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Abstract

Let ai; j(n) denote the number of walks in n steps from (0; 0) to (i; j), with steps (±1; 0) and (0;±1), never touching a
point (−k; 0) with k¿ 0 after the starting point. Bousquet-M5elou and Schae7er conjectured a closed form for the number
a−i; i(2n) when i¿ 1. In this paper, we prove their conjecture, and give a formula for a−i; i(2n) for i6− 1.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction and Theorems

The problem of walks on the slit plane was =rst studied by Bousquet-M5elou and Schae7er [2]. See also [1].
Let ai; j(n) denote the number of walks in n steps from (0; 0) to (i; j), with steps (±1; 0) and (0;±1), never touching

a point (−k; 0) with k¿ 0 after the starting point. These are called walks on the slit plane.
Let @x denote x−1 and @y denote y−1. In [2], the authors showed (Theorem 1) that

S(x; y; t) =
∑
n¿0

∑
i; j∈Z

ai; j(n)x
iyjtn =

(1 − 2t(1 + @x) +
√

1 − 4t)1=2(1 + 2t(1 − @x) +
√

1 + 4t)1=2

2(1 − t(x + @x + y + @y))
; (1.1)

where S(x; y; t) is the complete generating function for walks on the slit plane.
The authors also conjectured a closed form for a−i; i(2n) for i¿ 1. By reCecting in the x-axis, we see that a−i; i(2n) =

a−i;−i(2n), the closed form of which is given as (1.2) in the following theorem.

Theorem 1.1. For i¿ 1 and n¿ i, we have

a−i;−i(2n) =
i

2n

(
2i

i

)(
n+ i

2i

) ( 4n
2n

)
( 2n+2i

2i

) ; (1.2)

ai; i(2n) = a−i;−i + 4n
i
n

(
2i

i

)(
2n

n− i

)
: (1.3)

We will prove this theorem in the next section. Theorem 1.4 below is a basic tool to prove the conjecture.
There are two key steps in proving the conjecture that might be worth mentioning: one is using Theorem 1.4 to obtain

the generating function (2.2) that involves ai; i(2n) for all integers i; the other is guessing the formula (1.3).
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Let R be a commutative ring with unit, and R[x; @x][[t]] the ring of formal power series in t with coeIcients Laurent
polynomials in x. An element of R[x; @x][[t]] is written as f(x; t), to emphasize that f(x; t) is regarded as a power series
in t.

If f(x; t) ∈R[x; @x][[t]], then it can be written as

f(x; t) =
∑
n¿0

∑
i∈Z
fi;nx

itn:

Let CTxf(x; t) denote the constant term of f(x; t) in x, i.e.,

CT
x
f(x; t) =

∑
n¿0

f0; nt
n:

Note that if we are working in R[x; @x][[t]], and if u∈ tR[[t]], then x=(x − u) has to be interpreted as
x

x − u
=

1
1 − u=x

=
∑
n¿0

un=xn:

So

CT
x

x
x − u

xk =

{
uk if k¿ 0;

0 if k ¡ 0:

By linearity, we have the following:

Lemma 1.2. Let Q(x; t) ∈R[x][[t]] be a formal power series in t, with coe5cients in the polynomial ring R[x]. If
u= u(t) ∈ tR[[t]] is a formal power series in t with constant term 0, then

CT
x

x
x − u

Q(x; t) = Q(u; t): (1.4)

The following lemma is a well-known result. See, e.g., [3, Theorem 4.2].

Lemma 1.3. If G(x; t) ∈R[[x; t]], then there is a unique X = X (t) in tR[[t]] such that X − tG(X; t) = 0.

Theorem 1.4. Let G(x; t); F(x; t) ∈R[[x; t]], and let X =X (t) be the unique element in tR[[t]] such that X − tG(X; t) = 0.
Then

CT
x

x
x − tG(x; t)

F(x; t) =
F(X; t)

1 − t 99x G(x; t)

∣∣∣∣∣
x=X

: (1.5)

Proof. Write G(x; t) =
∑

n¿0 an(t)x
n. Then

x − tG(x; t)
x − X

=
x − tG(x; t) − (X − tG(X; t))

x − X
= 1 − t

∑
n¿0

an(t)(x
n−1 + xn−2X + · · · + X n−1);

which is an element in R[[x; t]] with constant term 1. Setting x = X , we get
x − tG(x; t)
x − X

∣∣∣∣
x=X

= 1 − t
9
9x G(x; t)

∣∣∣∣
x=X

:

By Lemma 1.2, we have

CT
x

x
x − tG(x; t)

F(x; t) = CT
x

x
x − X

(
x − tG(x; t)
x − X

)−1

F(x; t)

=
(
x − tG(x; t)
x − X

)−1

F(x; t)

∣∣∣∣∣
x=X

=
F(X; t)

1 − t 99x G(x; t)

∣∣∣∣∣
x=X

:

Theorem 1.4 is a generalization of Lagrange’s inversion formula. If we set F and G to be independent of t, we can
easily derive Lagrange’s inversion formula. See [4, Theorem 5.4.2]. This topic will be explored further in [5].
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2. The proof of the conjecture

Let

C(t) =
∑
n¿0

Cnt
n =

1 − √
1 − 4t

2t

be the Catalan generating function, and let

u= tC(t)C(−t) =
√

1 + 4t − 1√
1 − 4t + 1

:

Much of the computation here involves rational functions of u. We shall use the following facts from [2].

C(u) = C(t;
√

1 − 4t;
√

1 + 4t);

C(t) =
1 + u2

1 − u
; C(−t) =

1 + u2

1 + u
; C(4t2) =

(1 + u2)2

(1 − u2)2
:

We shall prove Theorem 1.1 by computing the diagonal generating function F(y; t). More precisely, let

F(y; t) =
∑
n¿0

∑
i∈Z
ai; i(2n)y

it2n:

Since S(x; y @x; t) belongs to C[x; y; @x; @y][[t]], it is easy to check that

F(y; t) = CT
x
S(x; y @x; t) = CT

x
S( @x; xy; t): (2.1)

Lemma 2.1.

F(y; t) =

[
1+

√
1−4t
2 − t

(
1 + 1−

√
1−4t2(1+y)2=y
2t(1+y)

)]1=2 [
1+

√
1+4t

2 + t
(

1 − 1−
√

1−4t2(1+y)2=y
2t(1+y)

)]1=2

√
1 − 4t2(1 + y)2=y

: (2.2)

Proof. Using (2.1) and (1.1), we get

F(y; t) = CT
x
S( @x; xy; t)

= CT
x

1
2(1 − t(x + @x + xy + @x @y))

(1 − 2t(1 + x) +
√

1 − 4t)1=2(1 + 2t(1 − x) +
√

1 + 4t)1=2

= CT
x

x
2(x − t(x2 + 1 + x2y + @y))

(1 − 2t(1 + x) +
√

1 − 4t)1=2(1 + 2t(1 − x) +
√

1 + 4t)1=2:

Applying Theorem 1.4 with R= C[y; @y], this becomes
1

2(1 − t(2X + 2Xy))
(1 − 2t(1 + X ) +

√
1 − 4t)1=2(1 + 2t(1 − X ) +

√
1 + 4t)1=2;

where X =X (t) is the unique solution in tR[[t]] such that X = t(X 2 + 1 + @y+X 2y). We can solve for X by the quadratic
formula:

X =
1 −√1 − 4t2(1 + y)2=y

2t(1 + y)
:

Eq. (2.2) then follows.

It is clear that for any G(y; t) ∈R[y; @y][[t]], there is a unique decomposition G(y; t) = G+(y; t) + G0(t) + G−( @y; ; t),
such that G+(y; t); G−(y; t) ∈ yR[y][[t]] and G0(t) ∈R[[t]].

Our task now is to =nd this decomposition of F(y; t). There is no general theory to do this. For this particular F(y; t),
thanks to the work of Bousquet-M5elou and Schae7er, we can guess the formulas for F+ and F− and prove them.

The variable s de=ned by the following is useful:

s = tC(4t2) =
u

1 − u2
and t =

s
1 + 4s2

: (2.3)

Note that s is also S0;1(t), the generating function of walks on the slit plane that end at (0; 1). See [2, p. 11].
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Lemma 2.2. We have the decomposition

F(y; t) = F+(y; t) + 1 + F−( @y; t);

where

F+(y; t) = F−(y; t) +
1
2

((1 − 4s2y)−1=2 − 1); (2.4)

F−(y; t) =
(1 − u2)s2yC(s2y)
1 + u2C2(s2y)s2y

1√
1 − 4s2y

: (2.5)

Proof. Let

T (y; t) =
(1 − u2)s2yC(s2y)
1 + u2C2(s2y)s2y

1√
1 − 4s2y

+
1
2

((1 − 4s2y)−1=2 − 1) + 1 +
(1 − u2)s2 @yC(s2 @y)
1 + u2C2(s2 @y)s2 @y

1√
1 − 4s2 @y

:

From Lemma 2.1, we have

F(y; t) =

[
1+

√
1−4t
2 − t

(
1 + 1−

√
1−4t2(1+y)2=y
2t(1+y)

)]1=2 [
1+

√
1+4t

2 + t
(

1 − 1−
√

1−4t2(1+y)2=y
2t(1+y)

)]1=2

√
1 − 4t2(1 + y)2=y

:

Therefore, it suIces to show that T (y; t) =F(y; t). Since it is easy to see that T (y; 0) =F(y; 0) = 1, the proof will be
completed by showing that T 2(y; t) − F2(y; t) = 0.

Using the variable u, we can get rid of the radicals
√

1 − 4t and
√

1 + 4t by the following:

√
1 − 4t =

1 − 2u− u2

1 + u2
; and

√
1 + 4t =

1 + 2u− u2

1 + u2
:

The radicals left are D =
√

1 − 4s2y, E =
√

1 − 4s2 @y, and
√

1 − 4t2(1 + y)2=y, which is easily checked to be equal
to DE.

Rewriting T 2 − F2 in terms of u; D; E, we get a rational function of u; D; E. For i = 1; 2 (the degrees in D and E are
both 4), replacing D2i by (1 − 4s2y)i, D2i+1 by (1 − 4s2y)iD, E2i by (1 − 4s2 @y)i, and E2i+1 by (1 − 4s2 @y)iE, we =nd that
the expression reduces to 0.

Now we need to show the following:

Lemma 2.3.

F−(y; t) =
∑
n¿0

∑
i¿1

bi(2n)t
nyi; (2.6)

where

bi(2n) =
i

2n

(
2i

i

)(
n+ i

2i

) ( 4n
2n

)
( 2n+2i

2i

) : (2.7)

We will give two proofs of this lemma. The =rst one starts from a formula in [2]. We include it here as an example of
computing the generating function by Theorem 1.4. The second proof is self-contained, and is simple.

Let

f(y; t) =
∑
n¿1

∑
i¿1

bi(2n)t
nyi: (2.8)

We need to show that F−(y; t) = f(y; t).
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Proof of Lemma 2.3. (1) It was stated in [2] that

∑
n¿0

bi(2n)t
n =

(−1)i

(1 − u2)2i−1

2i−1∑
k=i

(
2i − 1

k

)
(−1)ku2k : (2.9)

Let s be as in (2.3). Using the following fact(
n

k

)
= CT

�

1
�k

(1 + �)n;

we can compute f(y; t) by Theorem 1.4:

f(y; t) =
∑
i¿1

(−1)i

(1 − u2)2i−1

2i−1∑
k=i

(
2i − 1

k

)
(−1)ku2kyi

=
∑
i¿1

(1 − u2)(−1)i

(1 − u2)2i

i−1∑
r=0

(
2i − 1

i + r

)
(−1)i+ru2i+2ryi; where r = k − i

= (1 − u2)
∑
r¿0

(−1)ru2r
∑
i¿r+1

(
2i − 1

i − 1 − r

)
u2i

(1 − u2)2i
yi

= (1 − u2)
∑
r¿0

(−u2)r
∑
i¿r+1

CT
�

(1 + �)2i−1
(

1
�

)i−1−r
(s2y)i

= CT
�

(1 − u2)
∑
r¿0

�
1 + �

(−u2)r�r
∑
i¿r+1

(1 + �)2i

�i
(s2y)i

= CT
�

�
1 + �

(1 − u2)
∑
r¿0

(−u2�)r
(

(1 + �)2

�
s2y
)r+1

1
1 − [(1 + �)2=�]s2y

= CT
�

(1 − u2)(1 + �)s2y
1

1 + u2(1 + �)2s2y
· 1

1 − [(1 + �)2=�]s2y
:

Now,

(1 − u2)(1 + �)s2y
1

1 + u2(1 + �)2s2y

is a power series in t with coeIcients in C[y][�], and

1
1 − [(1 + �)2=�]s2y

=
�

�− (1 + �)2s2y
:

Solving the denominator for �, we get two solutions:

1 − 2s2y +
√

1 − 4s2y
2s2y

and
1 − 2s2y −√1 − 4s2y

2s2y
:

Only the latter is a power series in t with constant term 0, which can also be written as A= C(s2y) − 1.
Thus we can apply Theorem 1.4 to get

f(y; t) = CT
�

�
�− (1 + �)2s2y

(1 − u2)(1 + �)s2y
1

1 + u2(1 + �)2s2y

= (1 − u)2s2y(1 + A)
1

1 + u2(1 + A)2s2y
1

1 − 2s2y(A+ 1)

= (1 − u2)s2yC(s2y)
1

1 + u2C2(s2y)s2y
1√

1 − 4s2y
;

which completes the proof.
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The second proof derives a di7erent form of F−(y; t).
(2) We begin with =nding the generating function of 2nbi(n), which equals t(9=9t)f(y; t).
We claim that

∑
n¿0

(
n+ i

2i

) ( 4n
2n

)
( 2n+2i

2i

) t2n =

√
1 + 4s2s2i

1 − 4s2
; (2.10)

where the relation between t and s is given in (2.3).
It is easy to check that(

n+ i

2i

) ( 4n
2n

)
( 2n+2i

2i

) =

(
2n− 1=2

n− i

)
4n−i :

In the well-known formula

C(x)k√
1 − 4x

=
∑
n¿0

(
2n+ k

n

)
xn;

by setting x = 4t2, and k = 2i − 1=2, we get

∑
n¿0

(
n+ i

2i

) ( 4n
2n

)
( 2n+2i

2i

) t2n = t2i
C(4t2)2i−1=2

√
1 − 16t2

:

Using (2.3) to write the above in terms of s, we get (2.10).
Now we have

t
9
9t f(y; t) =

∑
i¿1

∑
n¿0

i

(
2i

i

)(
n+ i

2i

) ( 4n
2n

)
( 2n+2i

2i

) t2nyi =
2s2y

(1 − 4s2y)3=2

√
1 + 4s2

1 − 4s2
:

Hence

f(y; t) =
∫

2s2y
(1 − 4s2y)3=2

√
1 + 4s2

1 − 4s2
dt
t

=
∫

2s2y
(1 − 4s2y)3=2

√
1 + 4s2

1 − 4s2
1 − 4s2

s(1 + 4s2)
ds

=
y
√

1 + 4s2

2(1 + y)
√

1 − 4s2y
+ constant;

where the constant is independent of t. By setting t = 0, and hence s = 0, we get f(y; 0) = y=[2(1 + y)] + constant.
Recalling equation (2.8), we see that f(y; 0) = 0. Thus the constant equals −y=[2(1 + y)]. This gives another form of

f(y; t):

f(y; t) =
y
√

1 + 4s2

2(1 + y)
√

1 − 4s2y
− y

2(1 + y)
=

y(1 + u2)

2(1 + y)(1 − u2)
√

1 − 4s2y
− y

2(1 + y)
;

which is easily checked to be equal to F−(y; t) as given in (2.5).

Proof of Theorem 1.1. We gave a formula for the generating function

F(y; t) =
∑
n¿0

∑
i∈Z
ai; i(2n)y

it2n

in Lemma 2.1. In Lemma 2.2, we showed that

F−(y; t) =
∑
n¿0

∑
i¿0

a−i;−i(2n)y
it2n

has a formula as given in (2.5). The proof of (1.2) is thus accomplished by Lemma 2.3.
For Eq. (1.3), once we get formula (2.4), it is an easy exercise to show that

1
2

((1 − 4s2y)−1=2 − 1) =
∑
n¿1

∑
i¿1

4n
i
n

(
2i

i

)(
2n

n− i

)
yit2n:
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