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Abstract Chicken muscular dystrophy with abnormal muscle
(AM) has been studied for more than 50 years, but the gene
responsible for it remains unclear. Our previous studies narrowed
down the AM candidate region to approximately 1 Mbp of
chicken chromosome 2q containing seven genes. In this study,
we performed sequence comparison and gene expression analysis
to elucidate the responsible gene. One missense mutation was de-
tected in AM candidate genes, while no remarkable alteration of
expression patterns was observed. The mutation was identified in
WWP1, detected only in dystrophic chickens within several tet-
rapods. These results suggested WWP1 is responsible for chick-
en muscular dystrophy.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Muscular dystrophy is known as a group of inherited dis-

eases producing progressive weakness and degeneration of

skeletal muscles [1]. Many genetically varied diseases are in-

cluded, and more than 30 causative genes have been identified

so far [2]. However, genes responsible for several muscular dys-

trophies and related diseases have not yet been identified [3].

Asmundson and Julian have first reported dystrophic chick-

ens with abnormal muscle (AM) in 1956 [4]. Since then, several

strains have been established. The disease is transmitted co-

dominantly by a single gene, but the phenotype is modified

by other background genes [5–7]. Although abnormalities in

the structural proteins binding sarcolemma to basal lamina

were found in many animal models for muscular dystrophy
Abbreviations: AM, abnormal muscle; UPP, ubiquitin-proteasome
pathway; Ub, ubiquitin
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[8], the responsible gene(s) and protein(s) responsible for caus-

ing chicken muscular dystrophy have yet to be identified. This

study attempted to identify the responsible gene and mutation

by sequence comparison and expression analysis.
2. Materials and methods

2.1. Genetic resource
For sequencing and expression analyses, NH-413 and OPN strains

were tested as dystrophic chickens [9], and White Leghorn-F (WL-F)
and GSP strains were as normal chickens.

Genomic DNA samples were obtained from total 111 individuals
consisting of 16 strains: 20 White Cornishes, 19 White Plymouth
Rocks, 20 broilers (White Cornish · White Plymouth Rock), 20 White
Leghorns, and 20 Brown Leghorns, maintained at the Tokushima For-
est and Forestry Research Institute, Japan, an Onagadori, an Ukokkei,
a White Leghorn, a White Plymouth Rock, a Black Minorca, a Fayo-
umi, a Vietnam native, a Laos native, an Echigo native, a Tosa native,
and two Red Jungle fowls from Laos and Indonesia. Muscle cDNA li-
braries of pigeon, alligator, lizard, turtle and frog, and liver cDNA li-
brary of snake, were used to determine partial sequences of WWP1
gene in this study [10,11].

2.2. Sequencing for seven candidate genes
Pectoral muscle cDNAs were used as template DNA to sequence for

WWP1, LOC420213, LOC420214 and MMP16, while genomic DNA
for ATP6V0D2, LOC420211 and LOC428367. In using cDNA as tem-
plate, primers were designed to amplify each coding region, and in
using genomic DNA, to amplify each exon. The primer sequences
and the PCR conditions were summarized in Table 1(a). Sequencing
was performed with BigDye� Terminator v3.1 Cycle Sequencing Kit
and ABI PRISM� 3100 Genetic Analyzer (Applied Biosystems, Foster
City, CA). For polymerase chain reaction (PCR), TaKaRa Ex Taq�

Hot Start Version or TaKaRa LA Taq� with GC buffer (Takara, To-
kyo, Japan) was used as polymerase.

2.3. Genotyping chickens for WWP1
Genotyping of 111 individuals from 16 strains for WWP1 was car-

ried out by PCR-restriction fragment length polymorphism (RFLP)
method. Primer set was established to amplify the region with a single
nucleotide polymorphism (SNP) on WWP1. One of them was mis-
matched primer and designed so that the chicken with wild-type
WWP1 yielded three DNA fragments and the one with mutated
WWP1 yielded two through digestion by a MboI restricted enzyme
(Fermentas International Inc., Ontario, Canada). The primer se-
quences and the PCR condition applied were shown in Table 1(b).
blished by Elsevier B.V. All rights reserved.
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Table 1
Sequences of primers and PCR conditions for sequencing, genotyping and expression analysis

Name Primera Sequence (50 fi 30) PCR conditionb

(a) Primers used for sequencing to produce template DNA
ATP6V0D2 ATP6V0D2s-F1 tctaaaactatgtgagcctggagtag Normal PCR (EX-Taq): 58 �C

ATP6V0D2s-R1 ccaaatcacagtctacacaatcctgc 1 min, 30 cycles

ATP6V0D2s-F2 gacacgttataatggtgcaatagtgg Normal PCR (EX-Taq): 58 �C
ATP6V0D2s-R2 ccagaccctatacacagtaaagagtc 1 min, 30 cycles

ATP6V0D2s-F3 gagatggtgatagtgagtgaaggtac Normal PCR (EX-Taq): 58 �C
ATP6V0D2s-R3 tagaagttgttaataaatgttgccag 1 min, 30 cycles

ATP6V0D2s-F4 gctgctgcactgattgattccctttg Normal PCR (EX-Taq): 64 �C
ATP6V0D2s-R4 tccagacttgccatcagccaggtgac 1 min, 30 cycles

ATP6V0D2s-F5 attatgcagtagaaactcaatggagc Normal PCR (EX-Taq): 58 �C
ATP6V0D2s-R5 aaaatggtaaggagcaatagtctgag 1 min, 30 cycles

ATP6V0D2s-F6 aagtacgtgtgattattgatccttac Normal PCR (EX-Taq): 58 �C
ATP6V0D2s-R6 atagcatttaacacagtaagtggaac 1 min, 30 cycles

ATP6V0D2s-F7 gaagttcagtgctctctatccaaagg Normal PCR (EX-Taq): 58 �C
ATP6V0D2s-R7 ttggtaagagactacagcagcattac 1 min, 30 cycles

ATP6V0D2s-F8 agtttcctaagtacagttgtgattgc Normal PCR (EX-Taq): 58 �C
ATP6V0D2s-R8 catttaacttcagcaacaggtcacag 1 min, 30 cycles

LOC420211 LOC420211s-F ctgaaggagtccacacgcccaagtca SH PCR (LA-Taq): 68 �C
LOC420211s-R cgagcaacagaactagcagacattcc 3 min, 27 cycles

WWP1 WWP1s-F1 aggctccacatgggcagaactttgtc Normal PCR (EX-Taq): 62 �C
WWP1s-R1 tcaaataggcagtacatagggttcag 2 min, 35 cycles

WWP1s-F2 acttgctcatttccgttacttgtgtc Normal PCR (EX-Taq): 65 �C
WWP1s-R2 ttgaagattacctaacatcctcgtgg 2 min, 30 cycles

LOC420213 LOC420213s-F ctcgctcgcaccttctcctcccctgg SH PCR (EX-Taq): 68 �C
LOC420213s-R ttcattttcctatgctgcttacatct 1 min, 40 cycles

LOC420214 LOC420214s-F atggcagcacagtgtgtgactaaggt SH PCR (EX-Taq): 68 �C
LOC420214s-R atccccgctcaagaaagtaactgatc 2 min, 32 cycles

LOC428367 LOC428367s-F1 gggaagtgaaggcaagagcaccaggc Normal PCR (EX-Taq): 64 �C
LOC428367s-R1 gaggagatttagattagatgttagca 1 min, 30 cycles

LOC428367s-F2 ctgctacagtattcccagtgagagat Normal PCR (EX-Taq): 55 �C
LOC428367s-R2 gatgagatataaatgtggtacaagta 1 min, 30 cycles

LOC428367s-F3 atcattctcagcaataaccatctagt Normal PCR (EX-Taq): 55 �C
LOC428367s-R3 tttcagataatcttggagcactcata 1 min, 30 cycles

LOC428367s-F4 tgaagagataatggaagccaagttct SH PCR (EX-Taq): 68 �C
LOC428367s-R4 tgaatactgggtaaatgtggttgcct 2 min, 32 cycles

LOC428367s-F5 taatgcttgacttctgcttgtactat Normal PCR (EX-Taq): 55 �C
LOC428367s-R5 atgagtaaatgtgatgtggtaagata 1 min, 30 cycles

LOC428367s-F6 gaaggttcccaaatactccattaaca Normal PCR (EX-Taq): 55 �C
LOC428367s-R6 gaaaacatataatctcacaatctgta 1 min, 30 cycles

LOC428367s-F7 atactgtttcttcactggagtaatga Normal PCR (EX-Taq): 60 �C
LOC428367s-R7 catatgtacttgagcaggtcagttga 1 min, 30 cycles

LOC428367s-F8 tcacagagtaaatacaggtggagagc Normal PCR (EX-Taq): 60 �C
LOC428367s-R8 ctgccatccttctaacagttcccat 1 min, 30 cycles

LOC428367s-F9 gtcagtgaggatattctgttcaatgt Normal PCR (EX-Taq): 55 �C
LOC428367s-R9 agataaatactcagttttctggttaa 1 min, 30 cycles

LOC428367s-F10 tacagactgtttcttacacaaccagc Normal PCR (EX-Taq): 60 �C
LOC428367s-R10 tcactgattacttaactgcttctgaa 1 min, 30 cycles

(continued on next page)
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Table 1 (continued)

Name Primera Sequence (50 fi 30) PCR conditionb

LOC428367s-F11 tcagtggagtatcaacttcagagatt Normal PCR (EX-Taq): 55 �C
LOC428367s-R11 aagcacctatatgtactagcagacaa 1 min, 35 cycles

LOC428367 LOC428367s-F12 gttgtcaggtgttcatccacacattc Normal PCR (EX-Taq): 55 �C
LOC428367s-R12 ctatttctctatccatcatcctctac 1 min, 35 cycles

LOC428367s-F13 tgcttcttggttgatctatgctctcc Normal PCR (EX-Taq): 55 �C
LOC428367s-R13 ggttttattctgtagccgtctctcct 1 min, 35 cycles

MMP16 MMP16s-F tgaacctgcgttacgggctcctcac SH PCR (EX-Taq): 68 �C
MMP16s-R ccttgtttgttggaaaatggctgtc 2.5 min, 35 cycles

(b) Primers used for genotyping
WWP1 WWP1m-F agagaaaatgagctatgcagtattac Normal-PCR (EX-Taq): 56 �C

WWP1m-R-mismatch tatataaaatttaccgaatagagggaa 1 min, 35 cycles

(c) Primers used for identifying WWP1 partial sequence of other species
WWP1 WWP1d-F1 aacaacvtggcagcgrccwachatgg DG-PCR (EX-Taq)

WWP1d-R gtaavccttgrgttckwggrtcttc

WWP1d-F2 aaytttgarcagtggcartctcagc DG-PCR (EX-Taq)

WWP1d-R gtaavccttgrgttckwggrtcttc

(d) Primers used for expression analysis
ATP6V0D2c ATP6V0D2p-F atattgtatggattgccgaatgc Normal-PCR (EX-Taq): 60 �C

ATP6V0D2p-R cgaaatggtcactgtggggaaca 0.5 min, 25, 30, 35 cycles

LOC420211c LOC420211p-F aaaggactgaataccatctgatt Normal-PCR (EX-Taq): 55 �C
LOC420211p-R tacaactgctaaatgctccctca 0.5 min, 25, 30, 35 cycles

WWP1 WWP1p-F tccctcataaatgttgaaagcagaca Normal-PCR (EX-Taq): 55 �C
WWP1p-R gtaataacccaaggtaatatgtaaac 0.5 min, 35 cycles

LOC420213 LOC420213p-F agtggcagaagttatagagcaagcag Normal-PCR (EX-Taq): 60 �C
LOC420213p-R cgtgtatgtcttctcctgtttgtcca 0.5 min, 35 cycles

LOC420214 LOC420214p-F tggtatgaggttgatcgcacagaaag Normal-PCR (EX-Taq): 60 �C
LOC420214p-R ggtgctacagttttgacttccttcgt 0.5 min, 35 cycles

LOC428367d LOC428367p-F tgtcttcgtcttctccagcttaattg –
LOC428367p-R ggctaataggctgatctccccaaata

MMP16c MMP16p-F cataatctttcccaagttgtaccaag Normal-PCR (EX-Taq): 52 �C
MMP16p-R gcaatatcagagtcatcattttagtt 0.5 min, 25, 30, 35 cycles

aEach column�s upper primers are forward primers and lower ones reverse primers.
bEach column shows PCR method (polymerase): annealing temperature, extension time, cyclic number applied by each primer sets. Normal PCR was
performed as the following: cyclic number at 94 �C for 30 s, annealing temperature for 30 s, 72 �C for extension time, SH PCR: cyclic number at
98 �C for 10 s, 68 �C for extension time, and DG PCR: 3 cycles at 95 �C for 30 s, 50 �C for 30 s, 72 �C for 30 s and 32 cycles at 95 �C for 30 s, 50 �C
for 30 s, 72 �C for 30 s.
cTo analyze their expressions, RT-PCR was performed.
dExpression of this gene was not confirmed.
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2.4. WWP1 homology search among species
To obtain WWP1 partial sequences of pigeon, snake, alligator, liz-

ard, turtle and frog, degenerate primers were designed based on those
of chicken (NM_001012554), human (NM_007013), mouse (NM_
177327) and rat (NM_001024757) published in NCBI. To amplify each
WWP1 of snake, alligator and pigeon, WWP1d-F1 and WWP1d-R
were used as primers, and WWP1d-F2 and WWP1d-R were used for
other species. The primer sequences and the PCR condition were
shown in Table 1(c). The amplified bands corresponding to WWP1
cDNAs were extracted from agarose gel and purified with Ultra-
Clean� 15 DNA Purification Kit (MO BIO Laboratories Inc., Carls-
bad, CA). The purified cDNA fragments were ligated into pGEM-T
vectors (Promega Corporation, Madison, WI) and transformed into
Escherichia coli JM109 competent cells. To confirm the sequence integ-
rity, eight independent clones were sequenced.
2.5. Expression analysis
For Northern blot analysis, pectorals mRNAs of a NH-413 and a

WL-F strain female were used. 2 lg of mRNAs were resolved by
1.2% agarose gel electrophoresis in the presence of formaldehyde
and blotted on to Hybond-N+ membrane (GE Healthcare Bio-Sci-
ences AB, Uppsala, Sweden). The mRNAs were visualized using
digoxigenin (DIG) reagents (Roche Diagnostics, Basel, Switzerland).
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The DIG-labeled DNA probes were prepared by PCR with DIG-
dUTP using pectorals cDNA. The primers used in this procedure were
shown in Table 1(d).

For genes whose expression was not detected by Northern blotting,
reverse transcription (RT)-PCR method was applied with same condi-
tion in Table 1(d).
3. Result

3.1. Mutations specific to muscular dystrophy

Sequence comparison of seven candidate genes in normal

and dystrophic chickens revealed three synonymous mutations

and one missense mutation specific to the phenotype of muscu-

lar dystrophy. Two of the synonymous mutations were de-

tected in LOC420214 (C660T and C1009A), and the other in

LOC428367 (C954T). The WWP1 missense mutation

(G1321A) caused amino acid substitution from arginine to glu-

tamine, leading to the molecular alteration from a basic side

chain to an uncharged polar side chain. We focused further

studies on this missense mutation since it was predicted to

influence the function of the WWP1 protein.

The domain structure of human WWP1 was determined pre-

viously [12]. It consists of three types of unique domains: one

C2 domain, four WW domains and one HECT domain. The

amino acid sequences of human and chicken WWP1 share

83% identity, suggesting that the deduced structure of chicken

WWP1 was quite similar to that of human�s. According to
Fig. 2. Homology study of WWP1 among tetrapods. Chicken N and A show
R441Q WWP1 mutation is specific to chicken muscular dystrophy, and the am
Dots indicate the same amino acids with above sequences. Asterisk indicates
Amino acid sequence published in NCBI.

Fig. 1. The domain structure of chicken WWP1 and the site of
missense mutation. Chicken WWP1 protein is composed of 922 amino
acids. Here are shown WWP1 functional domains: C2 domain, three
WW domains and HECT domain. C in HECT domain indicates an
active cysteine residue. The arrow indicates the site of missense
mutation detected in this study. WW domains bind proline-rich region.
NCBI database, chicken WWP1 possesses one C2 domain,

three WW domains and one HECT domain. The detected

mutation lay between WW domains 1 and 2 (Fig. 1).

3.2. Intra- and inter-species analyses of R441Q WWP1 mutation

In order to exclude the possibility of strain specificity of

WWP1 mutation, this SNP was genotyped in OPN strain to

determine if the WWP1 gene has this mutation in any strain

with a different genetic background. PCR-RFLP analysis indi-

cated that OPN dystrophic chickens have the identical muta-

tion in the WWP1 gene. Genotyping was also applied to 111

normal birds from 16 strains with genetically varied back-

grounds. None of the normal birds exhibited this type of sub-

stitution. The region of WWP1 including the SNP specific to

chicken muscular dystrophy was highly conserved among nor-

mal birds. Additional homology research among tetrapods was

conducted to estimate amino acid conservation in this region.

The sequences of chicken, human, chimpanzee (XP_519843),

monkey (XP_001083173), mouse, rat, dog (XP_535119) and

cattle (NP_001032540) were available in the NCBI database.

To obtain further information from other tetrapod species,

we sequenced partial WWP1 gene of pigeon, snake, alligator,

lizard, turtle and frog (DDBJ Accession Nos. AB385863 to

AB385868). The amino acid sequence around the region was

highly conserved among these tetrapods (Fig. 2), suggesting

that the region was important for the function of WWP1.

3.3. Expression analysis of candidate genes

Expressions of candidate genes were analyzed by Northern

blotting. As depicted in Fig. 3a, the expression of WWP1,

LOC420213 and LOC420214 in the pectoral muscle of both

genotypes derived from both normal and dystrophic chicken

could be detected by Northern blotting. There was no differ-

ence in size of mRNA between affected and normal birds in

any of these genes.LOC420213 was highly expressed in affected

individuals. Two bands were detected in WWP1 and

LOC420214. WWP1 was expressed slightly higher in normal

than in affected chickens, while a slightly higher level of expres-

sion was exhibited for LOC420214 from affected chickens.
amino acid sequences of normal and dystrophic chickens, respectively.
ino acid sequence on this region is highly conserved among tetrapods.

the residue that the substitution was detected in dystrophic chicken. (1)



Fig. 3. Expression analysis of candidate genes. Extreme alteration of expression level was not observed in any genes. (a) Northern blotting analysis
toward ATP6V0D2, LOC420211, WWP1, LOC420213, LOC420214, MMP16 using chicken pectoral mRNA (2 lg). In any of these genes, there was
no difference in size of mRNA between affected and normal birds. The C indicates loaded PCR product which has the same sequence as probe, the A
indicates mRNA of dystrophic chickens and the N indicates mRNA of normal chickens, respectively. The arrows indicate the band detected. b) RT-
PCR analysis toward ATP6V0D2, LOC420211, MMP16 using chicken pectoral cDNA.
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The expression of other genes (ATP6V0D2, MMP16,

LOC420211 and LOC428367) was not detected by Northern

blotting. RT-PCR analysis in dystrophic chickens revealed

higher expression of ATP6V0D2 and MMP16 than in normal

birds. The pectoral muscles from both genotypes expressed

LOC420211 to identical level. The expression of LOC428367-

was not confirmed in either genotype.
4. Discussion

We previously narrowed down the AM candidate region to

approximately 1 Mbp on GGA2q. Seven functional genes,

ATP6V0D2, LOC420211, WWP1, LOC420213, LOC420214,

LOC428367 and MMP16, in this region were the candidate

genes for chicken muscular dystrophy [13,14], but none of

them have been determined to be genes for other muscular dys-

trophy so far. In this study, sequence comparison of normal

and dystrophic chickens was conducted to detect a mutation

responsible for the disease.
We detected a mutation site specific for the AM phenotype

in G1321A of the WWP1 gene that caused amino acid replace-

ment, from arginine with a basic side chain (a basic amino

acid) to glutamine with an uncharged polar side chain (a neu-

tral amino acid), which can affect the function of the WWP1

protein. WWP1 mutated in the coding region of the protein,

providing the most likely candidate responsible for causing this

disease. This type of mutation was only observed in dystrophic

chickens. No mutation was detected in any normal chickens

analyzed. Furthermore, the amino acid sequence on this region

is highly conserved among tetrapods (Fig. 2). The region is

thus probably critical for the function of WWP1.

The expression patterns of the candidate genes were analyzed

in Fig. 3. WWP1, LOC420213, ATP6V0D2 and MMP16 exhib-

ited some difference in expression level between normal and dys-

trophic individuals, none of which were drastic alterations. No

difference in mRNA size was observed in any gene. Since no ex-

treme alteration of expression level and abnormal splicing were

observed, the onset of chicken muscular dystrophy might not be

attributed to aberrant expression of these genes.
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The WW domain containing E3 ubiquitin protein ligase 1

(WWP1), the most likely AM candidate gene found by this

study, is classified as an ubiquitin ligase (E3) that plays an

important role in ubiquitin-proteasome pathway (UPP). Ubiq-

uitination, addition of ubiquitin (Ub) chains to a target pro-

tein, is one of the most common forms of posttranslational

modification, and it controls important aspects of cell func-

tions [15,16]. In UPP, at least three types of enzymes are re-

quired, namely, E1 Ub-activating enzyme, E2 Ub-

conjugating enzyme and E3 [17]. E3 recognizes and catalyzes

Ub conjugation to specific protein substrates [18]. E3s are

structurally divided into several classes: HECT-type E3s,

RING-type E3s and others [19].

Accumulating data indicate that some E3s are related to

muscular dystrophies [20–22]. E3s that are assumed to be re-

lated to muscular dystrophies, such as Trim32 [25], are all clas-

sified as RING-type E3s, while WWP1 is classified as a HECT-

type E3. RING-type E3s facilitate ubiquitination indirectly,

while HECT-type E3s transfer Ub directly to substrates bound

to a non-catalytic domain of themselves [23]. Though they are

structurally and mechanically distinct, their basic role in UPP

is common. Therefore, it is possible for some abnormal

HECT-type E3s to cause muscular dystrophies. Actually, it

has been reported that E6AP, another HECT-type E3, contrib-

utes to a severe neurological disorder, Angelman syndrome

[24,25] which exhibits muscular hypotonia [26].

WWP1 is expressed ubiquitously but more strongly in liver,

bone marrow, testis, and muscle [12]. Flasza et al. also men-

tioned at least six splice variants of WWP1 [12]. Two of the

six products are commonly observed among multiple tissues,

and their expression levels are higher than the others. The

bands detected by Northern blotting (Fig. 3a) may correspond

to these two major products, but little is known about the

function of these transcript variants.

E6AP is known as the gene responsible for Angelman syn-

drome [24]. Cooper et al. reported that two mutations lying

in the non-catalytic amino-terminal portion of E6AP cause

Angelman syndrome [25]: one of them affects E6AP enzymatic

activity, and the other may disturb substrate binding, subcellu-

lar localization or protein stability. The mutation of WWP1

detected in this study is located between WW domains 1 and

2 (Fig. 1). Though the mutation is outside all domains, it is

predicted that the region near the mutation is functionally

important because of its high homology (Fig. 2). The R441Q

mutation probably influences the WWP1 function like Angel-

man syndrome causative mutations, so that it triggers the on-

set. Since the mutation lies between two domains both of

which recognize target proteins [27], it could alter the confor-

mation of WWP1 [28], the physical relationship among do-

mains and the preference for substrates.

Aberrant regulation of membrane protein may lead to the

onset of chicken muscular dystrophy. The HECT-type E3s

with WW domains generally regulate membrane proteins

[29]. Though much remains unclear about WWP1�s substrates,

it has been demonstrated that WWP1 could interact with b-

dystroglycan, an important muscle protein consisting of

membrane [30]. Abnormal glycosylation of a-dystroglycan in

chicken muscular dystrophy was also reported [31]. Some

E3s are known to recognize sugar chain [32–34], leading to

the hypothesis that WWP1 might be able to recognize the su-

gar chain of a-dystroglycan and regulate the glycosylated mol-

ecules, and that insufficiently glycosylated a-dystroglycan,
which originally requires degradation, accumulates and causes

the disease because altered WWP1 can not recognize and

degrade it.

This study identified R441Q WWP1 mutation as being spe-

cific to chicken muscular dystrophy. This is the most likely

candidate mutation responsible for chicken muscular dystro-

phy because the region nearby is highly conserved among spe-

cies and no drastic alteration of expression patterns of the

candidate genes was observed. In order to clarify the mecha-

nism by which mutated WWP1 triggers the onset of chicken

muscular dystrophy, further biochemical research is required.

The information must be useful for determining the corre-

sponding human dystrophy and for providing new insights

for understanding muscular dystrophies.
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