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0. Introduction

This note lies in the scope of matricial inequalities. The main motivation of this theory is to extend

some classical inequalities for reals to self-adjoint matrices. Of course, the non-commutativity of Mn

(the space of n × n complex matrices) enters into the game, making things much more complicated.

The book [4] is a very good introduction to this subject. Many techniques have been developed, such

as the theory of operator monotone/convex functions and their links with completely positive maps.

Nevertheless the proofs very often rely on quite clever but simple arguments. As an illustration of the

available tools, a very classical result is Kadison’s inequality [13] saying that if Φ : A → M is a unital

positive (linear) map between C∗-algebras, then for a self-adjoint element A in A,

Φ(A)2 � Φ(A2).

Taking Φ : Mn ⊕ Mn → Mn, Φ(A, B) = (A + B)/2, this reflects the operator convexity of t �→ t2.

One can think of it as a kind of Jensen’s or Cauchy–Schwarz’s inequality. The main motivation of this
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paper is to try to get comparison relations between the images of the powers of A. At a first glance, one

does not expect to have many positive results beyond operator convexity. But surprisingly, we notice

here that |Φ(Ap)Φ(Aq)| � Φ(Ap+q) provided that 0� p� q and A� 0. This and some variations are our

concern of the first section.

The second section deals more generally with monotone pairs, in place of pairs (Ap, Aq). These are

pairs (A, B)of positive operators, characterizedby joint relationsA = f (C) andB = g(C) for someC � 0

inMn and two non-decreasing, non-negative functions f (t) and g(t) on [0,∞). ComparingΦ(A)Φ(B)
with Φ(AB) is non-commutative versions of the classical Chebyshev’s inequality,⎛

⎝1

n

n∑
i=1

ai

⎞
⎠ ·

⎛
⎝1

n

n∑
i=1

bi

⎞
⎠�

1

n

n∑
i=1

aibi

for non-negative increasing sequences {ai} and {bi} (here Φ is just a state).

In the last part, we point out the links between complex interpolation and power means. Along

with some very classical approach and an idea of [11], this is used to furnish a simple proof of Furuta’s

inequality, which is the main tool in Section 1.

We assume that the reader is familiar with basic notions in operator and matricial inequalities

theories. When possible, we state the results in their general context, that is, for von Neumann or

C∗-algebras. But matrix inequalities for positive linear maps are essentially finite dimensional results,

especiallywhen it comes to unitary congruences. So, the readermay like to think of the algebras asMn.

1. Kadison’s asymmetric type inequalities

In this section, we deal with positive linear maps Φ : A → M between two unital C∗-algebra A
and M with units denoted by I. In fact, we may assume that A is the unital C∗-algebra generated by a

single positive operator A; hence, by a classical dilation theorem of Naimark (see [14, Theorem 3.10]),

our maps Φ will be automatically completely positive. We will also always assume that these maps

are unital, Φ(I) = I, or more generally sub-unital, Φ(I) � I.

Kadison’s inequality is one of the most basic and useful results for such sub-unital maps; it states

that for any A ∈ Asa (the self-adjoint elements in A),

Φ(A)2 � Φ(A2).

More generally, if f is operator convex on an interval containing 0 and f (0) ≤ 0, then one has

f (Φ(A)) � Φ(f (A))

for all A ∈ Asa with spectrum in the domain of f . If we drop the condition that 0 is in the domain of f

and f (0) ≤ 0, this Jensen’s inequality remains true for unital maps. When Φ is the compression map

to a subspace, it is then a basic characterization of operator convexity due to Davis [8]. The general case

was noted in an influential paper of Choi [6]; nowadays everything is very clear using Stinespring’s

theorem (see [14, Theorem 4.1]) for completely positive maps.

First examples of operator convex/concave functions on R+ are given by powers, we refer to the

corresponding Jensen inequalities as Choi’s inequality; for A ∈ A+ (the positive cone of A),

Φ(Ap) � Φ(A)p, 0� p� 1,

and

Φ(A)p � Φ(Ap), 1� p� 2.

In the spirit of operator convexity, one can naturally think of looking for more comparison relations

between powers of A.

We start with an asymmetric extension of Kadison’s inequality:

Theorem 1.1. Let A ∈ A+ and, 0� p� q. Then,

|Φ(Ap)Φ(Aq)| � Φ(Ap+q).
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Proof. We will derive this result from Furuta’s inequality that we recall as follows:

Let X � Y � 0 in some B(H), let α � 1 and β � 0. Then, for γ �(α + 2β)/(1 + 2β),

X(α+2β)/γ � (XβYαXβ)1/γ ,

with equality if and only if X = Y .

We will discuss about it in Section 3. Now, set

X = Φ(Aq)
p
q , Y = Φ(Ap).

By Choi’s inequality, X � Y . Then we apply Furuta’s inequality to X and Y with

α = 2, β = q

p
, γ = 2.

Note that

γ = 2�
2 + 2(q/p)

1 + 2(q/p)
= α + 2β

1 + 2β

so that assumptions of Furuta’s inequality are satisfied. Thus we obtain

{Φ(Aq)
p
q } 2+2(q/p)

2 � ({Φ(Aq)
p
q } q

p {Φ(Ap)}2{Φ(Aq)
p
q } q

p )1/2,

equivalently

Φ(Aq)1+p/q � |Φ(Ap)Φ(Aq)|. (1.1)

Since 1� 1 + p/q� 2, using once again Choi’s inequality for operator convex functions,

Φ(Ap+q) � Φ(Aq)1+p/q. (1.2)

Combining (1.1) and (1.2) completes the proof. �

Remark. Actually, we have shown the stronger inequality (1.1) that can be restated as follows: For

0� α � 1, Φ(A)1+α � |Φ(Aα)Φ(A)|.
Remark. For 0 < p� q, the equality case in Theorem 1.1 entails the equality case in Choi’s inequality,

so that Φ(At) = Φ(A)t for all t > 0, in other words A is in the multiplicative domain of Φ .

Corollary 1.2. Assume that moreover M is a von Neumann algebra, then for A ∈ A+ and p, q� 0, there is

a partial isometry V ∈ M such that

|Φ(Ap)Φ(Aq)| � VΦ(Ap+q)V∗.
If M is finite, then V can be chosen to be unitary.

This follows fromTheorem1.1 and thepolar decomposition. Indeed, for any Z ∈ M, there is a partial

isometry V so that Z = V |Z| and moreover |Z∗| = V |Z|V∗ and |Z| = V∗|Z∗|V . If M is finite, then V

can also be chosen unitary. But in general, one cannot assume V to be unitary.

Remark. Fix 0 < q < p. Let

A =
⎡
⎣1 + ε ε ε

ε 2 + ε ε
ε ε 3 + ε

⎤
⎦ , B =

⎡
⎢⎢⎣
1 1 1

2

1 1 1
2

1
2

1
2

1

⎤
⎥⎥⎦

and let Φ be the Schur product with B. Then for ε small enough, it follows from tedious computations

on derivatives, that we cannot get rid of V in Corollary 1.2 like in Theorem 1.1.
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From now on, we come back to the setting ofmatrix inequalities whereM = Mn for some positive

integer n.

The next two results are variations of Corollary 1.2. We rely on an easy consequence of the min-

max principle; if A� B � 0 in Mn and f (t) is non-decreasing on [0,∞[, then f (A) � Vf (B)V∗ for some

unitary V ∈ Mn.

Proposition 1.3. Let A ∈ A+ and p, q, r � 0 such that min{p, r} � q/2 and max{p, r} � q. Then, for some

unitary V ∈ Mn,

|Φ(Ap)Φ(Aq)Φ(Ar)| � VΦ(Ap+q+r)V∗.

Proof. Wemay assume q = 1 and r � 1/2. We then have

Φ(Ar)2 � Φ(A2r) � Φ(A)2r

so that Φ(Ar) = Φ(A)rK for a contraction K . Hence, for some unitary U,

|Φ(Ap)Φ(A)Φ(Ar)| �U|Φ(Ap)Φ(A)1+r |U∗

so

|Φ(Ap)Φ(A)Φ(Ar)| �U
(
{Φ(A)}1+r{Φ(Ap)}2{Φ(A)}1+r

) 1
2
U∗. (1.3)

Now, observe that a byproduct of Furuta’s inequality is:

If X � Y � 0 and, α, β � 0, then for some unitary W ,

Xα+2β �W(XβYαXβ)W∗.
Applying this inequality to X = Φ(A)p and Y = Φ(Ap)withα = 2, β = (1 + r)/p and combining

with (1.3) yields

|Φ(Ap)Φ(A)Φ(Ar)| � V0(Φ(A)1+p+r)V∗
0

for some unitary V0. Since, by a byproduct of Choi’s inequality, we also have some unitary V1 such that

Φ(A)1+p+r � V1Φ(A1+p+r)V∗
1 ,

we get the conclusion. �

At the cost of onemore unitary congruence, assumptions of Proposition 1.3 can be relaxed. Wewill

use an inequality of Bhatia and Kittaneh (see [4] for an elementary proof): For all A, B in some finite

von Neumann algebra M, there is some unitary U ∈ M such that

|AB∗| �U
|A|2 + |B|2

2
U∗.

Proposition 1.4. Let A� 0 in A and let p, q, r � 0 with q� p, r. Then, for some unitaries U, V in Mn,

|Φ(Ap)Φ(Aq)Φ(Ar)| �
UΦ(Ap+q+r)U∗ + VΦ(Ap+q+r)V∗

2
.

Proof. Wemay assume q = 1. Let α ∈ [0, 1] and note that by Bhatia–Kittaneh’s inequality,

|Φ(Ap)Φ(A)Φ(Ar)| = |Φ(Ap)Φ(A)α · Φ(A)1−αΦ(Ar)|
� W

|Φ(Ap)Φ(A)α|2 + |Φ(Ar)Φ(A)1−α|2
2

W∗ (1.4)

for some unitaryW . Then set α = (r − p + 1)/2 (hence 0� α � 1). We may estimate each summand

in (1.4) via Furuta’s inequality, since Φ(Ap) � Φ(A)p and Φ(Ar) � Φ(A)r . For the first summand, there

are some unitariesW0 andW1 such that
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|Φ(Ap)Φ(A)α|2 = {Φ(A)p} r−p+1
2p {Φ(Ap)}2{Φ(A)p} r−p+1

2p

� W0Φ(A)1+p+rW∗
0

� W1Φ(A1+p+r)W∗
1 , (1.5)

where the last step follows from Choi’s inequality. We also have a unitary W2 such that

|Φ(Ar)Φ(A)1−α|2 �W2Φ(A1+p+r)W∗
2 (1.6)

and combining (1.4)–(1.6) completes the proof. �

2. Matrix monotony inequalities

Here we try to understand the results of the first section, using the more general notion of a

monotone pair. Recall that (A, B) is said to be a monotone pair in Mn if there exist a positive element

C ∈ Mn and two non-negative, non-decreasing functions f and g so that A = f (C) and B = g(C). A
typical example is (Ap, Aq) for A� 0 and p, q� 0.

For technical reasons, we have to stick to Mn, as many arguments rely on the min–max principle.

For instance, we use the following result of [5] which compares the singular values of AEB and ABE for

some projections E.

Theorem 2.1. Let (A, B) be amonotone pair and let E be a self-adjoint projection. Then, for some unitary V,

|AEB| � V |ABE|V∗.

As consequences, we have the following Chebyshev’s type eigenvalue inequalities for compres-

sions [5],

λj[(EAE)(EBE)] � λj[EABE]
and

λj[(EAE)(EBE)(EAE)] � λj[EABAE], (2.1)

where λj[·] stands for the list of eigenvalues arranged in decreasing order with their multiplicities. Let

Φ : Mn → Md be a unital completely positive (linear) map. It is well known (Stinespring) thatΦ can

be decomposed as Φ(A) = Eπ(A)E, where π : Mn → Mm is a ∗-representation (with m� n2d) and

E ∈ Mm is a rank d projection (and identifying EMmE with Md). Taking into account that we start

from a commutative C∗-algebra, (2.1) is then equivalent to:

Corollary 2.2. Let (A, B) be amonotone pair inMn and letΦ : Mn → Md be a unital positivemap. Then,
for some unitary V ∈ Md,

Φ(A)Φ(B)Φ(A) � VΦ(ABA)V∗.

In the case of pairs of positive powers (Ap, Aq), such results are easy consequences of Furuta’s

inequality. To apply Corollary 2.2 we define a special class of monotone pairs (of positive operators).

Definition. A monotone pair (A, B) is concave if A = h(B) for some concave function h : [0,∞) →
[0,∞).

This class contains pairs of powers (Ap, Aq) with 0� p� q and we note that Corollaries 2.4 and 2.5

below are variations of Theorem 1.1. We first state a factorization result.

Theorem 2.3. Let (A, B) be a concave monotone pair in Mn and let Φ : Mn → Md be a unital positive

map. Then, for some contraction K and unitary U in Md,
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Φ(B)Φ(A) =
√

Φ(AB)K
√

Φ(AB)U.

Proof. By a continuity argument we may assume that A is invertible, hence(
AB B

B BA−1

)
� 0.

Replacing Φ by Φ ◦ E, where E is the conditional expectation onto the C∗-algebra generated by A

and B, we can assume that Φ is completely positive so that we get(
Φ(AB) Φ(B)

Φ(B) Φ(BA−1)

)
� 0,

equivalently,(
Φ(AB) Φ(B)Φ(A)

Φ(A)Φ(B) Φ(A)Φ(BA−1)Φ(A)

)
� 0.

The concavity assumption on (A, B) implies that (A, BA−1) is a monotone pair, indeed both h(t) and

t/h(t) are non-decreasing. By Corollary 2.2, we then have a unitary U such that(
Φ(AB) Φ(B)Φ(A)

Φ(A)Φ(B) U∗Φ(AB)U

)
� 0, (2.2)

equivalently,

Φ(B)Φ(A) =
√

Φ(AB)LU∗√Φ(AB)U

for some contraction L. �

Theorem 2.3 is equivalent to positivity of the block-matrix (2.2). Considering the polar decomposi-

tion Φ(A)Φ(B) = W|Φ(A)Φ(B)| we infer

(
I −W∗) ( Φ(AB) Φ(B)Φ(A)

Φ(A)Φ(B) U∗Φ(AB)U

)(
I

−W

)
� 0

and thus obtain:

Corollary 2.4. Let (A, B) be a concave monotone pair in Mn and let Φ : Mn → Md be a unital positive

map. Then, for some unitary V ∈ Md,

|Φ(A)Φ(B)| �
Φ(AB) + VΦ(AB)V∗

2
.

Recall that a norm is said symmetric whenever ‖UAV‖ = ‖A‖ for all A and all unitaries U, V .

Corollary 2.4 yields for concave monotone pairs some Chebyshev’s type inequalities for symmetric

norms,

‖Φ(A)Φ(B)‖ � ‖Φ(AB)‖.
It is not clear that this can be extended to all monotone pairs. In fact, for concave monotone pairs,

Theorem2.3 entails a stronger statement. Given X, Y � 0, recall that theweak log-majorization relation

X ≺wlog Y means∏
j � k

λj[X] �
∏
j � k

λj[Y]

for all k = 1, 2, . . . This entails ‖X‖ � ‖Y‖ for all symmetric norms. Theorem 2.3 and Horn’s inequality

yield:

Corollary 2.5. Let (A, B) be a concave monotone pair in Mn and let Φ : Mn → Md be a unital, positive

linear map. Then,
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|Φ(A)Φ(B)| ≺wlog Φ(AB).

In case of pairs (Ap, Aq) we have more:

Proposition 2.6. Let A� 0 in Mn, let p, q� 0 and let Φ as above. Then, for all eigenvalues,

λj[Φ(Ap)] λj[Φ(Aq)] � λj[Φ(Ap+q)].
Proof. We outline an elementary proof. It suffices to show that for a given projection E,

λj[EApE]λj[EAqE] � λj[EAp+qE]. (2.3)

In case of the first eigenvalue, this can be written via the operator norm ‖ · ‖∞ as

‖EApE‖∞‖EAqE‖∞ � ‖EAp+qE‖∞. (2.4)

The proof of (2.4) follows from Young’s and Jensen’s inequalities (always true for the operator norm),

‖EApE‖∞‖EAqE‖∞ �
p

p + q
‖EApE‖

p+q
p∞ + q

p + q
‖EAqE‖

p+q
q∞

� ‖EAp+qE‖∞.

The min–max characterization of eigenvalues combined with (2.4) implies the proposition; indeed

simply take Q a projection commuting with E of corank j − 1 so that ‖QEAp+qEQ‖∞ = λj[EAp+qE]
and apply (2.4) with QE instead of E. �

Results of this section follow from (2.1), equivalently fromCorollary 2.2, and hence have been stated

for unital positivemaps. In fact these results can be stated to all sub-unital positivemaps. In particular

the key Corollary 2.2 becomes:

Corollary 2.2a. Let (A, B) be amonotone pair inMn and letΦ : Mn → Md be a sub-unital positivemap.
Then, for some unitary V ∈ Md,

Φ(A)Φ(B)Φ(A) � VΦ(ABA)V∗.

Proof. Let A be the unital ∗-algebra generated by A and B. Restricting Φ to A, it follows from Stine-

spring’s theorem (or from Naimark’s theorem) that Φ can be decomposed as Φ(A) = Zπ(A)Z , where

π : A → Mm is a ∗-representation (with m� nd) and Z ∈ Mm is a positive contraction (and identi-

fying EMmE with Md for some projection E � Z).

Since (π(A),π(B)) is monotone, it then suffices to prove the result for congruence maps of Mn of

type Φ(X) = ZXZ where Z is a positive contraction. We may then derive the result from (2.1) and a

two-by-two trick: Note that

A0 =
(
A 0

0 0

)
and B0 =

(
B 0

0 0

)

form a monotone pair. Note also that

E =
(

Z (Z(I − Z))1/2

(Z(I − Z))1/2 I − Z

)

is a projection. By (2.1),

λj[(EA0E)(EB0E)(EA0E)] � λj[EA0B0A0E],
equivalently,

λj[|EA0EB
1/2
0 |2] � λj[(A0B0A0)

1/2E(A0B0A0)
1/2]. (2.5)
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Observe that

|EA0EB
1/2
0 |2 =

(
B1/2ZAZAZB1/2 0

0 0

)
�
(
Z1/2AZBZAZ1/2 0

0 0

)
(2.6)

where � means unitary equivalence, and similarly,

(A0B0A0)
1/2E(A0B0A0)

1/2 �
(
Z1/2ABAZ1/2 0

0 0

)
. (2.7)

Combining (2.6) and (2.7) with (2.5) and replacing Z1/2 by Z yields

ZAZ · ZBZ · ZAZ � V(ZABAZ)V∗

for some unitary V . �

We end Section 2 with a remark about the two-by-two trick used to derive Corollary 2.4. This can

be used to get some triangle type matrix inequalities. For instance, given two operators A and B in

some von Neumann algebra M, there exists a partial isometry V such that:

|A + B| �
|A| + |B| + V∗(|A∗| + |B∗|)V

2
. (2.8)

To check it, note that, since for all X ,(|X∗| X

X∗ |X|
)

� 0,

we thus have for all V ,

(−V∗I) (|A∗| + |B∗| A + B

A∗ + B∗ |A| + |B|
)(−V

I

)
� 0,

and taking V the partial isometry in the polar decomposition of A + B yields (2.8). This can be used

to give a very short proof of the triangle inequality for the trace norm in semi-finite von Neumann

algebras.

3. Means and order preserving relations

Furuta’s inequality was used as key tool in the first section; here we present a possible proof for

completeness. For that purpose we use the geometric mean of positive definite matrices and Ando–

Hiai’s inequality. We do not pretend to originality and we closely follow an approach due to Ando,

Hiai, Fujii and Kamei. However, we point out an interesting observation connecting the geometric

mean to complex interpolation. In fact this observation is rather old: Identifying positive operators

with quadratic forms, it is worth noting that Donoghue’s construction with complex interpolation [9]

seems to be the first appearance of the matrix geometric mean.

In the whole section we consider B(H), the set of all bounded operators on a Hilbert space H, and

its positive invertible part, B+.

For details and some important results around the geometric mean we refer to [1,2], references

herein, and [4] for a nice survey of other features of the weighted geometric means, especially as

geodesics on the cone of positive operators.

3.1. Means and interpolation

Let α ∈ [0, 1] and consider a map

B+ × B+ → B+

(A, B) �→ A	αB
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satisfying the two natural requirements for an α-geometrical mean

1. If AB = BA then A	αB = A1−αBα .

2. (X∗AX)	α(X∗BX) = X∗(A	αB)X for any invertible X .

Choosing the appropriate X , we necessarily have

A	αB = A1/2(A−1/2BA−1/2)
α
A1/2.

So there is a unique extension of the α-geometrical mean for commuting operators which is invariant

under congruence, that is called the α-geometrical mean.

Matrix geometricmeans have their roots in thework of Pusz andWoronowicz [15] about functional

calculus for sesquilinear forms. Their construction is closely related to complex interpolation. Coming

back to means, these links are even clearer.

We briefly recall the complex interpolation method of Calderon, see [3] for a complete exposition.

Two Banach spaces A0 and A1 are said to be an interpolation couple if there is another Banach

space V and continuous embeddings Ai → V . So we have a way to identify elements and it makes

sense to speak of A0 ∩ A1 and A0 + A1 (which are also Banach spaces with the usual norms). The

idea of interpolation is to assign for each α ∈ [0, 1] a space that is intermediate between the Ai. The

construction is a bit technical.

Let Δ = {z ∈ C|0 < Re z < 1}, δi = {z ∈ C|Re z = i} for i = 0, 1. Define F(A0, A1) as the set of

maps f : Δ → A0 + A1, such that

(i) f is analytic in Δ.

(ii) for i = 0, 1, f (δi) ⊂ Ai and f : δi → Ai is bounded and continuous.

(iii) for i = 0, 1, limt∈R→±∞ ‖f (i + it)‖Ai = 0.

Equipped with the norm

‖f‖ = max
i=0,1

{sup
z∈δi

‖f (z)‖Ai}
F(A0, A1) becomes a Banach space. Finally for α ∈ [0, 1],

(A0, A1)α = {x ∈ A0 + A1 : ∃f ∈ F(A0, A1) so that f (α) = x}
with the quotient norm

‖x‖(A0 ,A1)α = inf{‖f‖ : f (α) = x}.
This functor has many nice properties. The most common is the interpolation principle; consider

two interpolation couples (A0, A1) and (B0, B1) and bounded maps Ti : Ai → Bi so that T1 and T2
coincide on A0 ∩ A1, then one can define a map Tα : (A0, A1)α → (B0, B1)α which extends Ti on A0 ∩
A1, and moreover one has ‖Tα‖ � ‖T0‖1−α‖T1‖α .

There are concrete examples where these interpolated norms can be computed. If A0 = L∞([0, 1])
and A1 = L1([0, 1]), one has (A0, A1)α = L1/α([0, 1]).

Using basic properties of the interpolation, it is easy to see that the interpolation of two compat-

ible Hilbert spaces is still a Hilbert space. Indeed, by [3] Theorem 5.1.2, the parallelogram identity is

preserved by the complex interpolation method.

Let A ∈ B+, then it defines an equivalent hilbertian norm on H by ‖h‖A = ‖A1/2h‖H. And con-

versely any equivalent hilbertian norm on H arises from some A ∈ B+. We denote by HA the Hilbert

space coming from A.

Now takeAi ∈B+, (HA0 ,HA1) forms an interpolation couple ofHilbert space (with theobvious iden-

tification). The resulting interpolated space forα ∈ [0, 1]will also give an equivalent norm onH, asso-

ciated to an operator thatwe call Aα . Let us have a look at the properties of (A0, A1) �→ Iα(A0, A1)=Aα .

First, it is an easy exercise to check that if A0 and A1 commute then Iα(A0, A1) = Aα = A
1−α
0 Aα

1 .

Secondly, let X ∈ B(H) be invertible. With Bi = X∗AiX , it is clear that X : HBi → HAi is a unitary

for i = 0, 1. From the interpolation principle, X will also be unitary for the interpolated norms. Coming

back to operators, this says that Iα(X∗A0X, X
∗A1X) = X∗Iα(A0, A1)X .
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So we can conclude that the α-geometric mean is the interpolation functor of index α. With this in

mind, all properties of the means come from basic results in the complex interpolation theory.

Take (A0, A1) and (B0, B1) in (B+)2 and assume that Bi � Ai. This means that the identity of H is a

contraction from HAi to HBi . By the interpolation principle, the same holds for the interpolated norms.

So we can conclude that the α-mean is monotone. Note that this gives another proof of the monotony

of A �→ Aα for 0� α � 1.

To get concavity of the mean is also easy for people familiar with interpolation. Take Ai and Bi
in B+, and 0 < λ < 1 and notice that the map HλAi+(1−λ)Bi → HλAi ⊕2 H(1−λ)Bi , h �→ (h, h) is an

isometry. From properties of the interpolation functor, we deduce that the same map

H(λA0+(1−λ)B0)	α(λA1+(1−λ)B1) → Hλ(A0	αA1) ⊕2 H(1−λ)(B0	αB1) is a contraction. Coming back to an

inequality on operators gives the concavity. This illustrates the well-known fact that taking subspaces

and interpolation do not commute.

Another useful result is the reiteration theorem: For any α,β , γ ∈ [0, 1], we have (provided that

A0 ∩ A1 is dense in both A0 and A1)

((A0, A1)α , (A0, A1)β)γ = (A0, A1)(1−γ )α+γβ .

This means that for any x, y, z ∈ [0, 1] and A, B ∈ B+,

(A	xB)	z(A	yB) = A	x(1−z)+yzB.

Of course this can also be checked directly from the formulae defining 	.
The next theorem is the Ando–Hiai inequality. We only use the language of operator mean, but this

is really a proof in the spirit of the interpolation theory.

Theorem 3.1. Let A, B ∈ B+ and 0 < s < 1. Then,

‖(A	αB)
s‖∞ � ‖As	αB

s‖∞.

Proof. By homogeneity we may assume ‖A	αB‖∞ = 1. Hence we have A	αB � I. By using monotony

of geometric means and the reiteration principle we then get

As	αB
s = (I	sA)	α(I	sB)

� ((A	αB)	sA)	α((A	αB)	sB)

= ((A	αB)	s(A	0B))	α((A	αB)	s(A	1B))

= (A	α(1−s)B)	α(A	α(1−s)+sB) = A	αB.

Thus ‖As	αB
s‖∞ � 1 and this proves the theorem. �

Remark. A theory of complex interpolation for families of Banach spaces has been developed in [7].

The family may be indexed by the unit circle in C, say A(z), with some technical assumptions. The

interpolation then provides a family of spaces A(z) for |z| < 1. This can be used define a mean of

several operators. For instance, in the case of n operators, one may pick a partition of the unit circle in

n sets Ei with Lebesgue measure αi, and choose the family A(z) = HAi if z ∈ Ei. Then the interpolated

space at 0 is of the form A(0) = HA, and one may think of A as a (αi)-mean of the Ai’s. Unfortunately

this definition depends on the choice of the Ei (unless n = 2). This kind of approach for interpolation

of a finite family of spaces can also be found in [10].

3.2. From means to order relations

Next we explain how to go from Ando–Hiai’s inequality to Furuta’s theorem (their equivalence was

pointed out in [11]).

LetA, B ∈ B+ withA� B. Then,A−1	1/2B � I, so by Ando–Hiai’s inequality,A−p	1/2B
p � Iwhenever

p� 1. Equivalently we have an order preserving relation for f (t) = tp with p� 1,
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Ap �(Ap/2BpAp/2)1/2, p� 1.

Such inequalities suggest to look for the best exponents p, r, w for which

A� B � 0 ⇒ A(p+r)w � (Ar/2BpAr/2)w (3.1)

and consequently to get interesting substitutes to the lack of operator monotony of f (t) = tp, p� 1.

To do so, it seems natural to find relations for weighted geometric means of the form

A� B � 0 ⇒ A−r	αB
p � I. (3.2)

Because of homogeneity, this can hold only for α = r
p+r

. If p� 1, this inequality is obvious by the

monotony of the mean. For p > 1, as above thanks to Ando–Hiai’s inequality, one only need to find

s� 1 so that A−sr	αB
sp � I; we have just said that s = 1/pworks. We have proved:

Lemma 3.2. Let A, B ∈ B+ with A� B and p, r > 0. Then,

A−r	 r
p+r

Bp � I.

Taking another mean with Bp, we obtain the optimal form of (3.2):

Lemma 3.3. Let A, B ∈ B+ with A� B and r > 0, p� 1. Then,

A−r	 1+r
p+r

Bp � B � A.

Hence we have recaptured quite easily two lemmas due to Fujii and Kamei [11].

We come back to relations of the form (3.1), the last lemma says:

A� B � 0 ⇒ A1+r �
(
A

r
2 BpA

r
2

) 1+r
p+r

, r > 0, p� 1. (3.3)

Equivalently,

A(p+r)w � (A
r
2 BpA

r
2 )w, r > 0, p� 1,

where w = 1+r
p+r

. This is still valid for w � 1+r
p+r

by the operator monotony of t �→ tα , 0� α � 1. We

obtain Furuta’s theorem:

Theorem 3.4. Let A, B � 0 in B(H) and r � 0, p� 1. If q�(p + r)/(1 + r), then

A(p+r)/q � (A
r
2 BpA

r
2 )1/q.

The general statement follows from the case B ∈ B+ by continuity.

3.2.1. Comments

Around 1985 it was conjectured by Kwong that A� B � 0 entails A2 �(AB2A)1/2, equivalently
A2 � |BA|. In 1987, Furuta [12] provedhis inequality. Somenumerical experiments leadhim to know the

condition on the exponents and he obtained a direct, quite ingenious proof. However the natural con-

jecture of Kwongmay bewritten via geometric means and is nicely answered by a basic case of Ando–

Hiai’s inequality (1994). Hence order preserving relations may be obtained from a study of weighted

geometric means. We have followed this idea, mainly developed by Ando, Hiai, Fujii and Kamei.
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