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Abstract

Let H be a real Hilbert space. Consider on H a nonexpansive mapping 7" with a fixed point,
a contraction f with coefficient 0 < @ < 1, and a strongly positive linear bounded operator A with
coefficient y > 0. Let 0 < y < y/a. It is proved that the sequence {x;,} generated by the iterative
method x,,41 = (I — ay A)Tx, + anyf(x,) converges strongly to a fixed point X € Fix(T) which
solves the variational inequality ((yf — A)X, x — X) < 0 for x € Fix(T).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Iterative methods for nonexpansive mappings have recently been applied to solve con-
vex minimization problems; see, e.g., [1,4,5,7,8] and the references therein. A typical
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problem is to minimize a quadratic function over the set of the fixed points of a nonex-
pansive mapping on a real Hilbert space H:

1
in —(Ax, x) — (x, b), 1
Eélgz( x,x)—{x,b) (D
where C is the fixed point set of a nonexpansive mapping 7 on H and b is a given point
in H. Assume A is strongly positive; that is, there is a constant y > 0 with the property

(Ax,x) > 7pl|lx)|*> forallx € H. )

Recall that T: H — H is nonexpansive if ||Tx — Ty| < ||x — y|| for all x, y € H. The
set of fixed points of T is the set Fix(T') := {x € H: Tx = x}. We assume that Fix(T') # ¢
and C = Fix(T). It is well known that Fix(T') is closed convex (cf. [2]). In [5] (see also
[7]), it is proved that the sequence {x,} defined by the iterative method below, with the
initial guess xo € H chosen arbitrarily,

Xne1 =U —ayA)Tx, +opb, n=0, 3)

converges strongly to the unique solution of the minimization problem (1) provided the
sequence {o,} satisfies certain conditions that will be made precise in Section 3.

On the other hand, Moudafi [3] introduced the viscosity approximation method for non-
expansive mappings (see [6] for further developments in both Hilbert and Banach spaces).
Let f be a contraction on H. Starting with an arbitrary initial xo € H, define a sequence
{x, } recursively by

Xp1=U—=0)Txy +0,f(xp), n=0, 4

where {o0,} is a sequence in (0, 1). It is proved [3,6] that under certain appropriate condi-
tions imposed on {o;, }, the sequence {x,} generated by (4) strongly converges to the unique
solution x* in C of the variational inequality

((I—f)x*,x—x*)}O, xeC. (5

In this paper we will combine the iterative method (3) with the viscosity approximation
method (4) and consider the following general iterative method:

X1 =U =y A)Txp +ayyf(x,), n=0. (6)

We will prove in Section 3 that if the sequence {«;,} of parameters satisfies appropriate con-
ditions, then the sequence {x,} generated by (6) converges strongly to the unique solution
of the variational inequality

((A—yf)x*,x—x*)}O, xeC, (7

which is the optimality condition for the minimization problem

1
inelgi(Ax,ﬂ — h(x),

where & is a potential function for y f (i.e., /' (x) = v f(x) for x € H).
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2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results
in the next section. Some of them are known; others are not hard to derive.

Lemma 2.1. [4] Assume {a,} is a sequence of nonnegative real numbers such that
any1 < (1= yp)ay +6,, n=0,
where {y,} is a sequence in (0, 1) and {5, } is a sequence in R such that

(i) D52 vn =00
(i) limsup,_, oo 82/¥n <0 o0r Y 02 18,] < c0.

Then lim,,_, o a, = 0.

Lemma 2.2. [2] Let H be a Hilbert space, K a closed convex subset of H, and
T : K — K a nonexpansive mapping with Fix(T) # @. If {x,} is a sequence in K weakly
converging to x and if {(I — T)xy} converges strongly to y, then (I — T)x = y.

The following lemma is not hard to prove.

Lemma 2.3. Let H be a Hilbert space, K a closed convex subset of H, f:H — H a
contraction with coefficient 0 < a < 1, and A a strongly positive linear bounded operator
with coefficient y > 0. Then, for 0 <y <y /a,

(r=y (A=yNHx—A=yHy) > T —yolx—yI>, xyeH.
That is, A — y f is strongly monotone with coefficient y — y«.
Recall the metric (nearest point) projection Pk from a real Hilbert space H to a closed

convex subset K of H is defined as follows: given x € H, Pgx is the only point in K with
the property

lx — Pgx|| =inf{llx — y|l: y € K}.
Pk is characterized as follows.
Lemma 2.4. Let K be a closed convex subset of a real Hilbert space H. Given x € H and
y € K. Then y = Pgx if and only if there holds the inequality

(x—y,y—2)20, VzeKk.

Lemma 2.5. Assume A is a strongly positive linear bounded operator on a Hilbert space
H with coefficient 7 > 0 and 0 < p < |A||~L. Then |I — pA|| < 1 — py.

Proof. Recall that a standard result in functional analysis is that if V is linear bounded
self-adjoint operator on H, then

IVl =sup{|(Vx,x)|: x € H, |lx||=1}.
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Now for x € H with ||x|| = 1, we see that
(1 = pA)x, x)=1— p(Ax,x) > 1= p| A >0
(i.e., I — pA is positive). It follows that
I1 — pAll =sup{{(I — pA)x,x): x € H, ||x|| =1}
=sup{l — p(Ax,x): x € H, |x]| =1}
<l—py by(2). o

Notation. We use — for strong convergence and — for weak convergence.

3. A general iterative method

Let H be a real Hilbert space, let A be a bounded linear operator on H, and let 7" be a
nonexpansive mapping on H (i.e., |[Tx — Ty|| < ||x — y|| for x, y € H). Assume the set
Fix(T) of fixed points of H is nonempty; that is, Fix(T) = {x € H: Tx = x} # (. Since
Fix(T) is closed convex, the nearest point projection from H onto Fix(7T) is well defined.

Throughout the rest of this paper, we always assume that A is strongly positive; that is,
there is a constant ¥ > 0 such that

(Ax,x) > 7llxI? xe€H. (8)

(Note: y > 0 is throughout reserved to be the constant such that (8) holds.)
Recall also that a contraction on H is a self-mapping f of H such that

|fo) = f| <elx—=yl, x,yeH,

where a € [0, 1) is a constant.
Denote by IT the collection of all contractions on H; namely,

IT ={f: f acontraction on H}.

Now given f € IT with contraction coefficient 0 < o < 1, t € (0, 1) such that r < A~
and 0 < y < y/«a. Consider a mapping S; on H defined by

Ssx=tyf(x)+ (U —tA)Tx, xeH. )

It is easy to see that S; is a contraction. Indeed, by Lemma 2.5, we have:

1Sex = Syl <ty [ ) = fFO | + [ (7 =1A)(Tx = Ty)|
<=1 —ya)lx =yl
Hence S; has a unique fixed point, denoted x;, which uniquely solves the fixed point equa-
tion
xp=1yfx)+ U —tA)Tx. (10)

Note that x; indeed depends on f as well, but we will suppress this dependence of x; on
f for simplicity of notation throughout the rest of this paper. We will also always use y to
mean a number in (0, y /).

The next proposition summarizes the basic properties of {x;}.
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Proposition 3.1. Let x; be defined via (10).

() {x;} is bounded fort € (0, ||A]| ™).
(i) limy—q [lx; — Tx|| = 0.
(iii) x; defines a continuous curve from (0, ||A||_1) into H.

Proof. First observe that for ¢ € (0, |A||~!), we have ||I —rA|| < 1 — ¢y by Lemma 2.5.
To show (i) pick a p € Fix(T"). We then have
Ilxi = pl = (I = tA) (T = p) +1(yf(x) = Ap) |

<A =70lx = pll+ 1]y f ) — Ap||
= =pDlx = pl+1t]y(fx0) = F(P) + (vf(p) — Ap)|
<A =yp)lx — pl+t[yalx — pl+ |vf(p) — Ap|]
=(1=1@ —ya)lx = pll+t|yfp) — Ap|.

It follows that

< ||)/f_(P)—AP||.
“ya

llx: = pl

Hence {x;} is bounded.

(i) We have ||x; — Tx:|| = t|lyf (x;) — AT x;|| — O since the boundedness of {x;} im-
plies that of {f(x;)} and of {AT x,}.

To prove (iii) take ¢, ty € (0, ||A||_1) and calculate

1x: — xioll = || ¢ — 10) v f (o) + t0y (F (x0) — f (x40)) — (¢t — 10) AT x,
+ (I —10A)(Tx; — Txyy) ||
S Fe | +1ATx )1 = t0] + (1= 10(7 — ya)llx; — xy -
It follows that

YIF )l + AT x, ||
oy —ya)

llxr — x50 |l < |t —10].

This shows that x; is locally Lipschitzian and hence continuous. O

Our first main result below shows that {x,} converges strongly as t — 0 to a fixed point
of T which solves some variational inequality.

Theorem 3.2. We have that {x;} converges strongly as t — 0 to a fixed point x of T which
solves the variational inequality:

((A—yfHHx,x—2)<0, zeFix(T). (11

Equivalently, we have Prixcty(I — A+ yf)X =X.
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Proof. We first show the uniqueness of a solution of the variational inequality (11), which
is indeed a consequence of the strong monotonicity of A — yf. Suppose x € Fix(T) and
x € Fix(T') both are solutions to (11); then

((A—yNE, ¥-1)<0 1)
and

(A-—yHi .z -F)<0. a3)
Adding up (12) and (13) gets

(A—yHE—(A—yHiE % -3)<0.

The strong monotonicity of A — yf (Lemma 2.3) implies that ¥ = X and the uniqueness is
proved. Below we use x € Fix(T') to denote the unique solution of (11).
To prove that x, — x (t — 0), we write, for a given z € Fix(T),

xi—z=1(yf(x) —Az) + (I —tA)(Tx; — 2)
to derive that
lx; — zlI* = tyf ) — Az, xp —z2)+ (I —tAY(Tx; — 2), x; — 2)
<A —tP)llx — 2l + (v f (x) — Az, x; — 2).

It follows that

1
lxe — 2] < ;(yf(xn — Az, x; —2)
1
= ;{ V() = F @, x —z)+ (v f(2) — Az, x —z)}
1
< ;{yauxt — 2+ (rf ) — Az x, —2)}.
Therefore,
5 1
lx —zll° < ———(yf (@) — Az, x; —2). (14)

Yy —vo
Since {x;} is bounded as t — 0, we see that if {#,} is a sequence in (0, 1) such that

tp, — 0 and x;, — x*, then by (14), we see x;, — x*. Moreover, by Proposition (3.1)(ii),
we have x* € Fix(T"). We next prove that x* solves the variational inequality (11). Since

Xe=tyf(x)+U—tA)Tx, (15)
we derive, that
1
A=yfx= —;(1 —1A)U —T)x;.

It follows that, for z € Fix(T),
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1
((A =y e, x —2)=——{d —tAU = T)x;, x —2)

= —%((I —T)x;— U —-T)z,x; — z) + <A(I —T)xe, x; — z)
(AU = T)xp,x —2) (16)

since I — T is monotone (i.e., (x —y,({ —T)x — (I — T)y) > 0 for x, y € H. This is
due to the nonexpansivity of 7). Now replacing ¢ in (16) with #, and letting n — oo, we,
noticing that (I — T)x;, — (I — T)x* =0 for x* € Fix(T), obtain

((A—yHx*x*=z)<0.

This is, x* € Fix(T') is a solution of (11); hence x* = X by uniqueness. In a summary, we
have shown that each cluster point of {x;} (at r — 0) equals x. Therefore, x, — X ast — 0.
The variational inequality (11) can be rewritten as

[A-—A+yfHX]—%%—2)>0, zeFix(T).
This, by Lemma 2.4, is equivalent to the fixed point equation

Prixcy(I —A+yf)X =X. |
Taking A =1 and y = 1 in Theorem 3.2, we get

Corollary 3.3. [6] Let z; € H be the unique fixed point of the contraction z+> (1 —t)Tz +
tf(z). Then {z;} converges strongly as t — 0 to the unique solution z € Fix(T) of the
variational inequality

(I=1Hz.z2—2)=0, zeFx(T).
Next we study a general iterative method as follows. The initial guess xq is selected
in H arbitrarily, and the (n + 1)th iterate x,,4 is recursively defined by
Xpp1 =U —ayA)Txy +anyf(xy), n=0, (17
where {a;,} is a sequence in (0, 1) satisfying the following conditions:
1l o, —0;

(C2) 3 2o =00;
(C3) either Y07 lotn41 — atn| < 00 or lim, o0

Untl _ 1
on ’

Below is the second main result of this paper.

Theorem 3.4. Let {x,} be generated by algorithm (17) with the sequence {a,,} of parame-
ters satisfying conditions (C1)—(C3). Then {x,} converges strongly to X that is obtained in
Theorem 3.2.

Proof. Since «,, — 0 by condition (C1), we may assume, with no loss of generality, that
o, < ||A|7! for all n.
We now observe that {x,} is bounded. Indeed, pick any p € Fix(T') to obtain
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xXn41 = pll = || (I = n A)Y(Txn — p) + an(vf (xn) — Ap) |
<M — an AT X0 = pll + o v.f (xa) — Ap|
<A —anP)llxn = pll +an[y] f ) — F ()| + | v (p) — Ap|]
< (1= 7 —ya)an)llxy — pll+au | vf(p) — Ap|

- - lvf(p)—Apl
= (1= @ —ya)an)lx, — pll+ (7 — yo)a —————.
Yy —ra
It follows from induction that
lyf(p) —Apll
IIXn—PII<maX{|IXO—PII,_— , n=0. (13)
Yy —ro

As aresult, noticing x,4+1 — Tx,, = o (Y f (xp) — AT x,,) and o, — 0, we obtain

Xn41 — Tx, — 0. (19)
But the key is to prove that

Xn41 — X, = 0. (20)

To see this, we calculate
1Xn1 = Xl = (I = n A) (T = Txp—1) — (@ — @n—1) AT X,
+ v [en(f Gn) = fGa=1)) + (@t — an—1) f GazD)]|
S =anP)llxn — xn—1ll + latn — an—1[|AT xp -1l
+ ¥ [emnallxn — xn—1 1l + lotn — an—t | £ Ga=1) | ]
(1= 7 —ya)an)lxn = xa—1ll + Mlay — otp—1], 1

where M := sup{max{||ATx, |, || f (x)]}: n =0} < oco.
An application of Lemma 2.1 to (21) implies (20) which, combined with (19), in turns,
implies

Xy, — Tx, — 0. (22)
Next we show that
limsup(Tx, — %, yf (¥) — A%) <0, (23)
n—o0

where X is obtained in Theorem 3.2.
To see this, we take a subsequence {x,, } of {x,} such that

limsup(xn X, yf(x) — A)E) = klim <x,,k - X, yf(x) — Ai).

n—o0

We may also assume that x,, — z. Note that z € Fix(7T') in virtue of Lemma 2.2 and (22).
It follows from the variational inequality (11) that

limsup(x, — %, yf(¥) — A%) =(z — &, y f (X) — AX) <0.

So (23) holds, thanks to (22).
Finally, we prove x,, — X. To this end, we calculate
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Dt — E112 = | (I = an A (Txp — ) + (v f (x0) — AF) |

= | = an A (Txn = )|* + 02|y f (xn) — AZ|
+ 20 ((I — 0y A)(T Xy — X), v.f (x5) — AX)
< (=) — F 12 + 02|y f () — AF|
+ 20 (Txy — &, y.f (xn) — AX) — 202{A(Tx, — %), v f (xn) — AF)
< (= an )l — FIP + 02|y f (xa) — A
+ 20,y (Txn — X, f(xn) = f (X)) 4 200 (Tx, — X, y f (X) — AX)
— 202 {A(Txy — %), v f (x,) — AX)
<[4 =) + 20y a]llxn — &I + an[2(Tx, — %, yf (F) — AF)
o (|| o) = AF| + 200 | A(Tx, — )| - |7 (xn) — AZ]))]
= (1 =27 — yo)an) lxn — X1> + an {2(Tx, — %, v f (F) — AF)
Fan (7 ) — AF| + 20| A(Tx0 = B[ - 7 (k) — AF||
+ a7 — %11%)}.
Since {x,} is bounded, we can take a constant L > 0 such that
L> |yf ) — AZ|* 4+ 200 | A(Txw = D) | - |9 ) — AT | + et 72130 — £
for all n > 0. It then follows that
Xn41 — FII* < (1 =27 — yoa)l1xn — FI|* + otn B (24)
where
Bn=2(Tx, — %, yf(X) — AX) + Loty.
By (23), we get limsup,_, ., B, < 0. Now applying Lemma 2.1 to (24) concludes that
Xp—> XxX. O
Corollary 3.5. [6] Let {x,,} be generated by the following algorithm:
Xnt1 = —an)Txn +an f(xn), n=0.

Assume the sequence {a,} satisfies conditions (C1)—(C3). Then {x,} converges strongly
to 7 obtained in Corollary 3.3.
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