Tournal of
MATHEMATICAL
ANALYSIS AND
ELSEVIER

A general iterative method for nonexpansive mappings in Hilbert spaces

Giuseppe Marino ${ }^{\text {a }}$, Hong-Kun Xu ${ }^{\text {b, }, ~}{ }^{1}$
${ }^{\text {a }}$ Dipartimento di Matematica, Universita della Calabria, 87036 Arcavacata di Rende (Cs), Italy
b School of Mathematical Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa

Received 21 April 2005
Available online 9 June 2005
Submitted by T.D. Benavides

Abstract

Let H be a real Hilbert space. Consider on H a nonexpansive mapping T with a fixed point, a contraction f with coefficient $0<\alpha<1$, and a strongly positive linear bounded operator A with coefficient $\bar{\gamma}>0$. Let $0<\gamma<\bar{\gamma} / \alpha$. It is proved that the sequence $\left\{x_{n}\right\}$ generated by the iterative method $x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} \gamma f\left(x_{n}\right)$ converges strongly to a fixed point $\tilde{x} \in \operatorname{Fix}(T)$ which solves the variational inequality $\langle(\gamma f-A) \tilde{x}, x-\tilde{x}\rangle \leqslant 0$ for $x \in \operatorname{Fix}(T)$.

© 2005 Elsevier Inc. All rights reserved.
Keywords: Nonexpansive mapping; Iterative method; Variational inequality; Fixed point; Projection; Viscosity approximation

1. Introduction

Iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems; see, e.g., $[1,4,5,7,8]$ and the references therein. A typical

[^0]problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H :
\[

$$
\begin{equation*}
\min _{x \in C} \frac{1}{2}\langle A x, x\rangle-\langle x, b\rangle \tag{1}
\end{equation*}
$$

\]

where C is the fixed point set of a nonexpansive mapping T on H and b is a given point in H. Assume A is strongly positive; that is, there is a constant $\bar{\gamma}>0$ with the property

$$
\begin{equation*}
\langle A x, x\rangle \geqslant \bar{\gamma}\|x\|^{2} \quad \text { for all } x \in H \tag{2}
\end{equation*}
$$

Recall that $T: H \rightarrow H$ is nonexpansive if $\|T x-T y\| \leqslant\|x-y\|$ for all $x, y \in H$. The set of fixed points of T is the set $\operatorname{Fix}(T):=\{x \in H: T x=x\}$. We assume that $\operatorname{Fix}(T) \neq \emptyset$ and $C=\operatorname{Fix}(T)$. It is well known that $\operatorname{Fix}(T)$ is closed convex (cf. [2]). In [5] (see also [7]), it is proved that the sequence $\left\{x_{n}\right\}$ defined by the iterative method below, with the initial guess $x_{0} \in H$ chosen arbitrarily,

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} b, \quad n \geqslant 0, \tag{3}
\end{equation*}
$$

converges strongly to the unique solution of the minimization problem (1) provided the sequence $\left\{\alpha_{n}\right\}$ satisfies certain conditions that will be made precise in Section 3.

On the other hand, Moudafi [3] introduced the viscosity approximation method for nonexpansive mappings (see [6] for further developments in both Hilbert and Banach spaces). Let f be a contraction on H. Starting with an arbitrary initial $x_{0} \in H$, define a sequence $\left\{x_{n}\right\}$ recursively by

$$
\begin{equation*}
x_{n+1}=\left(1-\sigma_{n}\right) T x_{n}+\sigma_{n} f\left(x_{n}\right), \quad n \geqslant 0, \tag{4}
\end{equation*}
$$

where $\left\{\sigma_{n}\right\}$ is a sequence in $(0,1)$. It is proved $[3,6]$ that under certain appropriate conditions imposed on $\left\{\sigma_{n}\right\}$, the sequence $\left\{x_{n}\right\}$ generated by (4) strongly converges to the unique solution x^{*} in C of the variational inequality

$$
\begin{equation*}
\left\langle(I-f) x^{*}, x-x^{*}\right\rangle \geqslant 0, \quad x \in C . \tag{5}
\end{equation*}
$$

In this paper we will combine the iterative method (3) with the viscosity approximation method (4) and consider the following general iterative method:

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} \gamma f\left(x_{n}\right), \quad n \geqslant 0 . \tag{6}
\end{equation*}
$$

We will prove in Section 3 that if the sequence $\left\{\alpha_{n}\right\}$ of parameters satisfies appropriate conditions, then the sequence $\left\{x_{n}\right\}$ generated by (6) converges strongly to the unique solution of the variational inequality

$$
\begin{equation*}
\left\langle(A-\gamma f) x^{*}, x-x^{*}\right\rangle \geqslant 0, \quad x \in C \tag{7}
\end{equation*}
$$

which is the optimality condition for the minimization problem

$$
\min _{x \in C} \frac{1}{2}\langle A x, x\rangle-h(x)
$$

where h is a potential function for γf (i.e., $h^{\prime}(x)=\gamma f(x)$ for $\left.x \in H\right)$.

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the next section. Some of them are known; others are not hard to derive.

Lemma 2.1. [4] Assume $\left\{a_{n}\right\}$ is a sequence of nonnegative real numbers such that

$$
a_{n+1} \leqslant\left(1-\gamma_{n}\right) a_{n}+\delta_{n}, \quad n \geqslant 0
$$

where $\left\{\gamma_{n}\right\}$ is a sequence in $(0,1)$ and $\left\{\delta_{n}\right\}$ is a sequence in \mathbb{R} such that
(i) $\sum_{n=1}^{\infty} \gamma_{n}=\infty$;
(ii) $\lim \sup _{n \rightarrow \infty} \delta_{n} / \gamma_{n} \leqslant 0$ or $\sum_{n=1}^{\infty}\left|\delta_{n}\right|<\infty$.

Then $\lim _{n \rightarrow \infty} a_{n}=0$.
Lemma 2.2. [2] Let H be a Hilbert space, K a closed convex subset of H, and $T: K \rightarrow K$ a nonexpansive mapping with $\operatorname{Fix}(T) \neq \emptyset$. If $\left\{x_{n}\right\}$ is a sequence in K weakly converging to x and if $\left\{(I-T) x_{n}\right\}$ converges strongly to y, then $(I-T) x=y$.

The following lemma is not hard to prove.
Lemma 2.3. Let H be a Hilbert space, K a closed convex subset of $H, f: H \rightarrow H$ a contraction with coefficient $0<\alpha<1$, and A a strongly positive linear bounded operator with coefficient $\bar{\gamma}>0$. Then, for $0<\gamma<\bar{\gamma} / \alpha$,

$$
\langle x-y,(A-\gamma f) x-(A-\gamma f) y\rangle \geqslant(\bar{\gamma}-\gamma \alpha)\|x-y\|^{2}, \quad x, y \in H
$$

That is, $A-\gamma f$ is strongly monotone with coefficient $\bar{\gamma}-\gamma \alpha$.
Recall the metric (nearest point) projection P_{K} from a real Hilbert space H to a closed convex subset K of H is defined as follows: given $x \in H, P_{K} x$ is the only point in K with the property

$$
\left\|x-P_{K} x\right\|=\inf \{\|x-y\|: y \in K\}
$$

P_{K} is characterized as follows.
Lemma 2.4. Let K be a closed convex subset of a real Hilbert space H. Given $x \in H$ and $y \in K$. Then $y=P_{K} x$ if and only if there holds the inequality

$$
\langle x-y, y-z\rangle \geqslant 0, \quad \forall z \in K
$$

Lemma 2.5. Assume A is a strongly positive linear bounded operator on a Hilbert space H with coefficient $\bar{\gamma}>0$ and $0<\rho \leqslant\|A\|^{-1}$. Then $\|I-\rho A\| \leqslant 1-\rho \bar{\gamma}$.

Proof. Recall that a standard result in functional analysis is that if V is linear bounded self-adjoint operator on H, then

$$
\|V\|=\sup \{|\langle V x, x\rangle|: x \in H,\|x\|=1\} .
$$

Now for $x \in H$ with $\|x\|=1$, we see that

$$
\langle(I-\rho A) x, x\rangle=1-\rho\langle A x, x\rangle \geqslant 1-\rho\|A\| \geqslant 0
$$

(i.e., $I-\rho A$ is positive). It follows that

$$
\begin{aligned}
\|I-\rho A\| & =\sup \{\langle(I-\rho A) x, x\rangle: x \in H,\|x\|=1\} \\
& =\sup \{1-\rho\langle A x, x\rangle: x \in H,\|x\|=1\} \\
& \leqslant 1-\rho \bar{\gamma} \quad \text { by }(2) . \quad \square
\end{aligned}
$$

Notation. We use \rightarrow for strong convergence and \rightharpoonup for weak convergence.

3. A general iterative method

Let H be a real Hilbert space, let A be a bounded linear operator on H, and let T be a nonexpansive mapping on H (i.e., $\|T x-T y\| \leqslant\|x-y\|$ for $x, y \in H$). Assume the set $\operatorname{Fix}(T)$ of fixed points of H is nonempty; that is, $\operatorname{Fix}(T)=\{x \in H: T x=x\} \neq \emptyset$. Since $\operatorname{Fix}(T)$ is closed convex, the nearest point projection from H onto $\operatorname{Fix}(T)$ is well defined.

Throughout the rest of this paper, we always assume that A is strongly positive; that is, there is a constant $\bar{\gamma}>0$ such that

$$
\begin{equation*}
\langle A x, x\rangle \geqslant \bar{\gamma}\|x\|^{2}, \quad x \in H . \tag{8}
\end{equation*}
$$

(Note: $\bar{\gamma}>0$ is throughout reserved to be the constant such that (8) holds.)
Recall also that a contraction on H is a self-mapping f of H such that

$$
\|f(x)-f(y)\| \leqslant \alpha\|x-y\|, \quad x, y \in H
$$

where $\alpha \in[0,1)$ is a constant.
Denote by Π the collection of all contractions on H; namely,

$$
\Pi=\{f: f \text { a contraction on } H\}
$$

Now given $f \in \Pi$ with contraction coefficient $0<\alpha<1, t \in(0,1)$ such that $t<\|A\|^{-1}$ and $0<\gamma<\bar{\gamma} / \alpha$. Consider a mapping S_{t} on H defined by

$$
\begin{equation*}
S_{t} x=t \gamma f(x)+(I-t A) T x, \quad x \in H . \tag{9}
\end{equation*}
$$

It is easy to see that S_{t} is a contraction. Indeed, by Lemma 2.5 , we have:

$$
\begin{aligned}
\left\|S_{t} x-S_{t} y\right\| & \leqslant t \gamma\|f(x)-f(y)\|+\|(I-t A)(T x-T y)\| \\
& \leqslant(1-t(\bar{\gamma}-\gamma \alpha))\|x-y\| .
\end{aligned}
$$

Hence S_{t} has a unique fixed point, denoted x_{t}, which uniquely solves the fixed point equation

$$
\begin{equation*}
x_{t}=t \gamma f\left(x_{t}\right)+(I-t A) T x_{t} . \tag{10}
\end{equation*}
$$

Note that x_{t} indeed depends on f as well, but we will suppress this dependence of x_{t} on f for simplicity of notation throughout the rest of this paper. We will also always use γ to mean a number in $(0, \bar{\gamma} / \alpha)$.

The next proposition summarizes the basic properties of $\left\{x_{t}\right\}$.

Proposition 3.1. Let x_{t} be defined via (10).
(i) $\left\{x_{t}\right\}$ is bounded for $t \in\left(0,\|A\|^{-1}\right)$.
(ii) $\lim _{t \rightarrow 0}\left\|x_{t}-T x_{t}\right\|=0$.
(iii) x_{t} defines a continuous curve from $\left(0,\|A\|^{-1}\right)$ into H.

Proof. First observe that for $t \in\left(0,\|A\|^{-1}\right)$, we have $\|I-t A\| \leqslant 1-t \bar{\gamma}$ by Lemma 2.5.
To show (i) pick a $p \in \operatorname{Fix}(T)$. We then have

$$
\begin{aligned}
\left\|x_{t}-p\right\| & =\left\|(I-t A)\left(T x_{t}-p\right)+t\left(\gamma f\left(x_{t}\right)-A p\right)\right\| \\
& \leqslant(1-\bar{\gamma} t)\left\|x_{t}-p\right\|+t\left\|\gamma f\left(x_{t}\right)-A p\right\| \\
& =(1-\bar{\gamma} t)\left\|x_{t}-p\right\|+t\left\|\gamma\left(f\left(x_{t}\right)-f(p)\right)+(\gamma f(p)-A p)\right\| \\
& \leqslant(1-\bar{\gamma} t)\left\|x_{t}-p\right\|+t\left[\gamma \alpha\left\|x_{t}-p\right\|+\|\gamma f(p)-A p\|\right] \\
& =(1-t(\bar{\gamma}-\gamma \alpha))\left\|x_{t}-p\right\|+t\|\gamma f(p)-A p\| .
\end{aligned}
$$

It follows that

$$
\left\|x_{t}-p\right\| \leqslant \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \alpha}
$$

Hence $\left\{x_{t}\right\}$ is bounded.
(ii) We have $\left\|x_{t}-T x_{t}\right\|=t\left\|\gamma f\left(x_{t}\right)-A T x_{t}\right\| \rightarrow 0$ since the boundedness of $\left\{x_{t}\right\}$ implies that of $\left\{f\left(x_{t}\right)\right\}$ and of $\left\{A T x_{t}\right\}$.

To prove (iii) take $t, t_{0} \in\left(0,\|A\|^{-1}\right)$ and calculate

$$
\begin{aligned}
\left\|x_{t}-x_{t_{0}}\right\|= & \|\left(t-t_{0}\right) \gamma f\left(x_{t}\right)+t_{0} \gamma\left(f\left(x_{t}\right)-f\left(x_{t_{0}}\right)\right)-\left(t-t_{0}\right) A T x_{t} \\
& +\left(I-t_{0} A\right)\left(T x_{t}-T x_{t_{0}}\right) \| \\
\leqslant & \left(\gamma\left\|f\left(x_{t}\right)\right\|+\left\|A T x_{t}\right\|\right)\left|t-t_{0}\right|+\left(1-t_{0}(\bar{\gamma}-\gamma \alpha)\right)\left\|x_{t}-x_{t_{0}}\right\| .
\end{aligned}
$$

It follows that

$$
\left\|x_{t}-x_{t_{0}}\right\| \leqslant \frac{\gamma\left\|f\left(x_{t_{0}}\right)\right\|+\left\|A T x_{t}\right\|}{t_{0}(\bar{\gamma}-\gamma \alpha)}\left|t-t_{0}\right| .
$$

This shows that x_{t} is locally Lipschitzian and hence continuous.
Our first main result below shows that $\left\{x_{t}\right\}$ converges strongly as $t \rightarrow 0$ to a fixed point of T which solves some variational inequality.

Theorem 3.2. We have that $\left\{x_{t}\right\}$ converges strongly as $t \rightarrow 0$ to a fixed point \tilde{x} of T which solves the variational inequality:

$$
\begin{equation*}
\langle(A-\gamma f) \tilde{x}, \tilde{x}-z\rangle \leqslant 0, \quad z \in \operatorname{Fix}(T) . \tag{11}
\end{equation*}
$$

Equivalently, we have $P_{\mathrm{Fix}(T)}(I-A+\gamma f) \tilde{x}=\tilde{x}$.

Proof. We first show the uniqueness of a solution of the variational inequality (11), which is indeed a consequence of the strong monotonicity of $A-\gamma f$. Suppose $\tilde{x} \in \operatorname{Fix}(T)$ and $\hat{x} \in \operatorname{Fix}(T)$ both are solutions to (11); then

$$
\begin{equation*}
\langle(A-\gamma f) \tilde{x}, \tilde{x}-\hat{x}\rangle \leqslant 0 \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle(A-\gamma f) \hat{x}, \hat{x}-\tilde{x}\rangle \leqslant 0 . \tag{13}
\end{equation*}
$$

Adding up (12) and (13) gets

$$
\langle(A-\gamma f) \tilde{x}-(A-\gamma f) \hat{x}, \tilde{x}-\hat{x}\rangle \leqslant 0 .
$$

The strong monotonicity of $A-\gamma f$ (Lemma 2.3) implies that $\tilde{x}=\hat{x}$ and the uniqueness is proved. Below we use $\tilde{x} \in \operatorname{Fix}(T)$ to denote the unique solution of (11).

To prove that $x_{t} \rightarrow \tilde{x}(t \rightarrow 0)$, we write, for a given $z \in \operatorname{Fix}(T)$,

$$
x_{t}-z=t\left(\gamma f\left(x_{t}\right)-A z\right)+(I-t A)\left(T x_{t}-z\right)
$$

to derive that

$$
\begin{aligned}
\left\|x_{t}-z\right\|^{2} & =t\left\langle\gamma f\left(x_{t}\right)-A z, x_{t}-z\right\rangle+\left\langle(I-t A)\left(T x_{t}-z\right), x_{t}-z\right\rangle \\
& \leqslant(1-t \bar{\gamma})\left\|x_{t}-z\right\|^{2}+t\left\langle\gamma f\left(x_{t}\right)-A z, x_{t}-z\right\rangle .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\left\|x_{t}-z\right\|^{2} & \leqslant \frac{1}{\bar{\gamma}}\left\langle\gamma f\left(x_{t}\right)-A z, x_{t}-z\right\rangle \\
& =\frac{1}{\bar{\gamma}}\left\{\gamma\left\langle f\left(x_{t}\right)-f(z), x_{t}-z\right\rangle+\left\langle\gamma f(z)-A z, x_{t}-z\right\rangle\right\} \\
& \leqslant \frac{1}{\bar{\gamma}}\left\{\gamma \alpha\left\|x_{t}-z\right\|^{2}+\left\langle\gamma f(z)-A z, x_{t}-z\right\rangle\right\}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\left\|x_{t}-z\right\|^{2} \leqslant \frac{1}{\bar{\gamma}-\gamma \alpha}\left\langle\gamma f(z)-A z, x_{t}-z\right\rangle . \tag{14}
\end{equation*}
$$

Since $\left\{x_{t}\right\}$ is bounded as $t \rightarrow 0$, we see that if $\left\{t_{n}\right\}$ is a sequence in $(0,1)$ such that $t_{n} \rightarrow 0$ and $x_{t_{n}} \rightharpoonup x^{*}$, then by (14), we see $x_{t_{n}} \rightarrow x^{*}$. Moreover, by Proposition (3.1)(ii), we have $x^{*} \in \operatorname{Fix}(T)$. We next prove that x^{*} solves the variational inequality (11). Since

$$
\begin{equation*}
x_{t}=t \gamma f\left(x_{t}\right)+(I-t A) T x_{t}, \tag{15}
\end{equation*}
$$

we derive, that

$$
(A-\gamma f) x_{t}=-\frac{1}{t}(I-t A)(I-T) x_{t}
$$

It follows that, for $z \in \operatorname{Fix}(T)$,

$$
\begin{align*}
\left\langle(A-\gamma f) x_{t}, x_{t}-z\right\rangle & =-\frac{1}{t}\left\langle(I-t A)(I-T) x_{t}, x_{t}-z\right\rangle \\
& =-\frac{1}{t}\left\langle(I-T) x_{t}-(I-T) z, x_{t}-z\right\rangle+\left\langle A(I-T) x_{t}, x_{t}-z\right\rangle \\
& \leqslant\left\langle A(I-T) x_{t}, x_{t}-z\right\rangle \tag{16}
\end{align*}
$$

since $I-T$ is monotone (i.e., $\langle x-y,(I-T) x-(I-T) y\rangle \geqslant 0$ for $x, y \in H$. This is due to the nonexpansivity of T). Now replacing t in (16) with t_{n} and letting $n \rightarrow \infty$, we, noticing that $(I-T) x_{t_{n}} \rightarrow(I-T) x^{*}=0$ for $x^{*} \in \operatorname{Fix}(T)$, obtain

$$
\left\langle(A-\gamma f) x^{*}, x^{*}-z\right\rangle \leqslant 0 .
$$

This is, $x^{*} \in \operatorname{Fix}(T)$ is a solution of (11); hence $x^{*}=\tilde{x}$ by uniqueness. In a summary, we have shown that each cluster point of $\left\{x_{t}\right\}($ at $t \rightarrow 0)$ equals \tilde{x}. Therefore, $x_{t} \rightarrow \tilde{x}$ as $t \rightarrow 0$.

The variational inequality (11) can be rewritten as

$$
\langle[(I-A+\gamma f) \tilde{x}]-\tilde{x}, \tilde{x}-z\rangle \geqslant 0, \quad z \in \operatorname{Fix}(T) .
$$

This, by Lemma 2.4, is equivalent to the fixed point equation

$$
P_{\operatorname{Fix}(T)}(I-A+\gamma f) \tilde{x}=\tilde{x} .
$$

Taking $A=I$ and $\gamma=1$ in Theorem 3.2, we get
Corollary 3.3. [6] Let $z_{t} \in H$ be the unique fixed point of the contraction $z \mapsto(1-t) T z+$ $t f(z)$. Then $\left\{z_{t}\right\}$ converges strongly as $t \rightarrow 0$ to the unique solution $\tilde{z} \in \operatorname{Fix}(T)$ of the variational inequality

$$
\langle(I-f) \tilde{z}, z-\tilde{z}\rangle \geqslant 0, \quad z \in \operatorname{Fix}(T)
$$

Next we study a general iterative method as follows. The initial guess x_{0} is selected in H arbitrarily, and the $(n+1)$ th iterate x_{n+1} is recursively defined by

$$
\begin{equation*}
x_{n+1}=\left(I-\alpha_{n} A\right) T x_{n}+\alpha_{n} \gamma f\left(x_{n}\right), \quad n \geqslant 0, \tag{17}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\}$ is a sequence in $(0,1)$ satisfying the following conditions:
(C1) $\alpha_{n} \rightarrow 0$;
(C2) $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
(C3) either $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=1$.
Below is the second main result of this paper.
Theorem 3.4. Let $\left\{x_{n}\right\}$ be generated by algorithm (17) with the sequence $\left\{\alpha_{n}\right\}$ of parameters satisfying conditions (C1)-(C3). Then $\left\{x_{n}\right\}$ converges strongly to \tilde{x} that is obtained in Theorem 3.2.

Proof. Since $\alpha_{n} \rightarrow 0$ by condition (C1), we may assume, with no loss of generality, that $\alpha_{n}<\|A\|^{-1}$ for all n.

We now observe that $\left\{x_{n}\right\}$ is bounded. Indeed, pick any $p \in \operatorname{Fix}(T)$ to obtain

$$
\begin{aligned}
\left\|x_{n+1}-p\right\| & =\left\|\left(I-\alpha_{n} A\right)\left(T x_{n}-p\right)+\alpha_{n}\left(\gamma f\left(x_{n}\right)-A p\right)\right\| \\
& \leqslant\left\|I-\alpha_{n} A\right\|\left\|T x_{n}-p\right\|+\alpha_{n}\left\|\gamma f\left(x_{n}\right)-A p\right\| \\
& \leqslant\left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-p\right\|+\alpha_{n}\left[\gamma\left\|f\left(x_{n}\right)-f(p)\right\|+\|\gamma f(p)-A p\|\right] \\
& \leqslant\left(1-(\bar{\gamma}-\gamma \alpha) \alpha_{n}\right)\left\|x_{n}-p\right\|+\alpha_{n}\|\gamma f(p)-A p\| \\
& =\left(1-(\bar{\gamma}-\gamma \alpha) \alpha_{n}\right)\left\|x_{n}-p\right\|+(\bar{\gamma}-\gamma \alpha) \alpha_{n} \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \alpha} .
\end{aligned}
$$

It follows from induction that

$$
\begin{equation*}
\left\|x_{n}-p\right\| \leqslant \max \left\{\left\|x_{0}-p\right\|, \frac{\|\gamma f(p)-A p\|}{\bar{\gamma}-\gamma \alpha}\right\}, \quad n \geqslant 0 \tag{18}
\end{equation*}
$$

As a result, noticing $x_{n+1}-T x_{n}=\alpha_{n}\left(\gamma f\left(x_{n}\right)-A T x_{n}\right)$ and $\alpha_{n} \rightarrow 0$, we obtain

$$
\begin{equation*}
x_{n+1}-T x_{n} \rightarrow 0 \tag{19}
\end{equation*}
$$

But the key is to prove that

$$
\begin{equation*}
x_{n+1}-x_{n} \rightarrow 0 . \tag{20}
\end{equation*}
$$

To see this, we calculate

$$
\begin{align*}
\left\|x_{n+1}-x_{n}\right\|= & \|\left(I-\alpha_{n} A\right)\left(T x_{n}-T x_{n-1}\right)-\left(\alpha_{n}-\alpha_{n-1}\right) A T x_{n-1} \\
& +\gamma\left[\alpha_{n}\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right)+\left(\alpha_{n}-\alpha_{n-1}\right) f\left(x_{n-1}\right)\right] \| \\
\leqslant & \left(1-\alpha_{n} \bar{\gamma}\right)\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|A T x_{n-1}\right\| \\
& +\gamma\left[\alpha_{n} \alpha\left\|x_{n}-x_{n-1}\right\|+\left|\alpha_{n}-\alpha_{n-1}\right|\left\|f\left(x_{n-1}\right)\right\|\right] \\
\leqslant & \left(1-(\bar{\gamma}-\gamma \alpha) \alpha_{n}\right)\left\|x_{n}-x_{n-1}\right\|+M\left|\alpha_{n}-\alpha_{n-1}\right|, \tag{21}
\end{align*}
$$

where $M:=\sup \left\{\max \left\{\left\|A T x_{n}\right\|,\left\|f\left(x_{n}\right)\right\|\right\}: n \geqslant 0\right\}<\infty$.
An application of Lemma 2.1 to (21) implies (20) which, combined with (19), in turns, implies

$$
\begin{equation*}
x_{n}-T x_{n} \rightarrow 0 \tag{22}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\langle T x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle \leqslant 0, \tag{23}
\end{equation*}
$$

where \tilde{x} is obtained in Theorem 3.2.
To see this, we take a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\limsup _{n \rightarrow \infty}\left\langle x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle=\lim _{k \rightarrow \infty}\left\langle x_{n_{k}}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle .
$$

We may also assume that $x_{n_{k}} \rightharpoonup z$. Note that $z \in \operatorname{Fix}(T)$ in virtue of Lemma 2.2 and (22). It follows from the variational inequality (11) that

$$
\limsup _{n \rightarrow \infty}\left\langle x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle=\langle z-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\rangle \leqslant 0 .
$$

So (23) holds, thanks to (22).
Finally, we prove $x_{n} \rightarrow \tilde{x}$. To this end, we calculate

$$
\begin{aligned}
\left\|x_{n+1}-\tilde{x}\right\|^{2}= & \left\|\left(I-\alpha_{n} A\right)\left(T x_{n}-\tilde{x}\right)+\alpha_{n}\left(\gamma f\left(x_{n}\right)-A \tilde{x}\right)\right\|^{2} \\
= & \left\|\left(I-\alpha_{n} A\right)\left(T x_{n}-\tilde{x}\right)\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|^{2} \\
& +2 \alpha_{n}\left\langle\left(I-\alpha_{n} A\right)\left(T x_{n}-\tilde{x}\right), \gamma f\left(x_{n}\right)-A \tilde{x}\right\rangle \\
\leqslant & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|^{2} \\
& +2 \alpha_{n}\left\langle T x_{n}-\tilde{x}, \gamma f\left(x_{n}\right)-A \tilde{x}\right\rangle-2 \alpha_{n}^{2}\left\langle A\left(T x_{n}-\tilde{x}\right), \gamma f\left(x_{n}\right)-A \tilde{x}\right\rangle \\
\leqslant & \left(1-\alpha_{n} \bar{\gamma}\right)^{2}\left\|x_{n}-\tilde{x}\right\|^{2}+\alpha_{n}^{2}\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|^{2} \\
& +2 \alpha_{n} \gamma\left\langle T x_{n}-\tilde{x}, f\left(x_{n}\right)-f(\tilde{x})\right\rangle+2 \alpha_{n}\left\langle T x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle \\
& -2 \alpha_{n}^{2}\left\langle A\left(T x_{n}-\tilde{x}\right), \gamma f\left(x_{n}\right)-A \tilde{x}\right\rangle \\
\leqslant & {\left[\left(1-\alpha_{n} \bar{\gamma}\right)^{2}+2 \alpha_{n} \gamma \alpha\right]\left\|x_{n}-\tilde{x}\right\|^{2}+\alpha_{n}\left[2\left\langle T x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle\right.} \\
& \left.+\alpha_{n}\left(\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|^{2}+2 \alpha_{n}\left\|A\left(T x_{n}-\tilde{x}\right)\right\| \cdot\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|\right)\right] \\
= & \left(1-2(\bar{\gamma}-\gamma \alpha) \alpha_{n}\right)\left\|x_{n}-\tilde{x}\right\|^{2}+\alpha_{n}\left\{2\left\langle T x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle\right. \\
& +\alpha_{n}\left(\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|^{2}+2 \alpha_{n}\left\|A\left(T x_{n}-\tilde{x}\right)\right\| \cdot\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|\right. \\
& \left.\left.+\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-\tilde{x}\right\|^{2}\right)\right\} .
\end{aligned}
$$

Since $\left\{x_{n}\right\}$ is bounded, we can take a constant $L>0$ such that

$$
L \geqslant\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|^{2}+2 \alpha_{n}\left\|A\left(T x_{n}-\tilde{x}\right)\right\| \cdot\left\|\gamma f\left(x_{n}\right)-A \tilde{x}\right\|+\alpha_{n} \bar{\gamma}^{2}\left\|x_{n}-\tilde{x}\right\|^{2}
$$

for all $n \geqslant 0$. It then follows that

$$
\begin{equation*}
\left\|x_{n+1}-\tilde{x}\right\|^{2} \leqslant\left(1-2(\bar{\gamma}-\gamma \alpha) \alpha_{n}\right)\left\|x_{n}-\tilde{x}\right\|^{2}+\alpha_{n} \beta_{n}, \tag{24}
\end{equation*}
$$

where

$$
\beta_{n}=2\left\langle T x_{n}-\tilde{x}, \gamma f(\tilde{x})-A \tilde{x}\right\rangle+L \alpha_{n} .
$$

By (23), we get $\lim \sup _{n \rightarrow \infty} \beta_{n} \leqslant 0$. Now applying Lemma 2.1 to (24) concludes that $x_{n} \rightarrow \tilde{x}$.

Corollary 3.5. [6] Let $\left\{x_{n}\right\}$ be generated by the following algorithm:

$$
x_{n+1}=\left(1-\alpha_{n}\right) T x_{n}+\alpha_{n} f\left(x_{n}\right), \quad n \geqslant 0 .
$$

Assume the sequence $\left\{\alpha_{n}\right\}$ satisfies conditions (C1)-(C3). Then $\left\{x_{n}\right\}$ converges strongly to \tilde{z} obtained in Corollary 3.3.

References

[1] F. Deutsch, I. Yamada, Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings, Numer. Funct. Anal. Optim. 19 (1998) 33-56.
[2] K. Geobel, W.A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math., vol. 28, Cambridge Univ. Press, 1990.
[3] A. Moudafi, Viscosity approximation methods for fixed-points problems, J. Math. Anal. Appl. 241 (2000) 46-55.
[4] H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002) 240-256.
[5] H.K. Xu, An iterative approach to quadratic optimization, J. Optim. Theory Appl. 116 (2003) 659-678.
[6] H.K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004) 279-291.
[7] I. Yamada, The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings, in: D. Butnariu, Y. Censor, S. Reich (Eds.), Inherently Parallel Algorithm for Feasibility and Optimization, Elsevier, 2001, pp. 473-504.
[8] I. Yamada, N. Ogura, Y. Yamashita, K. Sakaniwa, Quadratic approximation of fixed points of nonexpansive mappings in Hilbert spaces, Numer. Funct. Anal. Optim. 19 (1998) 165-190.

[^0]: * Corresponding author.

 E-mail addresses: gmarino@unical.it (G. Marino), xuhk@ukzn.ac.za (H.-K. Xu).
 ${ }^{1}$ Supported in part by the National Research Foundation of South Africa.
 0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2005.05.028

