

Available online at www.sciencedirect.com

Procedia Engineering 31 (2012) 297 - 301

Procedia Engineering

www.elsevier.com/locate/procedia

International Conference on Advances in Computational Modeling and Simulation

Thermodynamic description of Si-B binary system

Jijun Wu^{a,b}, Wenhui Ma^{a,b*}, Duzuo Tang^c, Binjie Jia^b, Bin Yang^{a,b},

Dachun Liu^{a,b}, Yongnian Dai^{a,b}

^aNational Engineering Laboratory for vacuum metallurgy, Kunming University of Science and Technology, Kunming 650093, China ^bFaculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China ^cCopper Company of Yunnan Tin Co., Ltd., Gejiu 650033, China

Abstract

The Si-B binary system was thermodynamically assessed and described using the CompuTherm Pandat software. The solution phases, including Liquid, diamond-Si and β -B were treated as substitutional solution phases, of which the Gibbs energies were expressed with Redlich-Kister polynomial functions. Meanwhile, the compounds, SiB3, SiB6, SiBn, were modeled as stoichiometric compounds. The thermodynamic parameters formulating the Gibbs energies of various phases were obtained and the equilibrium and transition of phases were discussed. The existent forms for Si-B phases in MG-Si melt were forecast.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Kunming University of Science and Technology Open access under CC BY-NC-ND license.

Keywords: CompuTherm, Si-B binary system, thermodynamic, metallurgical grade silicon

1. Introduction

Presently, the metallurgical process that metallurgical grade silicon (MG-Si) is used as raw material and purified to 6N (99.9999%) or so purity is an important method for preparing solar grade silicon (SoG-Si). The MG-Si melt is a complicated system in which includes many impurity elements such as Fe, Al, Ca, Ti, P, B, C, O etc, and to a large extent, these impurity elements will impact on the photoelectric conversion efficiency of SoG-Si [1,2]. It is crucial to the removal of impurities with the metallurgical process, so it is necessary to previously investigate the phase equilibria among silicon and other components in silicic systems [3]. A challenging problem with metallurgical process is the boron removal for MG-Si and the Si-B binary system plays an important role here.

^{*} Corresponding author. Tel.:+86-871-5107208; fax: +86-871-5107208.

E-mail address: mwhsilicon@163.com.

The purpose of this work is to evaluate the Si-B binary system by means of the CompuTherm technology (software Pandat 7.0) and to generate a reliable description of thermodynamic properties and phase diagrams for the Si-B binary system.

2. Evaluation of experimental information

2.1 Phase diagram

The present Si-B binary diagram is based on the evaluation of various computational techniques by utilizing the enthalpy function. The calculations were done by assuming Henrian behavior for the solid solutions. The calculated liquidus curve agreed with the experimental features of the diagram only upon weighting the solubility data. Detailed review of the Si-B system was studied by R.W. Olesinski and G.J. Abbaschian [4]. There are six phases, liquid, diamond-Si, β -B SiB₃, SiB₆ and SiB_n reported so far for this system. J. Hesse [5], J.C. Viala and J. Bouix [6] also made some comprehensive studies of the Si-B binary system. Their studies revealed that the assessed Si-B phase diagram includes the intermediate phases SiB₆ and SiB₃. It is generally agreed that SiB₃, sometimes erroneously identified as SiB₄, is unstable above 1473K ~1673K. B. Armas [7], G. Male and D. Salanoubat [8] proved the formation of a B-rich solid phase, SiB_n, distinct from, although isotypic with, the solubility of Si in B. The calculated coordinates of the eutectic and SiB_n peritectic points agree well with the experimental data. G.N. Makarenko and O.I. Popova [9] found that the phase SiB₄ was obtained by amorphous boron powder and silicon for the B-Si system, but it is not found in the assessed Si-B binary phase diagram.

2.2 Thermodynamic model

The Gibbs Energy Model is usually used to calculate the thermodynamic process for phase diagram. The Si-B binary system includes six phases: liquid, diamond-Si, β -B, SiB₃, SiB₆ and SiB_n. The Gibbs free energies of pure elements with respect to temperature $G_i^{o,\varphi}(T) = G_i^{\varphi}(T) - H_i^{\text{SER}}$ are represented by Eq. (1):

$$G_i^{o,\varphi}(T) = a + bT + cT\ln(T) + dT^2 + eT^3 + fT^{-1} + gT^7 + hT^{-9} + \dots$$
(1)

The $G_i^{o,\varphi}(T)$ data are referred to the constant enthalpy value of the standard element reference H_i^{SER} at 298.15K and 1 bar as recommended by Scientific Group Thermodata Europe (SGTE) [10]. The $G_i^{o,\varphi}(T)$ may be given for several temperature ranges, where the coefficients *a*, *b*, *c*, *d*, *e*, *f*, *g*, *h* have different values.

3. Results and discussion

The crystal structures of these phases are listed in Table 1. It includes a peritectic reaction $L+(B)\leftrightarrow$ SiB_n at 2293K, involving the B-rich intermediate phase SiB_n (n~23), a peritectic reaction L+ SiB_n \leftrightarrow SiB₆ involving the intermediate phase SiB₆ at 2123K, a eutectic reaction L \leftrightarrow (Si)+SiB₆ at 8 at.% B and 1658K, and a peritectoid reaction (Si)+SiB₆ \leftrightarrow SiB₃ involving the intermediate phase SiB₃ at around 1543K.

Phase	Prototype	Pearson symbol	Space group
liquid	—	—	_
diamond-Si	C(diamond)	cF8	Fd 3 m
β-Β	β-Β	hR105	R3m
SiB ₃	B_4C	hR15	R3m
SiB_6	SiB_6	oP280	Pnnm
SiB_n	В	hR12	R3m

Table 1. Phases and structures of Si-B

The thermodynamic parameters for phases in Si-B binary system have been made from CompuTherm Pandat7.0 software, and the parameters of various phases in the Si-B binary system are listed in Table 2.

Table 2. Thermodynamic parameters of the Si-B binary system

Phase	Thermodynamic parameters			
Liquid	$L^{0,liq} = 17631.9 - 1.76321T$ $L^{1,liq} = -3526.99 + 0.3527T$			
diamond-Si	$G_{\rm Si:B}^{\rm dia-Si} = -8162.61 + 137.237T - 22.8318T \ln T - 0.0019129T^2 + 176667T^{-1} - 3.552e^{-9}T^3$			
β -B	$L^{\beta-B} = -725614 + 72.5614T$			
SiB ₃	$G^{\rm SiB_3} = 0.25G^{\rm dia \cdot Si} + 0.75G^{\beta - B} - 2400480 + 240.048T$			
SiB_6	$G^{\rm SiB_3} = 0.14G^{\rm dia\text{-}Si} + 0.86G^{\beta\text{-}B} - 1571560 + 1571.56T$			
SiB_n	$G^{\text{SiB}_n} = \frac{1}{n+1}G^{\text{dia-Si}} + \frac{n}{n+1}G^{\beta-\text{B}} - 281574 + 28.1574T$			

Note: Gibbs energies are expressed in J mol⁻¹. Lattice stabilities of elements Si and B are referred to CompuTherm Pandat 7.0.

Fig.1 shows the calculated Si-B binary phase diagram with CompuTherm Pandat7.0 software and the B-rich side in Fig.2 displays the transition among phases in detail. Table 3 lists all invariant reactions in this binary system. The peritectoid reaction Diamond_Si+SiB₆ \leftrightarrow SiB₃ at 1543K, the eutectic reaction Liquid \leftrightarrow Diamond_Si+SiB₆ at 1658K, the peritectic reactions Liquid+SiB_n \leftrightarrow SiB₆ at 2122K and Liquid+Bata_B \leftrightarrow SiB_n at 2310K are respectively listed. According to the B-rich side in Fig.2, it was found that the SiB₃ and SiB_n are solid solution phases and the SiB₆ is a stoichiometric compound which is consistent with V. Babizhetskyy's studies [12]. In detail, Fig.2 also shows the equilibrium and transition among phases in Si-B system.

Fig.1. Calculated phase diagram of Si-B binary system

Fig.2. B-rich side of Si-B binary system

Reaction	Туре	Phase	$x_{\rm B}$	$x_{\rm Si}$	<i>T</i> /K
	b ₃ peritectoid	Diamond_Si	0.007	0.993	
$Diamond_Si+SiB_6 \leftrightarrow SiB_3$		SiB ₃	0.738	0.262	1543
		SiB_6	0.855	0.145	
	B ₆ eutectic	Diamond_Si	0.011	0.989	
$Liquid{\leftrightarrow}Diamond_Si{+}SiB_6$		Liquid	0.081	0.919	1658
		SiB_6	0.854	0.146	
		Liquid	0.621	0.379	
$Liquid+SiB_n {\leftrightarrow} SiB_6$	peritectic	SiB_6	0.862	0.138	2122
		SiB_n	0.941	0.059	
		Liquid	0.926	0.074	
$Liquid+Bata_B \leftrightarrow SiB_n$	peritectic	SiB_n	0.967	0.033	2310
		Bata_B	0.979	0.021	

Table 3. Invariant reactions in the Si-B system

Fig.3. Equilibrium and transition of phases in Si-B system

Fig.4. Gibbs energies of phases in Si-B system

The Gibbs energies and components of Si-B phases at different temperature are calculated and shown in Fig.4. With the increase of temperature, the Gibbs energies for Si-B phases become more negative. The phases SiB_6 , SiB_n , $Beta_B$ only exist above 1657K, so it can be forecast that only the phases SiB_3 and Diamond_Si exist in Si-B system to the MG-Si melt besides phase Liquid, which is consistent with Si-B binary phase diagram.

4. Conclusions

(1) The thermodynamic assessmen for the Si-B binary system has been performed and described using the CompuTherm of thermodynamic properties and phase diagrams method.

(2) The thermodynamic parameters for the solution phases Liquid, diamond-Si and β -B and the compounds SiB₃, SiB₆, SiB_n have been obtained and the equilibrium and transition of phases were studied.

(3) The Gibbs energies for Si-B phases are calculated and the existent forms are SiB_3 and $Diamond_Si$ for Si-B phases in MG-Si melt.

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (51104080, u1137601), the Natural Science Foundation of Yunnan Province (2009CD027), the Educational Science Foundation of Yunnan Province (2010Z010) and the Test Foundation of Kunming University of Science and Technology (2009-037).

References

[1] C. P. Khattak, D. B. Joyce, F. Schmid. A simple process to remove boron from metallurgical grade silicon, Sol. Energy Mater. Sol. Cells, 2002; 74: 77-89.

[2] J. J. WU, W. H. MA, B. YANG, Y. N. DAI, K. MORITA. Boron removal from metallurgical grade silicon by oxidizing refining, Trans. Nonferrous. Met. Soc. China, 2009; 19(2):463-467.

[3] G. Flamanta, V. Kurtcuoglub, J. Murraya, A. Steinfeld. Purification of metallurgical grade silicon by a solar process. Solar Energy Materials & Solar Cells, 2006; 90(14):2099-2106.

[4] Z. Moser, J. Dutkiewicz, W. Gasior, J. Salawa, ASM Hand book Vol.3 Alloy Phase Diagrams, ASM International, Ohio: Materials Park; 1985.

[5] A.I. Zaitsev and A.A. Kodentsov. Thermodynamic Properties and Phase Equilibria in the Si-B System. Journal of Phase Equilibria, 2001; 22(2):126-135.

[6] J.C. Viala and J. Bouix. Alliages bore-silicium riches en bore partie I: Caractérisation des phases et domaines déxistence, J. Less-Common Met., 1980, 71(2): 195-206.

[7] B. Armas, G. Male, D. Salanoubat. Determination of the boron-rich side of the B-Si phase diagram. Less-Common Met., 1981, 82: 245-254.

[8] G. Male, D. Salanoubat. Phase Riche en Bore dans le Systeme Bore-Silicium, Rev. Int. Hautes Temp. Refract. 1981; 18:109-120.

[9] G. N. Makarenko, O. I. Popova. Comparative characteristics of phases in the B-Si and B-C systems, J. Less Comm. Met., 1986; 117: 209-214.

[10] PURE 4.4 SGTE Pure Elements (Unary) Database, Scientific Group Thermodata Europe 1991-2006.

[11] W. Gierlotka. Thermodynamic description of the Hg-Te binary system, J. Alloys and Compd., 2010; 494(1-2):102-108.

[12] V. Babizhetskyy, J. Roger, S. Députier, R. Jardin, J. Bauer, and R. Guérin. Solid state phase equilibria in the Gd-Si-B system at 1270K, J. Solid State Chem., 2004; 177:415-424.