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Abstract

Let H be a real Hilbert space. Consider on H a nonexpansive mapping T with a fixed point,
a contraction f with coefficient 0 < α < 1, and a strongly positive linear bounded operator A with
coefficient γ̄ > 0. Let 0 < γ < γ̄ /α. It is proved that the sequence {xn} generated by the iterative
method xn+1 = (I − αnA)T xn + αnγf (xn) converges strongly to a fixed point x̃ ∈ Fix(T ) which
solves the variational inequality 〈(γf − A)x̃, x − x̃〉 � 0 for x ∈ Fix(T ).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Iterative methods for nonexpansive mappings have recently been applied to solve con-
vex minimization problems; see, e.g., [1,4,5,7,8] and the references therein. A typical
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problem is to minimize a quadratic function over the set of the fixed points of a nonex-
pansive mapping on a real Hilbert space H :

min
x∈C

1

2
〈Ax,x〉 − 〈x, b〉, (1)

where C is the fixed point set of a nonexpansive mapping T on H and b is a given point
in H . Assume A is strongly positive; that is, there is a constant γ̄ > 0 with the property

〈Ax,x〉 � γ̄ ‖x‖2 for all x ∈ H. (2)

Recall that T :H → H is nonexpansive if ‖T x − Ty‖ � ‖x − y‖ for all x, y ∈ H . The
set of fixed points of T is the set Fix(T ) := {x ∈ H : T x = x}. We assume that Fix(T ) �= ∅
and C = Fix(T ). It is well known that Fix(T ) is closed convex (cf. [2]). In [5] (see also
[7]), it is proved that the sequence {xn} defined by the iterative method below, with the
initial guess x0 ∈ H chosen arbitrarily,

xn+1 = (I − αnA)T xn + αnb, n � 0, (3)

converges strongly to the unique solution of the minimization problem (1) provided the
sequence {αn} satisfies certain conditions that will be made precise in Section 3.

On the other hand, Moudafi [3] introduced the viscosity approximation method for non-
expansive mappings (see [6] for further developments in both Hilbert and Banach spaces).
Let f be a contraction on H . Starting with an arbitrary initial x0 ∈ H , define a sequence
{xn} recursively by

xn+1 = (1 − σn)T xn + σnf (xn), n � 0, (4)

where {σn} is a sequence in (0,1). It is proved [3,6] that under certain appropriate condi-
tions imposed on {σn}, the sequence {xn} generated by (4) strongly converges to the unique
solution x∗ in C of the variational inequality〈

(I − f )x∗, x − x∗〉 � 0, x ∈ C. (5)

In this paper we will combine the iterative method (3) with the viscosity approximation
method (4) and consider the following general iterative method:

xn+1 = (I − αnA)T xn + αnγf (xn), n � 0. (6)

We will prove in Section 3 that if the sequence {αn} of parameters satisfies appropriate con-
ditions, then the sequence {xn} generated by (6) converges strongly to the unique solution
of the variational inequality〈

(A − γf )x∗, x − x∗〉 � 0, x ∈ C, (7)

which is the optimality condition for the minimization problem

min
x∈C

1

2
〈Ax,x〉 − h(x),

where h is a potential function for γf (i.e., h′(x) = γf (x) for x ∈ H ).
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2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results
in the next section. Some of them are known; others are not hard to derive.

Lemma 2.1. [4] Assume {an} is a sequence of nonnegative real numbers such that

an+1 � (1 − γn)an + δn, n � 0,

where {γn} is a sequence in (0,1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞;
(ii) lim supn→∞ δn/γn � 0 or

∑∞
n=1 |δn| < ∞.

Then limn→∞ an = 0.

Lemma 2.2. [2] Let H be a Hilbert space, K a closed convex subset of H , and
T :K → K a nonexpansive mapping with Fix(T ) �= ∅. If {xn} is a sequence in K weakly
converging to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y.

The following lemma is not hard to prove.

Lemma 2.3. Let H be a Hilbert space, K a closed convex subset of H , f :H → H a
contraction with coefficient 0 < α < 1, and A a strongly positive linear bounded operator
with coefficient γ̄ > 0. Then, for 0 < γ < γ̄ /α,〈

x − y, (A − γf )x − (A − γf )y
〉
� (γ̄ − γ α)‖x − y‖2, x, y ∈ H.

That is, A − γf is strongly monotone with coefficient γ̄ − γ α.

Recall the metric (nearest point) projection PK from a real Hilbert space H to a closed
convex subset K of H is defined as follows: given x ∈ H , PKx is the only point in K with
the property

‖x − PKx‖ = inf
{‖x − y‖: y ∈ K

}
.

PK is characterized as follows.

Lemma 2.4. Let K be a closed convex subset of a real Hilbert space H . Given x ∈ H and
y ∈ K . Then y = PKx if and only if there holds the inequality

〈x − y, y − z〉 � 0, ∀z ∈ K.

Lemma 2.5. Assume A is a strongly positive linear bounded operator on a Hilbert space
H with coefficient γ̄ > 0 and 0 < ρ � ‖A‖−1. Then ‖I − ρA‖ � 1 − ργ̄ .

Proof. Recall that a standard result in functional analysis is that if V is linear bounded
self-adjoint operator on H , then

‖V ‖ = sup
{∣∣〈V x,x〉∣∣: x ∈ H, ‖x‖ = 1

}
.
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Now for x ∈ H with ‖x‖ = 1, we see that〈
(I − ρA)x, x

〉 = 1 − ρ〈Ax,x〉 � 1 − ρ‖A‖ � 0

(i.e., I − ρA is positive). It follows that

‖I − ρA‖ = sup
{〈

(I − ρA)x, x
〉
: x ∈ H, ‖x‖ = 1

}
= sup

{
1 − ρ〈Ax,x〉: x ∈ H, ‖x‖ = 1

}
� 1 − ργ̄ by (2). �

Notation. We use → for strong convergence and ⇀ for weak convergence.

3. A general iterative method

Let H be a real Hilbert space, let A be a bounded linear operator on H , and let T be a
nonexpansive mapping on H (i.e., ‖T x − Ty‖ � ‖x − y‖ for x, y ∈ H ). Assume the set
Fix(T ) of fixed points of H is nonempty; that is, Fix(T ) = {x ∈ H : T x = x} �= ∅. Since
Fix(T ) is closed convex, the nearest point projection from H onto Fix(T ) is well defined.

Throughout the rest of this paper, we always assume that A is strongly positive; that is,
there is a constant γ̄ > 0 such that

〈Ax,x〉 � γ̄ ‖x‖2, x ∈ H. (8)

(Note: γ̄ > 0 is throughout reserved to be the constant such that (8) holds.)
Recall also that a contraction on H is a self-mapping f of H such that∥∥f (x) − f (y)

∥∥ � α‖x − y‖, x, y ∈ H,

where α ∈ [0,1) is a constant.
Denote by Π the collection of all contractions on H ; namely,

Π = {f : f a contraction on H }.
Now given f ∈ Π with contraction coefficient 0 < α < 1, t ∈ (0,1) such that t < ‖A‖−1

and 0 < γ < γ̄ /α. Consider a mapping St on H defined by

Stx = tγf (x) + (I − tA)T x, x ∈ H. (9)

It is easy to see that St is a contraction. Indeed, by Lemma 2.5, we have:

‖Stx − Sty‖ � tγ
∥∥f (x) − f (y)

∥∥ + ∥∥(I − tA)(T x − Ty)
∥∥

�
(
1 − t (γ̄ − γ α)

)‖x − y‖.
Hence St has a unique fixed point, denoted xt , which uniquely solves the fixed point equa-
tion

xt = tγf (xt ) + (I − tA)T xt . (10)

Note that xt indeed depends on f as well, but we will suppress this dependence of xt on
f for simplicity of notation throughout the rest of this paper. We will also always use γ to
mean a number in (0, γ̄ /α).

The next proposition summarizes the basic properties of {xt }.
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Proposition 3.1. Let xt be defined via (10).

(i) {xt } is bounded for t ∈ (0,‖A‖−1).
(ii) limt→0 ‖xt − T xt‖ = 0.

(iii) xt defines a continuous curve from (0,‖A‖−1) into H .

Proof. First observe that for t ∈ (0,‖A‖−1), we have ‖I − tA‖ � 1 − t γ̄ by Lemma 2.5.
To show (i) pick a p ∈ Fix(T ). We then have

‖xt − p‖ = ∥∥(I − tA)(T xt − p) + t
(
γf (xt ) − Ap

)∥∥
� (1 − γ̄ t)‖xt − p‖ + t

∥∥γf (xt ) − Ap
∥∥

= (1 − γ̄ t)‖xt − p‖ + t
∥∥γ

(
f (xt ) − f (p)

) + (
γf (p) − Ap

)∥∥
� (1 − γ̄ t)‖xt − p‖ + t

[
γ α‖xt − p‖ + ∥∥γf (p) − Ap

∥∥]
= (

1 − t (γ̄ − γ α)
)‖xt − p‖ + t

∥∥γf (p) − Ap
∥∥.

It follows that

‖xt − p‖ � ‖γf (p) − Ap‖
γ̄ − γ α

.

Hence {xt } is bounded.
(ii) We have ‖xt − T xt‖ = t‖γf (xt ) − AT xt‖ → 0 since the boundedness of {xt } im-

plies that of {f (xt )} and of {AT xt }.
To prove (iii) take t, t0 ∈ (0,‖A‖−1) and calculate

‖xt − xt0‖ = ∥∥(t − t0)γf (xt ) + t0γ
(
f (xt ) − f (xt0)

) − (t − t0)AT xt

+ (I − t0A)(T xt − T xt0)
∥∥

�
(
γ
∥∥f (xt )

∥∥ + ‖AT xt‖
)|t − t0| +

(
1 − t0(γ̄ − γ α)

)‖xt − xt0‖.
It follows that

‖xt − xt0‖ � γ ‖f (xt0)‖ + ‖AT xt‖
t0(γ̄ − γ α)

|t − t0|.

This shows that xt is locally Lipschitzian and hence continuous. �
Our first main result below shows that {xt } converges strongly as t → 0 to a fixed point

of T which solves some variational inequality.

Theorem 3.2. We have that {xt } converges strongly as t → 0 to a fixed point x̃ of T which
solves the variational inequality:

〈
(A − γf )x̃, x̃ − z

〉
� 0, z ∈ Fix(T ). (11)

Equivalently, we have PFix(T )(I − A + γf )x̃ = x̃.
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Proof. We first show the uniqueness of a solution of the variational inequality (11), which
is indeed a consequence of the strong monotonicity of A − γf . Suppose x̃ ∈ Fix(T ) and
x̂ ∈ Fix(T ) both are solutions to (11); then〈

(A − γf )x̃, x̃ − x̂
〉
� 0 (12)

and 〈
(A − γf )x̂, x̂ − x̃

〉
� 0. (13)

Adding up (12) and (13) gets〈
(A − γf )x̃ − (A − γf )x̂, x̃ − x̂

〉
� 0.

The strong monotonicity of A − γf (Lemma 2.3) implies that x̃ = x̂ and the uniqueness is
proved. Below we use x̃ ∈ Fix(T ) to denote the unique solution of (11).

To prove that xt → x̃ (t → 0), we write, for a given z ∈ Fix(T ),

xt − z = t
(
γf (xt ) − Az

) + (I − tA)(T xt − z)

to derive that

‖xt − z‖2 = t
〈
γf (xt ) − Az,xt − z

〉 + 〈
(I − tA)(T xt − z), xt − z

〉
� (1 − t γ̄ )‖xt − z‖2 + t

〈
γf (xt ) − Az,xt − z

〉
.

It follows that

‖xt − z‖2 � 1

γ̄

〈
γf (xt ) − Az,xt − z

〉

= 1

γ̄

{
γ
〈
f (xt ) − f (z), xt − z

〉 + 〈
γf (z) − Az,xt − z

〉}

� 1

γ̄

{
γ α‖xt − z‖2 + 〈

γf (z) − Az,xt − z
〉}

.

Therefore,

‖xt − z‖2 � 1

γ̄ − γ α

〈
γf (z) − Az,xt − z

〉
. (14)

Since {xt } is bounded as t → 0, we see that if {tn} is a sequence in (0,1) such that
tn → 0 and xtn ⇀ x∗, then by (14), we see xtn → x∗. Moreover, by Proposition (3.1)(ii),
we have x∗ ∈ Fix(T ). We next prove that x∗ solves the variational inequality (11). Since

xt = tγf (xt ) + (I − tA)T xt , (15)

we derive, that

(A − γf )xt = −1

t
(I − tA)(I − T )xt .

It follows that, for z ∈ Fix(T ),
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〈
(A − γf )xt , xt − z

〉 = −1

t

〈
(I − tA)(I − T )xt , xt − z

〉

= −1

t

〈
(I − T )xt − (I − T )z, xt − z

〉 + 〈
A(I − T )xt , xt − z

〉
�

〈
A(I − T )xt , xt − z

〉
(16)

since I − T is monotone (i.e., 〈x − y, (I − T )x − (I − T )y〉 � 0 for x, y ∈ H . This is
due to the nonexpansivity of T ). Now replacing t in (16) with tn and letting n → ∞, we,
noticing that (I − T )xtn → (I − T )x∗ = 0 for x∗ ∈ Fix(T ), obtain〈

(A − γf )x∗, x∗ − z
〉
� 0.

This is, x∗ ∈ Fix(T ) is a solution of (11); hence x∗ = x̃ by uniqueness. In a summary, we
have shown that each cluster point of {xt } (at t → 0) equals x̃. Therefore, xt → x̃ as t → 0.

The variational inequality (11) can be rewritten as〈[
(I − A + γf )x̃

] − x̃, x̃ − z
〉
� 0, z ∈ Fix(T ).

This, by Lemma 2.4, is equivalent to the fixed point equation

PFix(T )(I − A + γf )x̃ = x̃. �
Taking A = I and γ = 1 in Theorem 3.2, we get

Corollary 3.3. [6] Let zt ∈ H be the unique fixed point of the contraction z 
→ (1 − t)T z+
tf (z). Then {zt } converges strongly as t → 0 to the unique solution z̃ ∈ Fix(T ) of the
variational inequality〈

(I − f )z̃, z − z̃
〉
� 0, z ∈ Fix(T ).

Next we study a general iterative method as follows. The initial guess x0 is selected
in H arbitrarily, and the (n + 1)th iterate xn+1 is recursively defined by

xn+1 = (I − αnA)T xn + αnγf (xn), n � 0, (17)

where {αn} is a sequence in (0,1) satisfying the following conditions:

(C1) αn → 0;
(C2)

∑∞
n=0 αn = ∞;

(C3) either
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞ αn+1
αn

= 1.

Below is the second main result of this paper.

Theorem 3.4. Let {xn} be generated by algorithm (17) with the sequence {αn} of parame-
ters satisfying conditions (C1)–(C3). Then {xn} converges strongly to x̃ that is obtained in
Theorem 3.2.

Proof. Since αn → 0 by condition (C1), we may assume, with no loss of generality, that
αn < ‖A‖−1 for all n.

We now observe that {xn} is bounded. Indeed, pick any p ∈ Fix(T ) to obtain
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‖xn+1 − p‖ = ∥∥(I − αnA)(T xn − p) + αn

(
γf (xn) − Ap

)∥∥
� ‖I − αnA‖‖T xn − p‖ + αn

∥∥γf (xn) − Ap
∥∥

� (1 − αnγ̄ )‖xn − p‖ + αn

[
γ
∥∥f (xn) − f (p)

∥∥ + ∥∥γf (p) − Ap
∥∥]

�
(
1 − (γ̄ − γ α)αn

)‖xn − p‖ + αn

∥∥γf (p) − Ap
∥∥

= (
1 − (γ̄ − γ α)αn

)‖xn − p‖ + (γ̄ − γ α)αn

‖γf (p) − Ap‖
γ̄ − γ α

.

It follows from induction that

‖xn − p‖ � max

{
‖x0 − p‖, ‖γf (p) − Ap‖

γ̄ − γ α

}
, n � 0. (18)

As a result, noticing xn+1 − T xn = αn(γf (xn) − AT xn) and αn → 0, we obtain

xn+1 − T xn → 0. (19)

But the key is to prove that

xn+1 − xn → 0. (20)

To see this, we calculate

‖xn+1 − xn‖ = ∥∥(I − αnA)(T xn − T xn−1) − (αn − αn−1)AT xn−1

+ γ
[
αn

(
f (xn) − f (xn−1)

) + (αn − αn−1)f (xn−1)
]∥∥

� (1 − αnγ̄ )‖xn − xn−1‖ + |αn − αn−1|‖AT xn−1‖
+ γ

[
αnα‖xn − xn−1‖ + |αn − αn−1|

∥∥f (xn−1)
∥∥]

�
(
1 − (γ̄ − γ α)αn

)‖xn − xn−1‖ + M|αn − αn−1|, (21)

where M := sup{max{‖AT xn‖,‖f (xn)‖}: n � 0} < ∞.
An application of Lemma 2.1 to (21) implies (20) which, combined with (19), in turns,

implies

xn − T xn → 0. (22)

Next we show that

lim sup
n→∞

〈
T xn − x̃, γf (x̃) − Ax̃

〉
� 0, (23)

where x̃ is obtained in Theorem 3.2.
To see this, we take a subsequence {xnk

} of {xn} such that

lim sup
n→∞

〈
xn − x̃, γf (x̃) − Ax̃

〉 = lim
k→∞

〈
xnk

− x̃, γf (x̃) − Ax̃
〉
.

We may also assume that xnk
⇀ z. Note that z ∈ Fix(T ) in virtue of Lemma 2.2 and (22).

It follows from the variational inequality (11) that

lim sup
n→∞

〈
xn − x̃, γf (x̃) − Ax̃

〉 = 〈
z − x̃, γf (x̃) − Ax̃

〉
� 0.

So (23) holds, thanks to (22).
Finally, we prove xn → x̃. To this end, we calculate
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‖xn+1 − x̃‖2 = ∥∥(I − αnA)(T xn − x̃) + αn

(
γf (xn) − Ax̃

)∥∥2

= ∥∥(I − αnA)(T xn − x̃)
∥∥2 + α2

n

∥∥γf (xn) − Ax̃
∥∥2

+ 2αn

〈
(I − αnA)(T xn − x̃), γf (xn) − Ax̃

〉
� (1 − αnγ̄ )2‖xn − x̃‖2 + α2

n

∥∥γf (xn) − Ax̃
∥∥2

+ 2αn

〈
T xn − x̃, γf (xn) − Ax̃

〉 − 2α2
n

〈
A(T xn − x̃), γf (xn) − Ax̃

〉
� (1 − αnγ̄ )2‖xn − x̃‖2 + α2

n

∥∥γf (xn) − Ax̃
∥∥2

+ 2αnγ
〈
T xn − x̃, f (xn) − f (x̃)

〉 + 2αn

〈
T xn − x̃, γf (x̃) − Ax̃

〉
− 2α2

n

〈
A(T xn − x̃), γf (xn) − Ax̃

〉
�

[
(1 − αnγ̄ )2 + 2αnγ α

]‖xn − x̃‖2 + αn

[
2
〈
T xn − x̃, γf (x̃) − Ax̃

〉
+ αn

(∥∥γf (xn) − Ax̃
∥∥2 + 2αn

∥∥A(T xn − x̃)
∥∥ · ∥∥γf (xn) − Ax̃

∥∥)]
= (

1 − 2(γ̄ − γ α)αn

)‖xn − x̃‖2 + αn

{
2
〈
T xn − x̃, γf (x̃) − Ax̃

〉
+ αn

(∥∥γf (xn) − Ax̃
∥∥2 + 2αn

∥∥A(T xn − x̃)
∥∥ · ∥∥γf (xn) − Ax̃

∥∥
+ αnγ̄

2‖xn − x̃‖2)}.
Since {xn} is bounded, we can take a constant L > 0 such that

L �
∥∥γf (xn) − Ax̃

∥∥2 + 2αn

∥∥A(T xn − x̃)
∥∥ · ∥∥γf (xn) − Ax̃

∥∥ + αnγ̄
2‖xn − x̃‖2

for all n � 0. It then follows that

‖xn+1 − x̃‖2 �
(
1 − 2(γ̄ − γ α)αn

)‖xn − x̃‖2 + αnβn, (24)

where

βn = 2
〈
T xn − x̃, γf (x̃) − Ax̃

〉 + Lαn.

By (23), we get lim supn→∞ βn � 0. Now applying Lemma 2.1 to (24) concludes that
xn → x̃. �
Corollary 3.5. [6] Let {xn} be generated by the following algorithm:

xn+1 = (1 − αn)T xn + αnf (xn), n � 0.

Assume the sequence {αn} satisfies conditions (C1)–(C3). Then {xn} converges strongly
to z̃ obtained in Corollary 3.3.
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