < e, (Z),. Applying the bipolar
theorem, we conclude that

posey(Z) =ey(Z)y cey(Y)w =posey(Y).

The converse is easily shown. [
Corollary 4. A positive set is V-dense.

Proof. If Y is a positive set, then applying Lemma 3 we have
VY =posey(X) c posey(Y).

But V,=VY, is a cone and hence VY is a generating wedge of V*. Thus
V* =liney(Y). It follows from [11, Lemma 1] that Y is V-dense. O

The next theorem, which is our main result, characterizes minimal positive sets.

Theorem 5. Let (X, V) be a FLFS with V. +#{3}. Then Yc X is a minimal
positive set if and only if

(@) l[YN(A\K)|=1 for every Ae A;

(b) Y N(K\N) is a minimal (K\N)-positive set;

(c) YNN=@.

Proof. We first shew that if Y is a positive set, then Y N(A\K)#8 for every
Aed and YN{K\N) is a (K\N)-positive set. If K\N=@, then clearly
YN(K\N) is a (K\N)-positiv:. set so suppose K\N+#@. If ye K\N, then
ev(y) #0. Since Y is positive, we have

pos ey (X) = pos ey (Y) =pos e, (Y NK') + posey[Y N (K\N)]
=posey(K') + posey[Y N(K\N)].

If Y N(K\N) =9, then ey(y) = I,k scev(x) for suitable scalars s, =0. Then for
every f € V. we have

0=e,(y){f)= 2 s.J(x).

xeK'

Hence, s, =0, xeK’, which implies ey(y)=0, a contradiction. Therefore,
YN (K\N)+#9. We then have

eV(y)= z -rxev(x) + Z tzeV(Z)r

xeK' ze YN{K\N)

for suitable scalars r,, ¢, =0. Again, for every f € V., we have

O=ey())(f)= 3 nf)+ 2 6f@)=2 nf)

xeK'’ zeYN(K\N) xekK’
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and it follows that r. =0 for all x € K'. Hence, ev(y) epose,[Y N (K\N)). Thas,

pos ey (K\N) cposey[Y N(K\N)],

and by Lemma 3 we conclude that Y N (K\N) is a (K \N)-positive set.
Notice that ¥ N K’ # 0 since otherwise Y < K making K a positive set. Now if
f eJ, then f(x) =0 for all x € K, hence f e V.. It follows that J=V,. But V, is a
cone and J is a linear subspace of V so V, = {0} which is a contradiction.
Moreover, since Y is a positive set, we have

Vi={fel:f(y)=0forallye YNK'}.

Thus, in the duality (J,J*) we have V.=[e,(YNK')], and hence, V¥ =
pose,{Y N K'). Now let f e V, satisfy ker f € of and select x e ker f\K. Then

e(x)= Z te,y),

yeYNK’

for suitable scalars ¢, >0. Since e,(x) #0, there exists y' e Y N K’ with ¢,.>0.
Then

0=f(x)= 2 4f(y)

yeYNK
implies that f(y') =0. Thus,
y' ekerfN(YNK')=Y N(kerf\K).
We conclude that Y N (A\K)#@ for any A € .

To complete the proct we show that a subset Y c X satisfying conditions (a),

(b}, and (c) is a positive set. Let & € V and suppose that h(y) =0 for all ye Y.
Then, in particular,

h e [pos ey (Y N (K\N)),,.

T - s

Now ¥ 1 {K\N) is a (K\N)-positive set, so by [11, Lemma 22] we have
posey[Y N(K\N)] = pos e, {(K\N) =lia ey, (X \N).
Then by Theorem 2 we have

[line, (K\N)}, = {f c V: F(f) =0 for all F elin 2y, (K\N)}
={feV:F(f) =0 for all F eline,(K\N)}

={feV:f(z)=0fcrall ze K\N}=J.
Therefore, h e J.

Since VY is a polvhedral cone, each of its faces is exposed [19] Let Fbe a
generator of an extreme ray (one-dimensional face) of the cone V¥'. Then F #0
and there exists an f € V., such that

{GeVY:G(f)=0)=R.F.
We now show that kerf e of. ¥f kerf =K, then f(x)>0 for all x € K'. Thus,
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G(f)>0 for ali 0# G epose,(K')= VY. Hence, F =0 which is a contradiction.
Suppose there exists g € V, with Kckergckerf, K#Kkerg. Let x ekerg\K.
Then e;(x) #0 and x e kerf. Hence, e;(x) =t,F for some ¢,>0. If y ekerf\K,
then ¢,(y) =t,F for some ¢, >0. Then e,{x) =se,(y) for some s >0. We then
have 0=g(x) =sg(y) so g(y)=0. Hence, y € kerg which proves that kerg =
kerf.

Now let y e Y N (kerf\K). Again, we have e,(y) =tF for some scalar ¢t >0.
This proves that pos e;,(Y N K') contains the generators of the extreme rayz of the
cone VY and hence V¥ =pose,(Y NK'). We have shown above that if he V
satisfies 2(y) =0 for all y € Y, then & €J. But then ¢,(y){h) =0 and hence

helpose,(YNK))w=Vip=V,. O

IfA,,..., A4, are disjoint sets, we use the notation UA,— for JA,.

Coroliary 6. Let (X, V) be a FLFS and let Y c X be a minimal positive set. Then
(@) YNK'= L’Jd[yn (A\K));
Ae
(b) £ =Y NK'|.

Proof. We may assume that X #K. If A;, A,ef and A, #A4,, then K=A, A
A;=A;NA, and hence, (4,\K)N(A,\K)=@. By Theorem 5 is now follows
that

AL;:’« [YNA\K)JU[Y N (K\N)]

is a minimal positive set and thus equals Y. Condition (a) follows immediately.
Condition (b) is a straightforward consequence of (a). O

Corcllary 7. Let (X, V) be a Jordan FLFS with V. # {0}. Then V is nucleonic if
and only if X is a minimal positive set.

Proof. Let V be nuclecnic. It foliows that K =: @. By definition, each singleton set
{x}, x € X, is an atom in the lattice ¥. Hence, by Theorem 5. X is 2 m nimai
positive set. Conversely, supposc ihiai A is a minimal positive set. Since (X, V) is
Jordan, it follows that K =N. But XN N =#, hence, K=N=4§. Let xe X. By
Corollary 6, there exists an A € of such that x € A. If there exists a y € A with
y #x, then |X N _4| > 1, contradicting the assumption that X is a minimal positive
set. Thus, {x} = A so {x} € . Hence, there exists an f € V, such that {x} =ker f.
Then clearly V is nucleonic. 0

Theorem 8. If (X, V) is a FLFS, then V, is a simplicial cone if and only if there
exists a positive set Y such that Y N K' is a minimal J-dense set.
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Proof. If X =K, then V, = {0} and ihe assertions hold (for ¥ =X). We now
assume that X # K. Suppose Y c X has the required properties. Then, as in the
proof of Theorem 5, we get VY =pose,(Y NK’). Also, ¢,(YNK') is a linearly
independent set in J*. Since e,(¥Y N K') generates {positive hull) the polyhedral
cone V¥, we conclude that for each extreme ray, there exists y € Y N K’ such
that it coincides with R, e;(y). Notice that if x,, x,€e YN K’ and x; #x,, then
e,(x,) # e,(x,). Define the set

Z={xeYNK': R, elx) is an extreme ray of V¥ }.

Then pose,(Z)=VY¥. Suppose there exists a ye YNK'\Z. Then e¢(y)=
¥,z tes(x) for suitable scalars ¢, = 0. Since ¢,(y) #0, this contradicts the linear
independence of ¢,(Y N K'). Thus YN XK' =Z and the number of extreme rays
equais dim J* which equals dim V¥ (since V¥ is a generating cone). This proves
that V¥ and, by duality, V, is a simplicial cone.

Conversely, suppose that V, and hence VY are simplicial cones. Since
VY =poses(K'), to each extreme ray there corresponds a z € K’ such that it
coincides with R.e;(z). Select for each extreme ray exactly one such z and
denote the set of z’s by Z. Since VY is a simplicial cone, it follows that e,(Z) is
linearly independent. Then Y = Z U K is a positive set. Indeed, if f(x) =0 for all
x € Z UK then, in particular, f(x) =0 for all x € K. Thus, by [11, Lemma 22] we
have

f € [pos ey (K))s, = [lin ey (K)].
Hence, f(x) =0 for all x € K. By Theorem 2, we conclude that f € J. But f(x)=0
for all x € Z, so

f e[pose)(Z)]u = VYo

Thus, f e V.. Then Z =Y N K' and since pos e,(Z) = V.., we conclude that Z is a
J-dense set. Hence, by the observation zbove, Z is minimal J-dense. O

4. Positive sets and morphisms

When considering two FLFS’s (X;, V}) and (X,, V,), subscripted sets such as
Vi+» N;, i =1, 2, refer to subsets of X;, i =1, 2, and are defined as usual.

Lemma 9. Let (X,, V1), (X2, V,) be FLFS’s and let T : X,— X, be a movphism:
(@) T(Var) € Vis; (0) T*(VY) € V3is (0) N € Ny, and (d) T(Ky) < Ko

Proof. (a) If f € V,,, then for all xeX, we have Tf(x)=f(Tx)>0. Hence,
Tf € Vi, and T(V3,) c V...

(b) Let Fe VY, and feV,,. Then Tf e V,, by Part (a). Hence, T*F(f) =
F(Tf)=0s0 T*F e Vy,. Thus, T*(V¥,)c VY,.
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(c) Iix € N, and f € V5, then f{Tx) = Tf(x) =0. Hence, Tx € N, s0 T(N})  N,.
d) Ifxe K, and f € V,,, ihen by Part (a) Tf € V;, so f(Tx) = Tf(x) =0. Thus
TxeK,so T(K))cK,. O

Corollary 10. Let T:X,— X, be an isomorphism: (a) T(Vo.)=V,.; (b)
T*(V¥,)=V3; (c) T(N) = Ns, and (d) T(K,) = K,.

For x, yeX, if f(x)=f(y) for all feV we write x~y. Then ~ is an
equivalence reiation. A map T:X,— X, is ~surjective if for every y € X, there
exists an x € X, such that 7x ~y. It can be shown [11, Theorem 18] that if T is
~surjective, then T is injective,

Lemma 11. Let T:X,— X, be a ~surjective morphism. If Y c X, is a positive set,
then T(Y) c X, is a positive set.

Proof. Suppose lf c X, is a positive set and suppose f € V, satisfies f(Ty) =0 for
all yeY. Then Tf(y)=0 for all yeY so Tf e V;,. If x,€ X, there exists an
x, € X such that Tx, ~x,. Hence,

f(x2) =f(Txy) = Tf (x,) =0.
Thus, f € V., so T(Y) is a positive set. O

Theorem 12. Let T:X— X be a ~surjective morphism. (a) T(V,)=V.; (b)
T*(V¥)= VY, and (c) if Y c X is a minimal positive set, then T(Y) is a minimal
nositive set.

Proof. It follows from our previous remark that 7': V — V is injective. Hence, T
is bijective. Moreover, T* is bijective. (a) Applying Lemma 9(a), we have
T(V.)c V.. Now let geV,. Then there exists an f =V such that Tf =g. If
y € X, then there exists an x € X with Tx ~ y. Hence,

£

Therefore, f € V. and T(V,)=V,.

The proof of (b) is similar.

(c) Suppose Y c X is a minimal positive set. By Lemma 11, T(Y) is a positive
set. Let z € T(Y) and let Y; = Y\T"'({z}). Then Y, c Y and Y, # Y, Since Y, is
not a positive set, there exists an f € V\V, such that f(y)=0 for all ye Y,. it
follows from Part (a) and the fact that T is bijective that T-'f¢V,. Let
x € T(Y)\{z}. Then there exists a y € Y; such that Ty = x. Then

T7'f(x) = T7'f(Ty) =f(y) =0.

Hence, T(Y)\{z} is not a positive set so T(Y’) is minimal positive. L[]

N =T =)y =gn) =0
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5. Hypergraphs

In this section we shall consider an example of an FLFS, namely a hypergraph
together with its set of measures. We shall then specialize our previous results to
this example.

Let H = (X, 0) be a hypergraph {2]. A function u:X— R is a measure if there
exists a constant fi € R such that ¥, - u(x) = fi, for all E € 0. We denote the set
of measures on H by M = M(H). It is clear that {X, M) is an FLFS. The set M,
consists of the positive measures on X. If u € M, and 2 =1, we call u a state (or
stochastic function). The set of states is denoted by Q = Q(H), and Q is a convex
set which forms a base for M, (i.e., M, =R.Q). In this context, Q is of more
importance and is more basic than M,. For this reason, some of the definitions
are given in terms of € instead of in terms of M,. However, the definitions are
equivalent to those given earlier. For example, we say that Q is nucleonic if for
any x € X there exists a pu € Q such that p(x) =0 and u(y) #0 for all y e X\ {x}.
We can now apply our previous results to hypergraphs. For example, we have the
following results.

Theorem 2'. Let H be a hypergraph and let u € M. Then the following statements
are equivalent: {(a) uelJ;
(b) K\Nckeryu, and (c) K c ker .

Theorem 5’. Let H be a kypergraph with Q +@. Then Y c X is a minimal positive
set if and only if

(@) |YN(A\K)|=1, for every Ae A;

(b) YN(K\N) is a minimal (K\N)-positive set;

© YNN=4.

Corollary 7. Let H be a Jordan hypergraph with Q#9. Then Q is nucleonic if
and only if X is a minimal positive set.

Let H,=(X,,0,) and H,=(X,, 0,) be hypergraphs. A map T:X,— X, is a
hypergraph isomorphism if T is a bijection satisfying T(E) €0, if and only if
E€0,. It is clear that if T:X,— X, is a hypergraph isomorphism, then T is an
FLFS isomorphism for the FLFS’s (X,, M,), (X,, M,). Using our results in
Section 4, the following theorem is easily proved.

Theorem 13. Lot T: X, — X, be a hypergraph isomorphism for the hypergraphs
(X, 0,) and (X, 0y): (a) T(My.) = My.,; (b) T*(M}.) = M3, ; (c) T(N,) = Ny; (d)
T(K)) =K, and () if Y c X is a (minimal) positive set, then T(Y) is a (minimal)
positive set.
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