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We study the thermodynamic stability of warped black holes in three-dimensional topologically massive
gravity. The spacelike stretched black hole is parametrized by its mass and angular momentum. We
determine the local and global stability properties in the canonical and grand canonical ensembles. The
presence of a Hawking–Page type transition is established, and the critical temperature is determined.
The thermodynamic metric of Ruppeiner is computed, and the curvature is shown to diverge in the
extremal limit. The consequences of these results for the classical stability properties of warped black
holes are discussed within the context of the correlated stability conjecture.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

Lower-dimensional models of gravity have provided a fruitful
arena for exploring various aspects of black holes. Of particular
importance are theories of three-dimensional anti-de Sitter grav-
ity. The presence of the BTZ black hole [1] as a solution to the
Einstein field equations has led to a wealth of important results
on the conformal properties of gravity. More recently, there has
been renewed interested in higher-derivative extensions of Einstein
gravity, through the addition of the gravitational Chern–Simons
term, yielding topologically massive gravity [2–5], or other exten-
sions such as new massive gravity [6].

For the case of topologically massive gravity (TMG), it is well
know that all solutions to the Einstein equations are also so-
lutions of TMG. The BTZ black hole therefore provides a useful
example of a black hole in this theory, and the classical stabil-
ity against linear perturbations was established in [7]. In [8–10],
a novel class of black hole solutions to TMG was obtained. These
have the attractive feature that they are non-Einstein spaces, and
thus they probe more details of the field equations of TMG. Our
primary concern here is to study the so-called spacelike stretched
black hole. This black hole is obtained as a discrete quotient
of a warped version of AdS3, and the geometry is parametrized
by its mass, angular momentum, and a warp factor. The ther-
modynamic variables of the black hole have been obtained, and
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consistency with the first law of thermodynamics established
[8–10].

However, various other aspects of its structure remain to be
explored. In this Letter, we determine the local and global thermo-
dynamic stability properties of the warped black hole in both the
grand canonical and canonical ensembles. The local properties are
determined by studying the Hessian of the entropy with respect
to the mass and angular momentum, while the global properties
are uncovered by studying the Gibbs and Helmholtz free energies.
We show that a Hawking–Page type transition is present in both
ensembles, and the critical temperature is determined in terms of
the warp factor.

The plan of this Letter is as follows. In Section 2, we recall the
metric and thermodynamic variables for the spacelike stretched
black hole. In Section 3, we show that the black hole is locally
unstable in the grand canonical ensemble for all temperatures, and
globally stable above a critical temperature Tc . In the canonical en-
semble, we show that the black hole is locally unstable but globally
stable for temperatures above Tc , and vice versa for temperatures
below Tc . We also compute the thermodynamic curvature tensor
of Ruppeiner [11], and show that it diverges in the extremal limit.
In Section 4, we discuss the implications of these results within
the context of the correlated stability conjecture of Gubser and Mi-
tra [12,13]. We also record the local and global stability results for
the BTZ black hole and show that it obeys the correlated stability
conjecture.

2. Warped black holes

The action for topologically massive gravity is taken in the
form [4]
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where μ is the Chern–Simons coupling, and the parameter l sets
the scale of the cosmological constant of anti-de Sitter space, Λ =
−1/l2. It the following, it will be convenient to use the parameter
ν = μl/3.

It is well known that any Einstein space, such as the BTZ black
hole, is also a solution of the equations of motion for topologically
massive gravity, and its stability properties have already been es-
tablished [7]. A novel class of warped black hole solutions, which
are non-Einstein, was discovered in [8–10]. We will concentrate
our attention on the spacelike warped case, with line element
given by [10]

ds2 = l2

(ν2 + 3)

[
− cosh2 σ dτ 2 + dσ 2

+ 4ν2

(ν2 + 3)
(du + sinhσ dτ )2

]
. (2)

For ν2 > 1, the warp factor 4ν2

(ν2+3)
is greater than one, and

this spacetime is thus a spacelike stretched AdS3 space. Black
hole solutions asymptotic to spacelike stretched AdS3 space have
been constructed as discrete quotients, leading to the metric in
Schwarzschild coordinates [10]

ds2

l2
= dt2 + dr2

(ν2 + 3)(r − r+)(r − r−)

+ (
2νr −
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r+r−

)
dt dθ

+ r
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− 4ν
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ν2 + 3
)
r+r−

]
dθ2, (3)

where r ∈ [0,∞], t ∈ [−∞,∞] and θ ∼ θ +2π . This spacetime rep-
resents a regular (spacelike stretched) black hole when the warp-
ing parameter ν2 > 1, and the parameters r± specify the location
of the inner and outer horizon.

The spacetime can be written in standard ADM form as follows

ds2 = −N(r)2 dt2 + l2 R(r)2(dθ + Nθ (r)dt
)2 + l4 dr2

4R(r)2N(r)2
, (4)

where

R(r)2 = r

4
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3
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,
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4R(r)2
,

Nθ (r) = 2νr − √
(ν2 + 3)r+r−

2R(r)2
. (5)

The physical mass and angular momentum parameters can now
be determined, with the results [9,10,14]

M = (ν2 + 3)

24G

(
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√
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ν

)
,
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√
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96G ν
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]
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The Hawking temperature and angular velocity take the form

T = (ν2 + 3)

4π l
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(2νr+ − √
(ν2 + 3)r+r−)

,

Ω = 2

l(2νr+ − √
(ν2 + 3)r+r−)

. (7)

In order to compute the entropy of the black hole, we must take
into account the higher derivative terms in the action. This leads
to an entropy

S = π l

24νG

[(
9ν2 + 3

)
r+ − (

ν2 + 3
)
r− − 4ν

√(
ν2 + 3

)
r+r−

]
. (8)

As highlighted in [10], the goal is to have a conformal field the-
ory interpretation of these black holes. With this in mind, one can
define left and right temperatures as follows

T L = (ν2 + 3)

8π l

(
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√
(ν2 + 3)r+r−

ν

)
,

T R = (ν2 + 3)

8π l
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which satisfy the relations

1

T
= 4πνl
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)
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Ω

T
= 1
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The central charges can be written in terms of the warp factor as

cL = 4νl

G(ν2 + 3)
, cR = (5ν2 + 3)l

Gν(ν2 + 3)
. (11)

As a result, the entropy can then be written in the suggestive form

S = π2l

3
(cL T L + cR T R). (12)

The fact that the entropy can be reproduced from the Cardy for-
mula in this way, led to the conjecture in [10] that TMG for ν > 1
and with suitable asymptotically stretched AdS3 boundary condi-
tions is holographically dual to a two-dimensional boundary con-
formal field theory with central charges given by (11).

3. Local and global thermodynamic stability

In order to determine the locally thermodynamic stability prop-
erties of a particular spacetime, we need to compute the Hessian
of the entropy with respect to the extensive variables (M, J ), see,
for example, [13,15]. Using (6) and (9), the entropy (12) can be
written as

S(M, J ) =
√

BM̃2 − C J̃ + DM̃, (13)

where M̃ = Ml, J̃ = J l/G , and

B = 4π2(5ν2 + 3)

(ν2 + 3)2
, C = 2π2(5ν2 + 3)

3ν(ν2 + 3)
,

D = 4πν
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. (14)

The Hessian matrix ∂2 S
∂xi∂x j , with xi = (M̃, J̃ ), is denoted by S ′′ and

takes the form

S ′′ = BC
(

BM̃2 − C J̃
)−3/2

(− J̃ M̃
2

M̃ C

)
. (15)
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The determinant of the Hessian

det S ′′ = − BC2

4

(
BM̃2 − C J̃

)−2
, (16)

is manifestly negative, with one positive and one negative eigen-
value. Since local stability requires the Hessian to have only nega-
tive eigenvalues, we conclude that the warped black hole is locally
unstable in the grand canonical ensemble for all temperatures.

One can also obtain this result by starting with the mass for-
mula M(S, J ) given by

M̃ = (√
B S2 + (

BC − D2C
)

J̃ − D S
)/(

B − D2). (17)

The Hessian of M̃ with respect to (S, J̃ ) is
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[
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BC − D2C

)
J̃
]−3/2

(
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2

− S
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)
. (18)

The determinant of the Hessian is then

det M̃ ′′ = −1

4
BC2[B S2 + (

BC − D2C
)

J̃
]−2

. (19)

Local stability requires the Hessian of M̃ to be positive definite,
which is clearly not the case.

Having established the local stability properties of the warped
black hole, we turn our attention to the issue of global stability.
This can be resolved by considering the Gibbs free energy in the
grand canonical ensemble, namely

G = M − TS − Ω J . (20)

Using the formulas (6)–(8), this can easily be expressed in terms of
r± . However, more work is required to determine G as a function
of (T ,Ω). Using the relations (6), and (9)–(12), we find

G = −π2l2

6Gν

[
T 2 + 2ν

π l
T − (ν2 + 3)

4π2l2

](
1

Ωl

)
, (21)

where the quadratic dependence on temperature is evident, and
we note from (7) that Ω > 0. Solving the equation G = 0 then
yields the critical temperature

Tc = − ν

π l
+

√
5ν2 + 3

4π2l2
. (22)

This leads to the result

G < 0, for T > Tc, (23)

G > 0, for T < Tc . (24)

Thus, the warped black hole is dominant for T > Tc , while the
warped thermal background is dominant for T < Tc . This is rem-
iniscent of the Hawking–Page transition which is present in the
case of the Schwarzschild anti-de Sitter black hole [16]. In the
present case, we find that the warped black hole is globally sta-
ble in the grand canonical ensemble only for temperatures greater
than the critical temperature.

We can confirm this result by using the Smarr formula for the
warped black hole, which takes the form [17]

M = TS + 2Ω J . (25)

This allows us to re-write the Gibbs free energy as

G = Ω J . (26)

The sign of G is therefore determined solely by the sign of the an-
gular momentum J . Using the relation (9), the angular momentum
can be expressed in terms of (T L, T R). Together with (10), one can
indeed show that

J > 0 ↔ T < Tc, J < 0 ↔ T > Tc . (27)

This establishes the consistency of the global stability result ob-
tained above.

It is also instructive to use the Gibbs free energy to determine
the local stability. As shown in [18], local stability is equivalent to
the statement that the Hessian of (−G) with respect to (T ,Ωl) is
positive definite. From (21), one can check that

det
(−G ′′) = −

(
π l

6Gν

)2
(5ν2 + 3)

(Ωl)4
. (28)

Since this is manifestly negative for all temperatures, it confirms
the local instability result obtained previously.

Let us now turn our attention to the stability properties of the
warped black hole in the canonical ensemble, see [19]. The local
stability is determined by

∂2 S

∂ M̃2
= −BC

(
BM̃2 − C J̃

)−3/2
J̃ . (29)

Hence, stability is determined by the sign of J , and from (27), we
conclude that the black hole is locally unstable for T > Tc ( J < 0)

and locally stable for T < Tc ( J > 0). The global stability is deter-
mined by the Helmholtz free energy

F = M − TS. (30)

Using (6)–(8), one obtains the surprising result that F = 2G . Thus,
the global stability properties in the canonical ensemble are iden-
tical to the grand canonical ensemble, with the presence of a
Hawking–Page transition at the critical temperature Tc . The pro-
portionality between F and G is, however, more easily seen from
the Smarr formula, which states that G = Ω J and F = 2Ω J .

Finally, it is useful to consider the metric on the space of ther-
modynamic variables introduced by Ruppeiner [11]. The Rieman-
nian curvature of this metric has been used to probe the phase
structure of thermodynamic systems. The Ruppeiner metric for the
warped black hole is defined by

gRuppeiner
i j = − ∂2 S

∂xi ∂x j
, (31)

with coordinates xi = (M̃, J̃ ). The components of the metric can be
read off from (15) and, as a result of the locally instability of the
black hole, the metric has Lorentzian signature. The Ricci scalar is
given by

RRuppeiner = −(
BM̃2 − C J̃

)−1/2
. (32)

Using the fact that

BM̃2 − C J̃ =
(

π l

24Gν

)2(
5ν2 + 3

)2
(r+ − r−)2, (33)

we conclude that the Ruppeiner curvature diverges in the extremal
limit, as expected.

4. The correlated stability conjecture

In [12,13], Gubser and Mitra established significant evidence for
a correlation between the classical and the local thermodynamic
stability properties of black holes and black branes in anti-de Sit-
ter space. According to this conjecture, a black brane in anti-de
Sitter space with a non-compact translational symmetry is classi-
cally stable if and only if it is locally thermodynamically stable. An
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analytic proof was attempted in [20]. In [12,13], the evidence for
such a correlation was obtained in the limit where the black hole
is large compared to the anti-de Sitter radius. According to [20],
one might then expect the curvature of the horizon to be insignif-
icant, and thus the black hole would exhibit features similar to a
black brane. Thus, for large black holes, one would expect the con-
jecture to hold. Furthermore, in the case of the warped AdS3 black
holes considered here, we note that the coordinate θ which is sub-
ject to the periodic identification θ ∼ θ + 2π , could be treated as
a non-compact string-like coordinate with a translational symme-
try. Assuming that the correlated stability conjecture holds, would
allow us to conclude that the spacelike stretched black holes are
classically unstable, either in the large black hole limit, or with the
coordinate θ taken as non-compact. In order to verify this result,
however, requires a study of the linear perturbations of the black
hole. Due to the reduced symmetry of the warped space, the per-
turbation equations have not yet been fully resolved into a conve-
nient form [21,22]. However, the appropriate asymptotic boundary
conditions have been determined [23–25], and one can examine
the behavior of a class of highest weight solutions as a first step.
If it transpires that the warped black hole is actually classically
stable, then one has a counterexample to the correlated stability
conjecture. Several counterexamples have already been discovered
in [26,27].

As mentioned previously, the BTZ black hole is also a solution of
the equations of motion for TMG, and the classical stability against
linear perturbations was established in [7]. It is of interest to de-
termine whether the BTZ black hole obeys the correlated stability
conjecture. To see this, we consider the local stability properties as
follows, [28–32]. First, we recall that the entropy of the BTZ black
hole can be written as [4]

S = 2π

√
cR

12
(Ml + J ) + 2π

√
cL

12
(Ml − J ), (34)

where the central charges are

cL = 3l

2G

(
1 − 1

μl

)
, cR = 3l

2G

(
1 + 1

μl

)
. (35)

The Hessian of the entropy with respect to (Ml, J ) is given by

S ′′ =
(−x − y −x + y

−x + y −x − y

)
, (36)

where

x = π

2

√
cR

12
(Ml + J )−3/2, y = π

2

√
cL

12
(Ml − J )−3/2. (37)

Both eigenvalues of the Hessian are negative, with λ = −2x,−2y.
Thus, the BTZ black hole is locally stable in the grand canonical
ensemble. Together with the classical stability result in [7], this
confirms that the correlated stability conjecture holds for the BTZ
black hole in TMG. Incidentally, the Smarr formula for the BTZ
black hole [33]

M = 1

2
TS + Ω J , (38)

allows one to write the Gibbs free energy in the form

G = −1

2
TS. (39)

Since G is manifestly negative, we conclude that the BTZ black hole
is also globally stable in the grand canonical ensemble.

Finally, it should be pointed out that the warped black hole
discussed here is also a solution of new massive gravity [34]. The
form of the metric is identical to (4), except that the warping factor
is determined by a mass parameter m instead of the Chern–Simons
parameter μ.

5. Conclusions

We have discussed the local and global thermodynamic stabil-
ity properties of the spacelike stretched black hole of topologically
massive gravity. In the grand canonical ensemble, it is locally un-
stable for all temperatures, and globally unstable for temperatures
below a critical value Tc given by (22). In the canonical ensemble,
the black hole is locally unstable and globally stable above for tem-
peratures above Tc , and vice versa for temperatures below Tc . The
implications of these results for the classical stability of the black
hole under linear perturbations remain to be checked. According
to the correlated stability conjecture, one would conclude that the
black hole is classically unstable due to the fact that it is locally
unstable in the grand canonical ensemble. However, counterexam-
ples to the correlated stability conjecture have been found, and
therefore the task remains to check classical stability. This study
will be aided by the fact that appropriate boundary conditions
have already been discussed in [23–25], although a resolution of
the equations of motion in separable form presents a challenge
[21,22]. Stability properties for the null warped solution of TMG
have been discussed in [35].
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