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Abstract-First, a general framework for the auxiliary problem principle is introduced and then 
it is applied to the approximation-solvability of the following class of nonlinear variational inequality 
problems (NVIP) involving partially relaxed monotone mappings. Find an element r* E K such that 

(T(zc’), z - 2*) f f(z) - f(z*) 2 0, for all z E K, 

where T : K - Rn is a mapping from a nonempty closed convex subset K of R” into Rn, and 
f : K -+ R is a continuous convex functional on K. The general class of the auxiliary problem 
principles is described as follows: for a given iterate zk E K and for a parameter p > 0, determine 
&+l such that 

(~3’ (z”) + h’ (I~+‘) - h’ (z”> ,z - zk+l) + p [f(s) - f (z”“)] 2 (-ok), for all z E K, 

where h : K + R is m-times continuously Frechet-differentiable on K and uk > 0 is a number 
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1. INTRODUCTION 

In their ongoing research on generalized Newton’s method, Argyros and Verma [l] used inexact 
Newton-like iterative procedures to approximate a solution of a class of nonlinear equations in a 
Banach space setting, since approximating a solution of a nonlinear equation using Newton-like 
iterates at each stage seems to be quite expensive in general. 

On the top of that, it turns out that some of the auxiliary results from this work seem to have 
a great impact on auxiliary problem principle [2] and general auxiliary problem principle [3] and 
their applications to the approximation solvability in the general sense. For a better account on 
the auxiliary problem principle and nonlinear variational inequalities, we refer to [2-lo]. 
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In this paper, we intend first to introduce a general version of the auxiliary problem principle 
and then apply it to the approximation-solvability of a class of nonlinear variational inequalities. 
The obtained results do complement the earlier works of Cohen [2] and Argyros and Verma [3] 
on the approximation-solvability of nonlinear variational inequalities in different space settings. 

Let T : K + Rn be any mapping from K, a nonempty closed convex subset of Rn, into R”. Let 
f : K -+ R be a continuous convex function on K. We consider a class of nonlinear variational 
inequality problems (abbreviated as NVIP) involving partially relaxed monotone mappings as 
follows. Find an element z* E K such that 

(T(z*), z - z*) + f(z) - f(z*) 2 0, for all IC E K. 

Let ]]z]]~ denote the norm induced by the positive definite matrix B, defined by 

]]Z(]B = (Bz,z)1’2. 

(1.1) 

And let ]]z]]z denote the standard Euclidean norm on R” with respect to the dot product (., .). 
A mapping T : K --+ Rn is said to be y-p-partially relaxed monotone if for all x, y, z E K, we 

have 

(T(x) - T(Y), z - Y) 2 (-r)lb - xl12 +/.4x - yl12> 
where y, /I > 0 are constants. 

Clearly, it implies that 

(T(x) - T(Y), z - Y) 2 (-r)llz - ~11~. 
The partial relaxed monotonicity is more general than the notions of strong monotonicity 

and cocoercivity. For more details on partial relaxed monotonicity and cocoercivity, we recom- 
mend [3,4,9]. 

2. GENERAL AUXILIARY PROBLEM PRINCIPLE 

This section deals with a discussion of the approximation-solvability of the NVIP (l.l), based 
on a general version of the existing auxiliary problem principle (APP) introduced by Cohen [2] and 
later studied by others. This general version of auxiliary problem principle (GAPP) is described 
as follows. 

GAPP 2.1. For a given iterate xk, determine an xk+’ such that (for k 2 0) 

(pT (x”) + h’ (x”“) - h’ (z”) ,x - xk+l) + p [f(x) - f (x”“)] 1 (-Q”) , 

for all 2 E K, 
(2.1) 

where h : Rn -+ R is m-times continuously Frechet-differentiable (m 2 2, an integer) on R*, p > 0 
a parameter and the sequence {&} satisfies 

uk 20 - 7 uk < 00. 

k=l 

When m = 2, GAPP (2.1) reduces to the following. 

GAPP 2.2. For a given iterate xk, determine an xk+’ such that 

(pT (x”) + h’ (xk+‘) - h’ (x”) ,x - xk+‘) + p (f(x) - f (x”“)) 2 (-c”) , 

for all x E K, 
(2.2) 

where h : Rn + R is two-times continuously Frechet-differentiable on Rn, p > 0 is a parameter 
and the sequence {uk} satisfies 

ok 2 0 - I 2 fJk < co. 
k=l 

Next, we recall some auxiliary results crucial to the approximation-solvability of the NVIP (1.1). 
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LEMMA 2.1. Let El and E2 be two Banach spaces and h : El -+ Ez be a nonlinear mapping 
such that h is m-times continuously Fkechet-differentiable (m 2 2 an integer) on El. Suppose 
that there exist an x* E El and nonnegative numbers CY, (Y; (i = 2,3,. . . , m) such that 

(h(m)(x) - hcm)(x*), (x - x*),) 2 ~11~ - x*(lm+’ 

and 

Then we have 

/h(“)(x*)il 2 ~:i, for i = 2,3, . . , m. 

h(x) - h(x*) - (h/(x*),x - x*) 

PROOF. The proof follows from the following identity [l] and hypotheses of the Lemma 2.1: 

h(x) - h(x*) - (h’(x*),x - x*) = 1’ ([h’ (x* + 6$ (x - x*)) - h’ (x*)1,x - x*) cl& 

l z 
ss 

l([ ‘7 h X* + b~~el(~ -x*)) - h”(x*)],el(x - z*)2) de1 de2 
0 0 

1 1 

+ JJ (h’+*),el(x - ,*j2) de1 de2 
0 0 

em-1 e;_, . . ey2 ey-l (x - x*y) de, de,_ 1 . de2 de1 
1 1 

+...+ JJ (h”(X*),el(X - ,*)2) de1 de2. 
0 0 

For Q: = 0, in Lemma 2.1, we have the following. 

LEMMA 2.2. Let El and E2 be two Banach spaces and h : El -+ E2 be a nonlinear mapping 
such that h is m-times continuously Eke&et-differentiable (m 2 2 an integer) on El. Suppose 
that there exist an x* E El and nonnegative numbers cri (i = 2,3,. . . , m) such that 

(h(m)(x) - h(“‘)(x*), (x - x*)~) 2 0 

and 

Then we have 

h(x) - h(z*) - (h’(x*),x -xc”) 2 [$ + (5) 112 -x*11 + . . . + (2) [lx - x*([~-~] 112 - z*\12. 

LEMMA 2.3. Let El and Ez be two Banach spaces and h : El + EZ be a nonlinear mapping 
such that h is m-times continuously fiechet-differentiable (m 2 2 an integer) on El. Suppose 
that there exist an x* E El and nonnegative numbers p, /3i (i = 2,3,. , m) such that 

(hCm)(x) - hCm)(x*), (x - x*)~) 5 /311x - ~*ll~+~ 
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and 

Then we have 

l[h(“) (x*)1) 5 Pi, for i = 2,3, . , m. 

h(x) - h(x*) - (h/(x*),x - x*) 

5 { [$+ (2) llx--*II+.“+ (2) ll~-x*llm-2] + [&I ll~-~*ll--I> 

.JIx - xf)12 

We are just about ready to present, based on the GAPP (2.1), the approximation-solvability 
of the NVIP (1.1). 

THEOREM 2.1. Let T : K -+ R” be y-p-partially relaxed monotone from a nonempty closed 
convex subset K of Rn into Rn. Let f : K + R be proper, convex and lower semicontinuous 
on K and h : K -+ R be m-times continuously Bechet-differentiable (m 2 2 an integer) on K. 
Suppose that there exist an x’ E K and nonnegative numbers (1: and ai (i = 2,3,. . . , m) such 
that 

(h(“)(x) - h(*)(x’), (x - .I),) 2 czy1lx - x’llm+‘, 

Ilh(‘)(x’)II 2 cri, 

(h(+(x) - hcm)(x’), (x - x’,-> 2 /?llx - x’(lm+‘, 

l[h(“)(x’)/ S Pi, for i = 2,3 ,..., m, 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

and m 
a”zo, Cak<cO. 

k=l 
(2.7) 

If in addition, x* E K is any fixed solution of the NVIP (1.1) and 

o<p< 22 ( > 2-Y ’ 

then the sequence {xk} converges strongly to x*. 

PROOF. To show the sequences {xk} converges to x*, a solution of the NVIP (l.l), we need to 
compute the estimates. Let us define a function A* by 

A*(x) := h(x*) - h(x) - (h’(x),x* - x) 

Then, by Lemma 2.1, we have 

h*(x) := h(x*) - h(x) - (h/(x),x* - x) 

for x E K, where x* is any fixed solution of the NVIP (1.1). It follows that: 

A* (xk+l) = h (x*) - h (xk+‘) - (h’ (xk+l) ,x* - xk+‘) 
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Now we can write 

(lxk+l - xkllZ + (h’ (xkfl) - h’ (x”) ,x* - xk+l) 

2 { [$ + (3) ((xk+l - xq +. . + (2) (lxk+l - xq”-‘1 

+ (f&) ((xk+l - xqm-l} I(Zk+l - Zk/j2 

(2.9) 

+p (T (x”) , xk+l - x*) + p (f (xk+l) - f (x*)) - uk 

for 5 = z* in (2.1). 

If we replace z by xk+’ in (1.1) and combine with (2.9), we obtain 

II* (x”) - II* (Zk+l) 

z{ [%+(t$) ~~xk+‘-xkl~+...+(~) IIx*+l-xym-2]+(&) /Ixk+l-xqm-l) 
IJxk+l - xkJ12 + p (T (x”) , xk+l - x*> - p (T (x*) ,xk+l - x*) - 2 

={ [Z+($) l/xk+‘-x”ll+...+(2) 11,k+l-,*y]+(f& (Ixk+l-xqm-L) 
. IIxk+l - xkl12 + p (T (x”) - T (x*) , xk+l - 2*) - (p. 

Since T is X-/l-partially relaxed monotone, it implies that 

A* (x”) - A* (I~+‘) 

= 0 f [CQ - 24 JJxk+l - xkl12 + p/J Ilzk - z*/J2 - Ok 

2 (-ok), for ry2 - 2py > 0, 

that is, 

It implies that 

A* (cc”) - A * (x’+‘) 1 (-CT”) . 

A* @‘+I) - A* (x”) 5 ok. 

If we sum from k = 1,2, . . , N, we arrive at 

(2.10) 

(2.11) 

2 [A* (zk+‘) - A* (x”)] 2 20~. 
* . 
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As a result of this, we can get 

A* (xN+l) -Ii* (xl) 2 g7k. 

It follows using (2.8) from (2.12) that 

k=l 

(2.12) 

(2.13) 

Under the hypotheses of the theorem, it follows from (2.13) that the sequence {zk} is bounded. 
Let x^ be a cluster point of the sequence {zk}. Then taking the limit of (2.1) results z^ a solution 
of the NVIP (1.1). 

If we replace x* by x^ in the above proof, the proof holds for x^ and the corresponding sequence 
{K(xk)} still turns out to be strictly decreasing. As a result, using Lemma 2.3, we have 

lqx”) I { [$+ ($) IIxk-x”(( +. . . + ($) ~~xk-x-~~“-“] + [&I 11x1’-x_11”-‘> 
. I(xk - xq2. 

This clearly implies that 
A- (x”) + 0, ask--+co. 

Similarly, by applying Lemma 2.1, we can have 

A-(x”) Z{ [2+($) )lxk-x^ll + . ..+ (2) ~~x*-x~~~*-~]+[~] ~~x~-x-~~--~) 
llxk-x-/12. 

Based on the above inequality arguments, we conclude that the entire sequence {xk} converges 
to x: This concludes the proof. 
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