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The neighborhood of a pair of vertices u, v in a triple system is the
set of vertices w such that uv w is an edge. A triple system H is
semi-bipartite if its vertex set contains a vertex subset X such that
every edge of H intersects X in exactly two points. It is easy to see
that if H is semi-bipartite, then the neighborhood of every pair of
vertices in H is an independent set. We show a partial converse
of this statement by proving that almost all triple systems with
vertex sets [n] and independent neighborhoods are semi-bipartite.
Our result can be viewed as an extension of the Erdős–Kleitman–
Rothschild theorem to triple systems.
The proof uses the Frankl–Rödl hypergraph regularity lemma, and
stability theorems. Similar results have recently been proved for
hypergraphs with various other local constraints.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Let [V ]k denote the collection of all k-element subsets of a set V (if V = [n] = {1,2, . . . ,n}, then
we write [n]k instead of �n�k). Say that H is a k-uniform hypergraph (k-graph for short) with vertex
set V = V (H) if H ⊂ [V ]k . If k = 2, then H is a graph. Let F be a k-graph. A k-graph is F -free if it
contains no copy of F as a (not necessarily induced) subhypergraph.

This is the second in a sequence of our papers where we describe the global structure of typical
k-graphs that satisfy certain local conditions. This line of research originated with the seminal result
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of Erdős, Kleitman and Rothschild [12] which proved that almost all triangle-free graphs with vertex
set [n] are bipartite. Our goal is to prove a hypergraph version of this theorem.

Subsequent to [12], there has been much work concerning the number and structure of F -free
graphs with vertex set [n] (see, e.g. [10,11,17,21,2–4,1,5,7]). The results essentially state that for a
large class of graphs F , most of the F -free graphs with vertex set [n] have a similar structure to the
F -free graph with the maximum number of edges. Many of these results use the Szemerédi regularity
lemma.

With the recent development of the hypergraph regularity lemma, one can prove similar theorems
for hypergraphs. We often refer to a 3-graph as a triple system. The first result in this direction was
due to Nagle and Rödl [19] who proved that the number of F -free triple systems (for fixed triple
system F ) on vertex set [n] is

2ex(n,F )+o(n3),

where ex(n, F ) is the maximum number of edges in an F -free triple system on n vertices. Due to the
absence of a general extremal result for hypergraphs in the vein of Turán’s graph theorem, one cannot
expect hypergraph results that completely parallel the graph case. Still, there has been recent progress
on various specific examples. Person and Schacht [20] proved that almost all triple systems on [n] not
containing a Fano configuration are 2-colorable. The key property that they used was the linearity of
the Fano plane, namely the fact that every two edges of the Fano plane share at most one vertex. This
enabled them to apply the (weak) 3-graph regularity lemma, which is almost identical to Szemerédi’s
regularity lemma. They then proved an embedding lemma for linear hypergraphs essentially following
ideas from Kohayakawa, Nagle, Rödl and Schacht [16].

It is well known that such an embedding lemma fails to hold for non-linear 3-graphs unless one
uses the (strong) 3-graph regularity lemma, and operating in this environment is more complicated.

The first structural result for non-linear hypergraphs was due to the current authors [6]. It was
proved in [6] that typical extended triangle-free triple systems are tripartite, where an extended
triangle is {abc,abd, cde}. The corresponding extremal result, that the maximum number of triples
on [n] with no extended triangle is achieved by a complete tripartite triple system, was proved by
Bollobás [9] and is the first extremal hypergraph result for a non-degenerate problem. In this paper
we give a similar result for a different non-linear triple system.

The neighborhood of a (k − 1)-set S of vertices in a k-graph is the set of vertices v whose union
with S forms an edge. A set is independent if it contains no edge. We can rephrase Mantel’s theorem
about triangle-free graphs as follows: the maximum number of edges in an n vertex 2-graph with
independent neighborhoods is �n2/4�. This formulation can be generalized to k > 2 and there has
been quite a lot of recent activity on this question [18,15,13,8].

Let us first observe that a triple system has independent neighborhoods if and only if it contains
no copy of

T5 = {123,124,125,345}.
Say that a triple system is semi-bipartite if it has an (ordered) vertex partition (X, Y ) such that every
edge has exactly one point in Y . A short case analysis shows that all neighborhoods in a semi-bipartite
triple system are independent (one can think of semi-bipartite triple systems as an analogue of bipar-
tite graphs). Let B3(n) be the triple system with the maximum number of edges among all n vertex
semi-bipartite triple systems. Note that

b3(n) := ∣∣B3(n)
∣∣ = max

a

(
a

2

)
(n − a) = (

4/9 + o(1)
)(n

3

)

is achieved by choosing a = �2n/3� or a = �2n/3�.
The second author and Rödl [18] conjectured, and Füredi, Pikhurko, and Simonovits [15] proved,

that among all n vertex 3-graphs (n sufficiently large) containing no copy of T5, the unique one with
the maximum number of edges is B3(n).

Let S(n) be the set of semi-bipartite 3-graphs with vertex set [n] and put S(n) := |S(n)|. Let I(n)

be the number of 3-graphs with vertex set [n] and independent neighborhoods, by which we mean
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that for every x, y ∈ [n] there is no e ∈ H with e ⊂ {z: xyz ∈ H}. Our main result, which is a possible
extension of the Erdős–Kleitman–Rothschild theorem to triple systems, is the following:

Theorem 1. Almost all triple systems with independent neighborhoods and vertex set [n] are semi-bipartite.
More precisely there is a constant C such that(

1 + 2−4n)S(n) < I(n) <
(
1 + C · 2−n/10)S(n). (1)

2. Broad proof structure

The lower bound in Theorem 1 will be proved by constructing a large class of triple systems that
are not semi-bipartite but yet have independent neighborhoods. This will be done in Section 3. The
majority of the paper is devoted to proving the upper bound in Theorem 1. We will do this in two
stages. First, we will prove that a large majority of triple systems with vertex set [n] and independent
neighborhoods are very close to being semi-bipartite. This is formalized in Theorem 2 below. After
this, we can confine our attention to triple systems with independent neighborhoods that are close
to being semi-bipartite. We will show (see Theorem 3) that most of these triple systems are semi-
bipartite. Let us proceed more formally.

For a hypergraph F let Forb(n, F ) denote the set of F -free hypergraphs on vertex set [n]. Let
P = (X, Y ) be an ordered vertex partition of a 3-graph H. Call an edge of H consistent with P if it
has exactly two points in X , otherwise call it inconsistent. Let D P be the set of inconsistent edges
with P . A vertex partition P is optimal for H if it minimizes the number of inconsistent edges, and
let D = D H be the number of inconsistent edges in an optimal partition of H. Define

Forb(n, T5, η) := {
H ⊂ [n]3: T5 �⊂ H and D H � ηn3}.

The proof of Theorem 1 can be separated into two parts: Theorem 2, proved in Sections 4 and 5
and Theorem 3, proved in Section 6. Note that the proof of Theorem 2 is independent from the rest
of the results. However, both Theorems 1 and 3 are proved via induction on n: In the proof of the
n-statement of Theorem 1 we use the n′-statement of Theorem 3 for every n′ � n, and in the proof
of the n-statement of Theorem 3 we use the n′-statement of Theorem 2 for every n′ < n. This will be
made more precise in Section 6.6.

Theorem 2. For every η > 0, there exists ν > 0 and n0 such that if n > n0 , then∣∣Forb(n, T5) − Forb(n, T5, η)
∣∣ < 2(1−ν) 2n3

27 .

We will use the hypergraph regularity lemma due to Frankl–Rödl to prove Theorem 2. In Section 4
we introduce the definitions needed to state this lemma.

Theorem 3. For η > 0 sufficiently small there exists a C ′ such that∣∣Forb(n, T5, η)
∣∣ <

(
1 + C ′2−n/10)S(n). (2)

The proof of Theorem 3 uses many ideas from [2,3]: we prove in Section 6.3 that most H ∈
Forb(n, T5, η) have some lower-dense properties, in Section 6.4 that there are no vertices with many
inconsistent edges, and in Section 6.5 we shall get rid of all the inconsistent edges. However many
elements of the proof are new, like defining and using the concept of rich edges and shadow graphs.

3. Lower bound in Theorem 1

Let us prove the lower bound in (1), by constructing a set N S(n) of at least 2−4n S(n) non-semi-
bipartite T5-free 3-graphs H with vertex set [n]. Indeed, this shows that I(n) − S(n) � 2−4n S(n) and
it follows that I(n) > (1 + 2−4n)S(n).
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Let s = s(n) be the maximum number of edges that a semi-bipartite 3-graph with vertex set [n]
can have, and suppose that this is achieved with class sizes t = t(n) and n − t (where t � n − t). Easy
calculus shows that t < 2n/3 + 2. Then clearly

S(n) � 2n+s.

Let X = [t] and Y = [n] − [t]. Set

F =
({1,2,n − 1,n}

3

)
.

Let G be the collection of triples e that simultaneously satisfy the following two conditions:

• |e ∩ X | = 2,

• |e ∩ {1,2,n − 1,n}| � 1. (*)

Let N S(n) be the collection of 3-graphs {F ∪ G′: G′ ⊂ G}. We will now show that N S(n) com-
prises only non-semi-bipartite T5-free 3-graphs. Pick an H ∈ N S(n).

Since F is not semi-bipartite, H is also not semi-bipartite. Using (*), an easy case analysis shows
that T5 �⊂ H. Finally, we must obtain a lower bound on |N S(n)| = 2|G| . Recall that s = (t

2

)
(n−t). Since

we exclude all triples with two or more points in {1,2,n − 1,n} when defining G , and t � 2n/3 + 2,

|G| = s − (
n − t + 4(t − 2) + 2

)
� −3n + s = −4n + n + s.

Consequently,∣∣N S(n)
∣∣ = 2|G| � 2−4n2n+s � 2−4n S(n)

and the proof is complete.

4. Hypergraph regularity

In this section, we quickly define the notions required to state the hypergraph regularity lemma.
Further details can be found in [14] or [19].

Given a k-partite graph G with k-partition V 1, . . . , Vk , we write G = ⋃
i< j Gi j , where Gij = G[V i ∪

V j] is the bipartite subgraph of G with parts V i and V j . For B ∈ [k]3, the 3-partite graph G(B) =⋃
{i, j}∈[B]2 Gij is called a triad. For a bipartite graph G , the density of the pair V 1, V 2 with respect

to G is dG(V 1, V 2) = |G12|
|V 1||V 2| .

Given an integer l > 0 and real ε > 0, a k-partite graph G is called an (ε,1/l)-regular k-partite
graph if for every i < j, Gij is ε-regular with density (1/l)(1 ± ε). For a k-partite graph G , let K3(G)

denote the 3-graph with vertex set V (G) whose edges correspond to triangles of G . An easy conse-
quence of these definitions is the following fact.

Lemma 4 (Triangle counting lemma). For integer l > 0 and real θ > 0, there exists ε > 0 such that every
(ε,1/l)-regular k-partite G with |V i | = m for all i satisfies

∣∣K3(G)
∣∣ = (1 ± θ)

m3

l3
.

Consider a k-partite 3-graph H with k-partition V 1, . . . , Vk . Here k-partite means that every edge
of H has at most one point in each V i . Often we will say that these edges are crossing, and the edges
that have at least two points in some V i are non-crossing. Given a B ∈ [k]3, let H(B) = H[⋃i∈B V i].
Given a k-partite graph G and a k-partite 3-graph H with the same vertex partition, say that G
underlies H if H ⊂ K3(G). In other words, every edge of H is a triangle in G . Define the density
dH(G(B)) of H with respect to G(B) as follows:

dH
(
G(B)

) = |H(B)|

|K3(G(B))|
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if |K3(G(B))| > 0 and 0 otherwise. Informally, dH(G(B)) is the proportion of triangles in G(B) that
are edges of H.

This definition leads to the more complicated definition of H being (δ, r)-regular with respect to
the triad G(B), where r > 0 is an integer and δ > 0. We will not state this definition here and it
suffices to take this definition as a “black box” that will be used later.

If H is (δ, r)-regular with respect to G(B) and dH(G(B)) = α ± δ, then say that H is (α, δ, r)-
regular with respect to G(B).

For a vertex set V , an (l, t, γ , ε)-partition P is a partition V = V 0 ∪ V 1 ∪ · · · ∪ Vt together with
a collection of edge-disjoint bipartite graphs P ij

a , where 1 � i < j � t , 0 � a � li j � l that satisfy the
following properties:

(i) |V 0| < t and |V i| = �n
t � := m for each i > 0,

(ii)
⋃li j

a=0 P ij
a = K (V i, V j) for all 1 � i < j � t , where K (V i, V j) is the complete bipartite graph with

parts V i , V j ,

(iii) all but γ
(t

2

)
m2 pairs {vi, v j}, vi ∈ V i , v j ∈ V j , are edges of ε-regular bipartite graphs P ij

a , and

(iv) for all but γ
(t

2

)
pairs {i, j} ∈ [t]2, we have |P ij

0 | � γm2 and d
P ij

a
(V i, V j) = (1 ± ε) 1

l for all a ∈ [li j].

Finally, suppose that H ⊂ [n]3 is a 3-graph and P is an (l, t, γ , ε)-partition. For B = {i, j, l}, say

that G(B) = P ij
a1 ∪ P jl

a2 ∪ P il
a3

is a (δ, r)-regular triad of P if H is (δ, r)-regular with respect to G(B).
Then P is (δ, r)-regular if∑{∣∣K3

(
G(B)

)∣∣: G(B) is not a (δ, r)-regular triad of P
}

< δn3.

We can now state the regularity lemma due to Frankl and Rödl [14].

Theorem 5 (Regularity lemma). For every δ, γ with 0 < γ � 2δ4 , for all integers t0 , l0 and for all integer-
valued functions r = r(t, l) and all functions ε(l), there exist T0 , L0 , N0 such that every 3-graph H ⊂ [n]3 with
n � N0 admits a (δ, r(t, l))-regular (l, t, γ , ε(l))-partition for some t, l satisfying t0 � t < T0 and l0 � l < L0 .

To apply the regularity lemma above, we need to define a cluster hypergraph and state an accom-
panying embedding lemma, sometimes called the key lemma. Given a 3-graph F , let ∂F be the set
of pairs that lie in an edge of F .

Cluster 3-graph. For given constants k, δ, l, r, ε and sets {αB : B ∈ [k]3} of non-negative reals, let H
be a k-partite 3-graph with parts V 1, . . . , Vk , each of size m. Let G be a graph, and F ⊂ [k]3 be a
3-graph such that the following conditions are satisfied.

(i) G = ⋃
{i, j}∈∂F Gij underlies H and for all {i, j} ∈ ∂F , Gij is (ε,1/l)-regular.

(ii) For each B ∈ F , H(B) is (αB , δ, r)-regular with respect to the triad G(B).

Then we say that F is a cluster 3-graph of H.

Lemma 6 (Embedding lemma). Let k � 4 be fixed. For all α > 0, there exists δ > 0 such that for all integers
l > 1

δ
, there exists an integer r > 0 and ε > 0 such that the following holds: Suppose that F is a cluster 3-graph

of H with underlying graph G and parameters k, δ, l, r, ε , {αB : B ∈ [k]3} where αB � α for all B ∈ F . Then
F ⊂ H.

The embedding lemma is an easy consequence of the counting lemma, which finds not just one
but many copies of F in H. Though for our purposes we need only the weaker statement of the
embedding lemma (for a proof of the embedding lemma, see [19]).
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5. Proof of Theorem 2

In this section we prove Theorem 2. We will need the following stability result proved in [15].

Theorem 7 (Füredi–Pikhurko–Simonovits). (See [15].) For every ν ′′ > 0, there exist ν ′
1 , t2 such that every

T5-free 3-graph on t > t2 vertices and at least (1 − 2ν ′
1)

2t3

27 edges has an ordered partition for which the

number of inconsistent edges is at most ν ′′t3 . Additionally, there exists t3 such that ex(n, T5) � 2t3

27 for all
t � t3 .

Given η > 0, our constants will obey the following hierarchy:

η � ν ′′ � ν ′ � ν � σ , θ � α0,
1

t0
� δ � γ >

1

l0
� 1

r
, ε � 1

n0
.

Before proceeding with further details regarding our constants, we define the binary entropy function
H(x) := −x log2 x − (1 − x) log2(1 − x). We use the following two facts about H(x) that apply for n
sufficiently large:

• for 0 < x < 0.5 we have(
n

�xn�
)

< 2H(x)n,

• if x is sufficiently small then

�xn�∑
i=0

(
n

i

)
< 2H(x)n. (3)

Detailed definition of constants. Set

ν ′′ =
(

η

30

)3

(4)

and suppose that ν ′
1 and t2 are the outputs of Theorem 7 with input ν ′′ . Put

ν ′ = min

{
ν ′

1,
ν ′′

2
,
η

7

}
and ν = (

ν ′)4
. (5)

We choose

θ = ν

4(1 − ν)
. (6)

Choose σ1 small enough so that(
1 − ν

2

)
2n3

27
+ o

(
n3) + H(σ1)n

3 �
(

1 − ν

3

)
2n3

27
(7)

holds for sufficiently large n. In fact the function denoted by o(n3) will actually be seen to be of
order O (n2) so (7) will hold for sufficiently large n. Choose σ2 small enough so that (3) holds for
x = σ2. Let

σ = min

{
σ1,σ2,

η

2

}
.

Next we consider the triangle counting lemma (Lemma 4) which provides an ε for each θ and l. Since
θ is fixed, we may let ε1 = ε1(l) be the output of Lemma 4 for each integer l.
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For σ defined above, set

δ1 = α0 = σ

100
and t1 =

⌈
1

δ1

⌉
. (8)

Let

t0 = max{t1, t2, t3}.
Now consider the embedding lemma (Lemma 6) with inputs k = 5 and α0 defined above. The embed-
ding lemma gives δ2 = δ2(α0), and we set

δ = min{δ1, δ2}, γ = δ4, l0 = 2

δ
. (9)

For each integer l > 1
δ

, let r = r(l) and ε2 = ε2(l) be the outputs of Lemma 6. Set

ε = ε(l) = min
{
ε1(l), ε2(l)

}
. (10)

With these constants, the regularity lemma (Theorem 5) outputs N0. We choose n0 such that
n0 > N0 and every n > n0 satisfies (3) and (7).

Proof of Theorem 2. We will prove that∣∣Forb(n, T5) − Forb(n, T5, η)
∣∣ < 2(1− ν

3 ) 2n3
27 .

This is of course equivalent to Theorem 2. The initial part of the proof that follows is similar to the
proof of [19], though there is a slight difference in how we define equivalence classes. Starting from
Lemma 8 most of the ideas are new.

For each G ∈ Forb(n, T5) − Forb(n, T5, η), we use the hypergraph regularity lemma, Theorem 5, to
obtain a (δ, r)-regular (l, t, γ , ε)-partition P = P (G). The input constants for Theorem 5 are as defined
above and then Theorem 5 guarantees constants T0, L0, N0 so that every 3-graph G on n > N0 vertices
admits a (δ, r)-regular (l, t, γ , ε)-partition P where t0 � t � T0 and l0 � l � L0. We may assume that
P has vertex partition [n] = V 0 ∪ V 1 ∪ · · · ∪ Vt , |V i| = m = �n

t � for all i � 1, and system of bipartite

graphs P ij
a , where 1 � i < j � t , 0 � a � li j � l.

Let E0 ⊂ G be the set of triples that either

(i) intersect V 0, or
(ii) have at least two points in some V i , i � 1, or

(iii) contain a pair in P ij
0 for some i, j, or

(iv) contain a pair in some P ij
a that is not ε-regular with density 1

l .

By the properties of an (l, t, γ , ε)-partition

|E0| � tn2 + t

(
n

t

)2

n + γ

(
t

2

)
m2n + 2γ

(
t

2

)(
n

t

)2

n.

Let E1 ⊂ G − E0 be the set of triples {vi, v j, vk} such that either

• the three bipartite graphs of P associated with the pairs within the triple form a triad G(B) that
is not (δ, r)-regular with respect to G({i, j,k}), or

• the density dG (G(B)) < α0.

Then

|E1| � δn3 + α0n3.

Let EG = E0 ∪ E1. Now (8) and (9) imply that

|EG | � σn3.
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Set G′ = G − EG . Next define J = J (G) ⊂ [t]3 × [l] × [l] × [l] as follows: For 1 � i < j < k � t , 1 �
a,b, c � l, we have ({i, j,k},a,b, c) ∈ J if and only if

• G = P ij
a ∪ P jk

b ∪ P ik
c is (ε,1/l)-regular, and

• G′({i, j,k}) is (α, δ, r)-regular with respect to G , where α � α0.

From now on we shall replace the cumbersome notation ({i, j,k},a,b, c) by (i jk,abc).
For each G ∈ Forb(n, T5, η)−Forb(n, T5, η), choose one (δ, r)-regular (l, t, γ , ε)-partition P = P (G)

guaranteed by Theorem 5, and let P = {P1, . . . , P p} be the set of all such partitions over the fam-
ily Forb(n, T5, η) − Forb(n, T5, η). Note also that once we have defined P (G) we have also defined
J = J (G). Define an equivalence relation on Forb(n, T5, η) − Forb(n, T5, η) by letting G1 ∼ G2 iff

• P (G1) = P (G2) and
• J (G1) = J (G2).

The number of equivalence classes q is the number of partitions times the number of choices of
J ⊂ [t]3 × [l] × [l] × [l]. The number of partitions satisfies

p �
( T0∑

t=t0

tn

)((
T0 + 1

2

) L0∑
l=l0

(l + 1)

)(n
2)

.

Consequently,

q � T n+1
0

((
T0 + 1

2

)
(L0 + 1)2

)(n
2)

2(
T0+1

3 )(L0+1)3
< 2O (n2).

We will show that each equivalence class C(Pi, J ) satisfies

∣∣C(Pi, J )
∣∣ = 2(1− ν

2 ) 2n3
27 +H(σ )n3

. (11)

Combined with the upper bound for q above and (7), we obtain

∣∣Forb(n, T5, η)
∣∣ � 2O (n2)2(1− ν

2 ) 2n3
27 +H(σ )n3 � 2(1− ν

3 ) 2n3
27 .

For the rest of the proof, we fix an equivalence class C = C(Pi, J ) and we will show the upper
bound in (11).

We view J as a multiset of triples on [t]. For each φ : [t]2 → [l], let Jφ ⊂ J be the 3-graph on [t]
with edge set{{i, j,k}:

(
i jk, φ

({i, j})φ({ j,k})φ({i,k})) ∈ J
}
.

In other words, {i, j,k} ∈ Jφ iff the triples of G that lie on top of the triangles of P ij
a ∪ P jk

b ∪ P ik
c ,

a = φ(i j), b = φ( jk), c = φ(ik), are (α, δ, r)-regular and the underlying bipartite graphs P ij
a , P jk

b , P ik
c

are all (ε,1/l)-regular.
By our choice of the constants in (9) and (10), and by the construction of J , for a fixed φ, any

five vertex 3-graph F ⊂ Jφ is a cluster 3-graph for G , and hence by the embedding lemma F ⊂ G .
Since T5 �⊂ G , we conclude that T5 �⊂ Jφ .

It was shown in [15] that for t � t3, we have ex(t, T5) � 2t3

27 . Since we know that t � t3, we
conclude that

|Jφ | � 2t3

27
(12)

for each φ : [t]2 → [l]. Recall from (5) that ν ′ = ν1/4.
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Lemma 8. Suppose that |J | > (1 − ν) 2l3t3

27 . Then for at least (1 − ν ′)l(
t
2) of the functions φ : [t]2 → [l] we

have

|Jφ | � (
1 − ν ′) |J |

l3
.

Proof. Form the following bipartite graph: the vertex partition is Φ ∪ J , where

Φ = {
φ: [t]2 → [l]}

and the edges are of the form {φ, (i jk,abc)} if and only if φ ∈ Φ , (i jk,abc) ∈ J where φ({i, j}) = a,
φ({ j,k}) = b, φ({i,k}) = c. Let E denote the number of edges in this bipartite graph. Since each

(i jk,abc) ∈ J has degree precisely l(
t
2)−3, we have

E = |J |l(t
2)−3.

Note that the degree of φ is |Jφ |. Suppose for contradiction that the number of φ for which |Jφ | �
(1 − ν ′) |J |

l3
is less than (1 − ν ′)l(

t
2) . Then since |Jξ | � 2t3

27 for each ξ ∈ Φ , we obtain the upper bound

E �
(
1 − ν ′)l(

t
2)

2t3

27
+ ν ′l(

t
2)

(
1 − ν ′) |J |

l3
.

Dividing by l(
t
2)−3 it yields

|J | � (
1 − ν ′)l3

2t3

27
+ ν ′(1 − ν ′)|J |.

After simplifying it we obtain

(
1 − ν ′(1 − ν ′))|J | � (

1 − ν ′)l3
2t3

27
.

The lower bound |J | > (1 − ν) 2l3t3

27 then gives(
1 − ν ′(1 − ν ′))(1 − ν) < 1 − ν ′.

Since ν ′ = ν1/4, the left-hand side expands to

1 − ν ′ + ν1/2 − ν + ν5/4 − ν3/2 > 1 − ν ′.
This contradiction completes the proof. �

Using Lemma 8 we will prove the following claim.

Claim 1.

|J | � (1 − ν)
2l3t3

27
.

Once we have proved Claim 1, the proof of Theorem 2 is completed by the following argument
which is very similar to that in [19]. Define

SC =
⋃

(i jk,abc)∈J
K3

(
P ij

a ∪ P jk
b ∪ P ik

c

)
.

The triangle counting lemma implies that for each (i jk,abc) ∈ J , |K3(P ij
a ∪ P jk

b ∪ P ik
c )| < m3

l3
(1 + θ).

Now Claim 1 and (6) give

∣∣SC
∣∣ � m

l3
(1 + θ)|J | � m3(1 + θ)(1 − ν)

2t3

27
< m3 2t3

27

(
1 − ν

2

)
� 2n3

27

(
1 − ν

2

)
.
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Since G′ ⊂ SC for every G ∈ C ,∣∣{G′: G ∈ C
}∣∣ � 2(1− ν

2 ) 2n3
27 .

Each G ∈ C can be written as G = G′ ∪ EG . In view of (3) and |EG | � σn3, the number of EG with

G ∈ C is at most
∑

i�σn3

(n3

i

)
� 2H(σ )n3

. Consequently,

|C | � 2(1− ν
2 ) 2n3

27 +H(σ )n3

and we are done proving (11). In the remaining part of this section our only goal is to prove Claim 1.

Proof of Claim 1. Suppose to the contrary that |J | > (1 − ν) 2l3t3

27 . We apply Lemma 8 and conclude
that for most functions φ the corresponding triple system Jφ satisfies

|Jφ | � (
1 − ν ′) |J |

l3
>

(
1 − ν ′)(1 − ν)

2t3

27
>

(
1 − 2ν ′)2t3

27
.

By Theorem 7, we conclude that for all of these φ, the triple system Jφ has an ordered partition
where the number of inconsistent edges is at most ν ′′t3. Fix one such φ and let the optimal partition
of Jφ be Q φ = (X, Y ).

Let L be the set of consistent edges of Jφ and let B be the set of inconsistent edges of Jφ .
Write M for the set of 3-element sets that are consistent with Q φ = (X, Y ) but are not edges of Jφ .
Then L ∪ M is semi-bipartite, so

|L| + |M| � max
1�a�t

(
a

2

)
(t − a) � 2t3

27
.

We also have |L| + |B| = |Jφ | � (1 − 2ν ′) 2t3

27 and |B| � ν ′′t3. Consequently,

|M| � 2t3

27
− |L| �

(
4ν ′

27
+ ν ′′

)
t3 < 2ν ′′t3. (13)

Since |Jφ | � (1 − 2ν ′) 2t3

27 and |D Q φ | � ν ′′t3, we obtain

|X | = (
1 ± √

ν ′′ )2t

3
and |Y | = (

1 ± 2
√

ν ′′ ) t

3
.

Indeed, otherwise a short calculation using (5) gives the contradiction

|Jφ | �
(|X |

2

)
|Y | + |D Q φ | �

(
(1 − √

ν ′′ ) 2t
3

2

)(
1 + 2

√
ν ′′ ) t

3
+ ν ′′t3 <

(
1 − 2ν ′)2t3

27
.

Let Q = (V X , V Y ) be the corresponding vertex partition of [n] − V 0. In other words,

V X =
⋃
i∈X

V i and V Y =
⋃
i∈Y

V i .

Let Q ′ be the partition obtained from Q by arbitrarily distributing the vertices of V 0 into the two
parts of Q . We will show that Q ′ is a partition of [n] where the number of inconsistent edges |D Q ′ |
is fewer than ηn3. This will contradict the fact that G ∈ Forb(n, T5) − Forb(n, T5, η) and complete the
proof of Claim 1. �

We have argued earlier that |E G | � σn3 � η
2 n3. The number of edges of G that intersect V 0 is at

most |V 0|n2 � tn2, so

|D Q ′ − EG | � |D Q − EG | + tn2.
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Consequently, it suffices to prove that

|D Q − EG | + tn2 � η

2
n3. (14)

For each ξ : [t]2 → [l], define

Gξ = G′ ∩
⋃{

K3
(

P ij
ξ({i, j}) ∪ P jk

ξ({ j,k}) ∪ P ik
ξ({i,k})

)
: {i, j,k} ∈ Jξ

}
.

In other words, Gξ is the union, over all {i, j,k} ∈ Jξ , of the edges of G that lie on top of the triangles

in P ij
ξ({i, j}) ∪ P jk

ξ({ j,k}) ∪ P ik
ξ({i,k}) .

Let Dξ be the set of edges in Gξ that are non-crossing with respect to Q = (V X , V Y ). We will esti-

mate |D Q − EG | by summing |Dξ | over all ξ . Please note that each e ∈ D Q − EG lies in exactly l(
t
2)−3

different Dξ due to the definition of J . Call a ξ : [t]2 → [l] good if it satisfies the conclusion of
Lemma 8, otherwise call it bad. In other words, ξ is good iff

|Jξ | �
(
1 − ν ′) |J |

l3
.

Summing over all ξ gives

l(
t
2)−3|D Q − EG | =

∑
ξ : [t]2→[l]

|Dξ | =
∑

ξ good

|Dξ | +
∑
ξ bad

|Dξ |.

Note that for a given {i, j,k} ∈ Jξ the number of edges in Gξ corresponding to {i, j,k} is the number
of edges in V i ∪ V j ∪ Vk on top of triangles formed by the three bipartite graphs, each of which is
ε-regular of density (1/l)(1 ± ε). By the triangle counting lemma, the total number of such triangles
is at most

2|V i||V j||Vk|
(

1

l

)3

< 2

(
n

t

)3(1

l

)3

:= R.

By Lemma 8, the number of bad ξ is at most ν ′l(
t
2) . So we have∑

ξ bad

|Dξ | � ν ′l(
t
2)

(
t

3

)
R < ν ′l(

t
2)−3n3.

It remains to estimate
∑

ξ good |Dξ |.
Fix a good ξ and let the optimal partition of Jξ be Q ξ = (A, B) (recall that we may assume

|D Q ξ | � ν ′′t3, A = (1 ± √
ν ′′ ) 2t

3 , B = (1 ± 2
√

ν ′′ ) t
3 ).

Claim 2. The number of consistent edges of Jξ with Q ξ that are inconsistent edges of Jφ with Q φ is at most
4(ν ′′)1/3t3 .

Suppose that Claim 2 is true. Then∑
ξ good

|Dξ | � l(
t
2)

[
4
(
ν ′′)1/3

t3 R + ν ′′t3 R
] = l(

t
2)−3[10

(
ν ′′)1/3

n3].
Explanation: We consider the contribution from the inconsistent edges of Q φ that are (i) consistent
edges of Q ξ and (ii) inconsistent edges of Q ξ . We do not need to consider the contribution from the
consistent edges of Q φ since by definition, these do not give rise to edges of D Q .

Altogether, using (4) and (5) we obtain

|D Q − EG | + tn2 �
(
10

(
ν ′′)1/3 + ν ′)n3 + tn2 <

η

2
n3

which proves (14) and completes the proof of Claim 1. In the remaining part of this section, we prove
Claim 2, which is all that is left to prove Claim 1.
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Proof of Claim 2. First we argue that for every A′ ⊂ A, B ′ ⊂ B with min{|A′|, |B ′|} � 3(ν ′′)1/3t , the
number of edges in Jξ with two points in A′ and one point in B ′ is at least 10ν ′′t3. Indeed,

(|A′ |
2

)|B ′| >
12ν ′′t3, and the number of triples with two points in A′ and one point in B ′ that are not edges of Jξ
is at most 2ν ′′t3 by (13). The remaining triples are edges in Jξ with two points in A′ and one point
in B ′ as desired.

Now suppose that A′ = A ∩ Y and B ′ = B ∩ Y satisfy min{|A′|, |B ′|} � 3(ν ′′)1/3t . Then we have at
least 10ν ′′t3 edges e ∈ Jξ with |e ∩ A′| = 2 and |e ∩ B ′| = 1. For each such edge e = {k,k′,k′′} ⊂ Y ,
and each {i, j} ∈ (X

2

)
, consider three distinct triples f = {i, j,k}, f ′ = {i, j,k′}, f ′′ = {i, j,k′′} that are

consistent with Q φ . If f , f ′, f ′′ ∈ Jφ then consider the following ten bipartite graphs:

Gij = Q ij
φ({i, j}), G jk = Q jk

φ({ j,k}), Gik = Q ik
φ({i,k}),

Gik′ = Q ik′
φ({i,k′}), G jk′ = Q jk′

φ({ j,k′}), Gik′′ = Q ik′′
φ({i,k′′}), G jk′′ = Q jk′′

φ({ j,k′′}),

Gkk′ = Q kk′
ξ({k,k′}), Gk′k′′ = Pk′k′′

ξ({k′,k′′}), Gkk′′ = Q kk′′
ξ({k,k′′}).

Set G = ⋃
Guv where the union is over the ten bipartite graphs defined above. Since {e, f , f ′, f ′′} ⊂

Jφ ∪ Jξ , the 3-graph J = {e, f , f ′, f ′′} associated with the 5-partite graph G and 3-graph G({i, j,k,

k′,k′′}) is a cluster 3-graph. By our choice of constants in (9), we may apply the embedding lemma.
As J ∼= T5, we obtain the contradiction T5 ⊂ G . We conclude that g /∈ Jφ for some g ∈ { f , f ′, f ′′}.

Each e gives rise to at least
(|X |

2

)
> t2

5 such g and each g is counted by at most |Y |2 < t2

8 different e.
Altogether we obtain at least

10ν ′′t3 × t2

5
t2

8

> 2ν ′′t3

distinct triples g that are consistent with Q φ but are not edges of Jφ . This contradicts (13) and we
may therefore suppose that either |A ∩ Y | < 3(ν ′′)1/3t or |B ∩ Y | < 3(ν ′′)1/3t .

Next suppose that A′ = A ∩ X and B ′ = B ∩ X satisfy min{|A′|, |B ′|} � 3(ν ′′)1/3t . Then we have at
least 10ν ′′t3 edges e ∈ Jξ with |e ∩ A′| = 2 and |e ∩ B ′| = 1. For each such edge e = {k,k′,k′′} ⊂ X ,
and each (i, j) ∈ (X − e) × Y , consider three distinct triples f = {i, j,k}, f ′ = {i, j,k′}, f ′′ = {i, j,k′′}
that are consistent with Pφ . If f , f ′, f ′′ ∈ Jφ then consider the ten bipartite graphs defined above.
Set G = ⋃

Guv where the union is over these ten bipartite graphs. Since {e, f , f ′, f ′′} ⊂ Jφ ∪ Jξ , the
3-graph J = {e, f , f ′, f ′′} associated with the 5-partite graph G and 3-graph H({i, j,k,k′,k′′}) is a
cluster 3-graph. Again, by the embedding lemma we obtain the contradiction T5 ⊂ H. We conclude
that g /∈ Jφ for some g ∈ { f , f ′, f ′′}. Each e gives rise to at least (|X | − 3)|Y | > t2

5 such g and each g

is counted by at most |X |2 < t2

2 different e. Altogether we obtain at least

10ν ′′t3 × t2

5
t2

2

> 2ν ′′t3

distinct triples g that are consistent with Q φ but are not edges of Jφ . This contradicts (13).
We may therefore suppose that

(i) |A ∩ Y | < 3(ν ′′)1/3t or |B ∩ Y | < 3(ν ′′)1/3t , and
(ii) |A ∩ X | < 3(ν ′′)1/3t or |B ∩ X | < 3(ν ′′)1/3t .

Let us now show that (i) and (ii) imply that

|A ∩ Y | + |B ∩ X | < 6
(
ν ′′)1/3

t. (15)

If |A ∩ Y | � 3(ν ′′)1/3t , then by (i) we have |B ∩ Y | < 3(ν ′′)1/3t . Consequently,

|A ∩ X | = |A − Y | � |A| − |Y | � (
1 − √

ν ′′ )2t − (
1 + 2

√
ν ′′ ) t

> 3
(
ν ′′)1/3

t

3 3
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and also

|B ∩ X | = ∣∣B − (B ∩ Y )
∣∣ �

(
1 − 2

√
ν ′′ ) t

3
− 3

(
ν ′′)1/3

t > 3
(
ν ′′)1/3

t.

This contradicts (ii) so we may assume that |A ∩ Y | < 3(ν ′′)1/3t .
If |B ∩ X | � 3(ν ′′)1/3t , then by (ii), we have |A ∩ X | < 3(ν ′′)1/3t . This yields the contradiction

|X | = |A ∩ X | + |B ∩ X | < 3
(
ν ′′)1/3

t + |B| < 3
(
ν ′′)1/3

t + (
1 + 2

√
ν ′′ ) t

3
<

(
1 − √

ν ′′ )2t

3
.

We may therefore also assume that |B ∩ X | < 3(ν ′′)1/3t and now (15) follows.
A consistent edge of Q ξ that is inconsistent with Q φ must have a point in (A ∩ Y ) ∪ (B ∩ X),

hence the number of such edges is at most 6(ν ′′)1/3t
(t

2

)
< 4(ν ′′)1/3t3. This completes the proof of

Claim 2. �
6. Proof of Theorem 1

6.1. Preliminaries

Recall that the binary entropy function H(x) := x log2 1/x + (1 − x) log2 1/(1 − x). We shall use
Chernoff’s inequality in the form below:

Theorem 9. Let X1, . . . , Xm be independent {0,1} random variables with P (Xi = 1) = p for each i. Let S =∑
i Xi . Then the following inequality holds for a > 0:

P (S < ES − a) < exp
(−a2/(2pm)

)
.

We shall also need the following easy statement.

Lemma 10. Every graph G with n vertices contains a matching of size at least |G|
2n .

6.2. Estimates on S(n)

In this section we give some estimates on S(n).

Lemma 11.

(i) log2
(

S(n)
)
� 2

27
n3 − 1

9
n2 − 1

9
n.

(ii) For n large enough:

S(n) � S(n − 1) · 2(2n2−5n+1)/9 � S(n − 2) · 2(4n2−14n+9)/9 � S(n − 3) · 2(6n2−27n+28)/9.

Proof. (i) We generate many semi-bipartite 3-graphs as follows: Partition [n] into classes of sizes
t = �2n/3� and n − t = �n/3�, and add any collection of consistent edges. A short calculation shows
that (

t

2

)
(n − t) � 2

27
n3 − 1

9
n2 − 1

9
n

and the result follows.
(ii) It is sufficient to prove the first inequality. Given a semi-bipartite 3-graph on [n − 1] with

partition (X, Y ), add n to Y if |Y | < n/3 otherwise to X , and decide about each consistent edge
containing n to be added to the 3-graph or not. If |Y | < 2n/3 then careful calculation shows that for
a given partition there are at least 2(2n2−5n+2)/9 ways to add consistent edges containing n. However,
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if |Y | � 2n/3 then we do not generate too many 3-graphs, indeed in this case the number of possible
consistent edges is at most(|X |

2

)
|Y | �

(
n/3

2

)
2n

3
� n3

27
.

Consequently, the number of semi-bipartite 3-graphs with vertex set [n−1] and |Y | � 2n/3 is at most
2n+n3/27 < S(n − 1) · (1 − 2−1/9) for n large enough by part (i). Therefore

S(n) >
(

S(n − 1) − 2n+n3/27)2(2n2−5n+2)/9 > S(n − 1) · 2(2n2−5n+1)/9. �
6.3. Lower-density

Our goal in this section is twofold: First to define a subset Forb(n, T5, η,μ) ⊂ Forb(n, T5, η) which
comprises 3-graphs with ordered partitions (X, Y ) that have a collection of useful properties. Second,
to prove that most 3-graphs in Forb(n, T5, η) are in Forb(n, T5, η,μ).

Let H ∈ Forb(n, T5, η) and let (X, Y ) be an ordered partition of the vertices of H which minimizes
the number of inconsistent edges. We call such a partition optimal. For a vertex x let L X,X (x) be the
set of edges containing x, and having the other two vertices in X , and let L X,Y (x) and LY ,Y (x) be
similarly defined. Sometimes, trusting that it will not cause confusion, we refer to L X,X (x) as the link
graph of x on X . As before, we often associate a graph or hypergraph with its edge set.

Definition 12. An ordered partition (X, Y ) is μ-lower-dense if each of the following is satisfied:

(i) For every matching G1 ⊂ (X
2

)
and every graph G2 ⊂ X × Y with |G1| > μn, |G2| > μn2 the fol-

lowing holds:∣∣{(ab, uv): ab ∈ G2, uv ∈ G1, abu,abv ∈ H
}∣∣ >

|G1||G2|
72

.

(ii) For every graph G1 ⊂ (X
2

)
and every matching G2 ⊂ (Y

2

)
with |G1| > μn2, |G2| > μn the following

holds: ∣∣{(ab, uv): ab ∈ G2, uv ∈ G1, auv,buv ∈ H
}∣∣ >

|G1||G2|
8

.

(iii) For every A X ⊂ X , AY ⊂ Y with |A X |, |AY | � μn the following holds:

∣∣{E ∈ H: |E ∩ A X | = 2, |E ∩ AY | = 1}∣∣ >
|A X |2|AY |

8
.

(iv) Let Y ′ ⊂ Y with |Y ′| � 2μn, and suppose that for every y ∈ Y ′ we have an X y ⊂ X with |X y| >

200μn. Then∣∣{E ∈ H: ∃y ∈ Y ′ s.t. |E ∩ X y| = 2, y ∈ E
}∣∣ > 10 000μ3n3.

(v) ||Y | − n/3| < μn.

We say that an H ∈ Forb(n, T5, η) is μ-lower-dense if each of its optimal partitions satisfies condi-
tions (i)–(v). Let Forb(n, T5, η,μ) ⊂ Forb(n, T5, η) be the collection μ-lower-dense hypergraphs.

Lemma 13. Let 1000H(η) < μ3 and μ be sufficiently small. Then for n sufficiently large∣∣Forb(n, T5, η) − Forb(n, T5, η,μ)
∣∣ < 2n3( 2

27 − μ3

500 ).

Proof. We count the number of hypergraphs H ∈ Forb(n, T5, η) − Forb(n, T5, η,μ) violating condi-
tions (i)–(v) separately: We shall use the following estimates in many of the cases. The number of
ways to choose an ordered partition of H is at most 2n . In what follows let us assume that we are
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given such a partition (X, Y ). The number of ways the at most ηn3 inconsistent edges could be placed
is at most 2H(η)n3

, the number of ways a subset of vertices could be chosen is at most 2n , the number
of ways a matching (of graph edges) could be chosen is at most 2n logn , and the number of ways a
graph could be chosen is at most 2n2

. The number of ways the consistent edges could be chosen is at

most 2
|X|2

2 |Y | � 22n3/27. For this last bound, we will give some improvements using the fact that H is
not μ-lower-dense.

For a fixed partition of the vertex set, we may view the consistent edges as a probability space,
where we choose each of them, independently, with probability 1/2. We use Chernoff’s inequality to
show that the probability that a particular condition of the definition of μ-lower-density is violated
is low, yielding an upper bound on the number of ways of choosing the consistent edges of H.

(i) Given the choice of G1 and G2, there are |G1||G2| � μ2n3 possible pairs of edges to be included
mentioned in the condition. However not all the edges are distinct, for example if u1 v1, u2 v2 are
edges in G1 and u1b, u2b are edges in G2 then the triple u1u2b is considered for two pairs of edges:
(u1b, u2 v2) and (u2b, u1 v1). In order to avoid this overcounting (which manifests itself as a lack of
independence in a probability calculation) we shall choose subgraphs G ′

1 ⊂ G1, G ′
2 ⊂ G2, such that

G ′
1, G ′

2 are vertex disjoint, and |G ′
1| � μn/3, |G ′

2| � μn2/3.

We prove the existence of such G ′
1 and G ′

2 by randomly picking each edge of the matching G1 with
probability 1/2, where these choices are independent for distinct edges. Let H1 be the (random) set
of edges that were picked. Let H2 be the (random) set of edges of G2 that are disjoint from all edges
of H1. Then |H1| is a binomial random variable with parameters |G1| and 1/2 and |H2| dominates a
binomial random variable with parameters |G2| and 1/2. The reason for this is that for e ∈ G2, the
probability that e ∈ H2 is 1/2 or 1, depending on whether e is incident to an edge of G1 or not. So
by Chernoff’s inequality,

P
(|Hi| < |Gi|/3

) = P
(|Hi| < |Gi|/2 − |Gi|/6

)
< exp

(−|Gi|/36
)
<

1

2
.

Consequently,

P
(|H1| � |G1|/3 and |H2| � |G2|/3

)
> 0

and there exist G ′
1 and G ′

2 as above.
For each uv ∈ G ′

1 and ab ∈ G ′
2 let Xab,uv be the random variable that is 1 if both abu,abv ∈ H

and 0 otherwise. Then P (Xab,uv = 1) = 1/4, and since G ′
1 and G ′

2 are vertex disjoint, these random
variables are independent. We apply Chernoff’s inequality to these m = |G ′

1||G ′
2| random variables

with a = m/8 and p = 1/4. For S = ∑
uv∈G ′

1,ab∈G ′
2

Xab,uv this gives

P

(
S � |G1||G2|

72

)
� P (S � m/8) � exp

(
− (m/8)2

(m/2)

)
= exp(−m/32) < exp

(
−μ2n3

9 · 32

)
.

Using this upper bound we obtain that the number of hypergraphs that violate condition (i) is
upper bounded by

2n+H(η)n3+n logn+n2+2n3/27 exp
(−μ2n3/(9 · 32)

)
< 22n3/27−μ2n3/300.

(ii) Given the choice of G1 and G2, there are |G1||G2| � μ2n3 possible pairs of edges to be included
mentioned in the condition. Unlike in case (i), here all the edges are distinct so we do not need to
construct G ′

i .
For each uv ∈ G1 and ab ∈ G2 let Xab,uv be the random variable that is 1 if both uva, uvb ∈ H

and 0 otherwise. Then P (Xab,uv = 1) = 1/4, and these random variables are independent. We apply
Chernoff’s inequality to these m = |G1||G2| random variables with a = m/8 and p = 1/4. For S =∑

uv∈G1,ab∈G2
Xab,uv this gives

P

(
S � |G1||G2|

8

)
� P (S � m/8) � exp

(
− (m/8)2

(m/2)

)
= exp(−m/32) � exp

(
−μ2n3

32

)
.
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Using this upper bound we obtain that the number of hypergraphs that violate condition (ii) is
upper bounded by

22n3/27−μ2n3/32.

(iii) Given the choice of A X and AY , there are |A X |(|A X | − 1)|AY |/2 � μ3n3/3 =: m possible edges
of H with two vertices in A X and one in AY . Using Chernoff’s inequality (with p = 1/2) we obtain
that the number of hypergraphs violating condition (iii) is at most

23n+H(η)n3+2n3/27 exp
(−μ3n3/24

)
< 22n3/27−μ3n3/24.

(iv) Given the ordered 2-partition, there are at most 2n choices for each of X y and of Y ′ . Also∣∣∣∣
{

E ∈
([n]

3

)
: ∃y ∈ Y ′ s.t. |E ∩ X y| = 2, y ∈ E

}∣∣∣∣ � 2μn

(
200μn

2

)
> 35 000μ3n3.

By Chernoff’s inequality we obtain that the number of hypergraphs violating condition (iv) is at most

22n2+H(η)n3+2n3/27 exp
(−μ3n3) < 22n3/27−μ3n3

.

Note that in the computation above we used 1000H(η) < μ3 and n is sufficiently large.
(v) In this case we show that if the ratio of the parts of the ordered partition differ too much

from 2, then the number of ways to place the consistent edges decreases exponentially. This is simply
because the number of consistent edges is small. More precisely, if ||Y | − n/3| � μn then the number
of possible consistent edges is at most (2/27 − μ2/2 + μ3/2)n3 < (2/27 − μ2/3)n3. This implies that
the number of such hypergraphs is at most

2n · 2n3(2/27+H(η)−μ2/3) < 2n3(2/27−μ2/6).

Summing up the number of 3-graphs in cases (i)–(v) gives

∣∣Forb(n, T5, η) − Forb(n, T5, η,μ)
∣∣

� 22n3/27(2−μ2n3/300 + 2−μ2n3/32 + 2−μ3n3/24 + 2−μ3n3 + 2−μ2/6)
< 22n3/27−μ3n3/500.

This completes the proof of the lemma. �
6.4. Getting rid of bad vertices

From now on we shall have the following hierarchy of constants: 1 � α � β � μ � η. More
precisely we will assume

0.01 > H(α), α2 > 100
(

H(β) + H(2μ) + μ2),
β > 100H(2μ), μ3 � 1000H(η). (16)

In this section we prove additional properties of hypergraphs in Forb(n, T5, η,μ) which involve
the link graph of vertices.

Lemma 14. Let H ∈ Forb(n, T5, η,μ) with an optimal ordered partition (X, Y ). Then the following hold.

(i) For x ∈ X we have |L X,X (x)| � 2μn2.

(ii) For y ∈ Y we have |L X,Y (y)| � 2μn2.

(iii) For y ∈ Y we have min{|L X,X (y)|, |LY ,Y (y)|} < 2μn2.
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We remark here that the lack of similar bounds for x ∈ X on |L X,Y (x)| makes the proof of the main
result complicated.

Proof. (i) Assume that for some x ∈ X we have |L X,X (x)| > 2μn2. By the optimality of the partition
we have |L X,Y (x)| > 2μn2 as well. By Lemma 10 L X,X (x) contains a matching G1 of size at least μn.
With G2 = L X,Y (x), using property (i) of the definition of μ-lower-density, there exists an ab ∈ G2 and
uv ∈ G1 such that abu,abv ∈ H. Together with abx and uvx, we obtain T5 in H, a contradiction.

(ii) Assume that for some y ∈ Y we have |L X,Y (y)| > 2μn2. By the optimality of the partition
we have |L X,X (y)| > 2μn2 as well. By Lemma 10 L X,X (y) contains a matching G1 of size at least μn.
With G2 = L X,Y (y), using property (i) of the definition of μ-lower-density, there exists an ab ∈ G2 and
uv ∈ G1 such that abu,abv ∈ H. Together with aby and uv y we obtain a T5 in H, a contradiction.

(iii) Assume that for some y ∈ Y we have |L X,X (y)|, |LY ,Y (y)| > 2μn2. By Lemma 10 LY ,Y (y) con-
tains a matching G2 of size at least μn. With G1 = L X,X (y), using property (ii) of the definition of
μ-lower-density, there exists an ab ∈ G2 and uv ∈ G1 such that auv,buv ∈ H. Together with aby and
uv y we obtain a T5 in H, a contradiction. �

For a set S ⊂ [n] of size two and for A ⊂ [n], we define L A(S) to be the set of vertices v ∈ A such
that {v} ∪ S ∈ H. We call an edge xyz ∈ H α-rich with respect to an optimal partition (X, Y ) of H if
x ∈ X , y, z ∈ Y and max{|L X (x, y)|, |L X (x, z)|} > αn. The vertex z is the poor vertex of a rich edge if
|L X (x, y)| � |L X (x, z)|; in case of a tie we can decide arbitrarily.

Lemma 15. Let (X, Y ) be an optimal ordered partition of an H ∈ Forb(n, T5, η,μ). For α � 200μ the follow-
ing holds:

(i) The number of distinct poor vertices of the α-rich edges of H is at most 2μn.
(ii) For any vertex x ∈ X the number of α-rich edges containing x is at most 2μn2 .

Proof. (i) Assume not, i.e., let {xi yi zi} be α-rich edges for i ∈ [�2μn�], where xi ∈ X and xi yi zi has
poor vertex zi and the zi ’s are different vertices. Let Y ′ = {z1, . . . , z�2μn�} and Xzi = L X (xi, yi). As yi is
not the poor vertex of the rich edge xi yi zi , we have |Xzi | > 200μn. By condition (iv) of the definition
of μ-lower-density there is an i such that for some a,b ∈ L X (xi, yi), abzi ∈ H. But then xi yi zi , xi yia,
xi yib, abzi form a T5 in H, a contradiction.

(ii) The number of rich edges containing a vertex z ∈ Y and x is at most n, hence if (ii) was false,
then there would be at least 2μn poor vertices in Y , contradicting (i). �
6.5. Getting rid of the inconsistent edges

In this section we estimate the number of 3-graphs H from Forb(n, T5, η,μ) which violate one of
the conditions below. Note that if an H does not violate any of the conditions below then H ∈ S(n).

(1) In every optimal partition (X, Y ) of H and for every x ∈ X we have |LY ,Y (x)| < βn2.
(2) In every optimal partition (X, Y ) of H every y ∈ Y satisfies |LY ,Y (y)| < 2μn2.

(3) No optimal partition (X, Y ) of H contains an α-rich edge.
(4) No optimal partition (X, Y ) of H has an inconsistent edge xyz with |{x, y, z} ∩ X | ∈ {0,3}.
(5) No optimal partition (X, Y ) of H has an inconsistent edge xyz with |{x, y, z} ∩ X | = 1.

Our goal is to prove the following result, which will be completed in the next section.

Theorem 16. There is a C1 such that the number of H ∈ Forb(n, T5, η,μ) not satisfying any of the condi-
tions (1)–(5) is at most C1 · 2−n/10 S(n).

Before proceeding we state and prove the following lemma. For integers a < b, let [a,b] = {a,a +
1, . . . ,b}.
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Lemma 17. Fix a matching M with m edges, say {1,2}, . . . , {2m−1,2m}. The number of graphs on [N], where
M is a maximum matching is less than

22m2−2m(
N − 2m + 2N−2m+1)m

.

Proof. We allow complete freedom to include edges on [2m] yielding 2(2m
2 )−m = 22m2−2m ways to

choose these edges. There is no edge inside [2m + 1, N] by the maximality of M . Consider an edge
{2i − 1,2i} ∈ M . If for j1, j2 ∈ [2m + 1, N] both { j1,2i − 1} and { j2,2i} are edges then again by
maximality of M , we have j1 = j2. So either there is a vertex in [2m + 1, N] with edges to both
2i − 1 and 2i, or one of 2i − 1 or 2i has no edge to any vertex in [2m + 1, N]. For each i we obtain
N − 2m + 2N−2m+1 possibilities for the set of edges incident to {2i − 1,2i}, thereby completing the
proof. �

In the next five subsections, we will let n be sufficiently large as needed.

6.5.1. 3-graphs violating (1)
In this section we prove the following lemma.

Lemma 18. The number of H ∈ Forb(n, T5, η,μ) violating condition (1) is at most∣∣Forb(n − 1, T5)
∣∣2 2n2

9 − βn2

5 .

Proof. First we fix an optimal partition (X, Y ) of H, which can be chosen in at most 2n ways. Choose
an x ∈ X , which can be done in at most n ways. Assume that |LY ,Y (x)| � βn2. Let

B := {z ∈ Y : ∃y ∈ Y s.t. xyz is α-rich, where z is the poor vertex of xyz}.
By Lemma 15 (i) we have |B| � 2μn. So Y − B does not contain both y and z from an α-rich edge xyz.
Let M ⊂ (Y −B

2

)
be a maximum matching in LY ,Y (x). Since |Y | < n/2 and β > 10μ, we have

|M| � (∣∣LY ,Y (x)
∣∣ − 2μn2)/2|Y | � βn/2.

Denote the vertex set of the matching M by A, and let m = |M|.
The number of choices for A is at most 2n , and the number of choices for M is at most 2n logn . For

every y ∈ A we have |L X (x, y)| < αn2. The number of choices for H − x is at most |Forb(n − 1, T5)|,
and by Lemma 14 part (i) the number of choices for L X,X (x) is at most

∑
i�2μn2

(n2

i

)
� 2H(2μ)n2

. The

number of choices for the edges of LY ,Y (x) intersecting B is at most 2|B||Y | < 2μn2
. Using Lemma 17,

given M , the number of ways the rest of LY ,Y (x) can be chosen is at most

22m2−2m(|Y | − 2m + 2|Y |−2m+1)m
< 22m2−2m(

2|Y |−2m+2)m = 2|Y |m.

Since |Y | � n/3 + μn, the number of ways the consistent edges containing x could be chosen
is at most 2|X ||Y | < 22n2/9+μn2

. Our goal is to improve this bound by using the fact that x violates

condition (1). Specifically, we write Y = A ∪ (Y − A) and replace 2
2n2

9 +μn2
by 2

2n2
9 +μn2 · 2−2m|X | · �,

where � is the number of ways to add edges of the form xab ∈ H with a ∈ A, b ∈ X .
The number of ways to choose the (consistent) edges of the form xab ∈ H with a ∈ A, b ∈ X is

� �
( ∑

i�αn

(|X |
i

))2m

< 22H(α)mn.

Here we use the fact that {a, x} is not subset of any α-rich inconsistent edge, so for given a the
number of choices for b is at most αn. To summarize, the number of 3-graphs for given m violating (1)
is at most

n2n2n2n log n
∣∣Forb(n − 1, T5)

∣∣2H(2μ)n2
2μn2

2−2m|X |2|Y |m2
2n2

9 +μn2
22H(α)mn. (17)
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The coefficient of m in the exponent above is

−2|X | + |Y | + 2H(α)n < −n/2.

Therefore, viewing (17) as a function of m, it is maximized when m is minimized, i.e. m = βn/2.
Fixing m at this value, for the coefficient of n2 in the exponent, since 100H(2μ) < β � 1, we have

2 logn

n2
+ 2 + logn

n
+ H(2μ) + 2μ − β/4 < −β/5.

Since there are at most n choices for m, we conclude that the number of 3-graphs violating (1) is
bounded above by

∣∣Forb(n − 1, T5)
∣∣2 2n2

9 − βn2

5 (18)

as required. �
6.5.2. 3-graphs violating (2)

In this section we prove the following lemma.

Lemma 19. The number of H ∈ Forb(n, T5, η,μ) violating condition (2) is at most

∣∣Forb(n − 1, T5)
∣∣ · 2

n2
17 .

Proof. First fix an optimal partition (X, Y ), which can be chosen at most 2n ways. Given an optimal
partition (X, Y ), assume that there is a y ∈ Y such that |LY ,Y (y)| � 2μn2. Then by Lemma 14 (iii) we
have |L X,X (y)| < 2μn2, and by optimality of the partition (X, Y ) we have |L X,Y (y)| � 2μn2. So the
number of 3-graphs having such a vertex y is at most

n2n
∣∣Forb(n − 1, T5)

∣∣ · 2|Y |2/2+2H(2μ)n2
<

∣∣Forb(n − 1, T5)
∣∣ · 2

n2
17 , (19)

where we used condition (iv) of Definition 12. �
6.5.3. 3-graphs satisfying (1) and (2) but violating (3)

In this section we prove the following lemma.

Lemma 20. The number of H ∈ Forb(n, T5, η,μ) satisfying conditions (1) and (2) but violating condition (3)
is at most∣∣Forb(n − 3, T5)

∣∣2 2n2
3 − α2n2

3 .

Proof. Assume that (X, Y ) is an optimal partition of H and xyz is an α-rich edge with x ∈ X , y, z ∈ Y
and |L X (x, y)| � |L X (x, z)|. The edge xyz could be chosen in at most n3 ways and L X (x, y) can be cho-
sen in at most 2n ways. Given these choices, we can choose H − {x, y, z} in at most |Forb(n − 3, T5)|
ways. By Lemma 14 (i) and the fact that H satisfies condition (1), the number of ways the inconsis-
tent edges containing x can be chosen is at most 2H(2μ)n2+H(β)n2

. By Lemma 14 (ii) and the fact that
H satisfies condition (2), the number of ways of having the inconsistent edges intersecting y or z is
at most 24H(2μ)n2

. The number of ways the consistent edges containing x or y could be chosen is at
most 2|X |·|Y |+|X |2/2. The number of ways the consistent edges containing z could be chosen is at most

2
|X|2

2 −(
|L X (x,y)|

2 ) , as for a,b ∈ L X (x, y), edge abz together with xyz, xya, xyb forms a copy of T5. Since
xyz is an α-rich |L X (x, y)| � αn. So the number of 3-graphs satisfying (1) and (2) but violating (3) is
at most

2nn3
∣∣Forb(n − 3, T5)

∣∣2H(2μ)n2+H(β)n2+4H(2μ)n2 · 2|X |·|Y |+ |X|2
2 + |X|2

2 −(
|L X (x,y)|

2 ). (20)
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Since α2 > 100(H(β) + H(2μ) + μ2), |X | � 2n/3 + μn, |X ||Y | + |X |2 = |X |n and

n + 3 logn

n2
+ 6H(2μ) + H(β) + μ − α2/2 + α

n
< −α2

3
,

we conclude that (20) is at most∣∣Forb(n − 3, T5)
∣∣2 2n2

3 − α2n2
3 , (21)

thereby completing the proof. �
6.5.4. 3-graphs satisfying (1), (2) and (3) but violating (4)

In this section we prove the following lemma.

Lemma 21. The number of H ∈ Forb(n, T5, η,μ) satisfying conditions (1) and (2) and (3) but violating con-
dition (4) is at most∣∣Forb(n − 3, T5)

∣∣2 7n2
11 .

Proof. First fix an optimal partition (X, Y ), which can be chosen at most 2n ways. Given an optimal
partition (X, Y ), an inconsistent edge xyz could be chosen in at most n3 ways. We can choose H −
{x, y, z} in at most |Forb(n − 3, T5)| ways. The number of edges having at least two of x, y, z is at
most 3n, giving at most 23n ways to place them.

Now consider the case that x, y, z ∈ X . There are two types of inconsistent edges e containing one
of {x, y, z}, either e ⊂ X , or e − {x, y, z} ⊂ Y . In the first case Lemma 14 (i) implies that there are at
most 3 · 2μn2 such edges, and in the second case, since H satisfies condition (1) there are at most
3 · βn2 such edges. So the number of ways the inconsistent edges intersecting {x, y, z} can be chosen
is at most

2(3H(β)+3H(2μ))n2
.

The number of ways that the consistent edges containing any of x, y, z can be chosen is restricted
as follows: For any a ∈ X , b ∈ Y out of the 8 possibilities including edges abx, aby, abz only 7 can
occur (all of them cannot be chosen at the same time), so the number of possible connections is at
most 7|X ||Y | .

Consider now the other case when x, y, z ∈ Y . There are two types of inconsistent edges e: Ei-
ther e ⊂ Y or e ∩ X �= 0. In the first case, since H satisfies condition (2), that there are at most
3 · 2μn2 such e, and in the second case Lemma 14 (ii) implies that there are at most 3 · 2μn2 such e.
So the number of ways to choose those edges is at most 26H(2μ)n2

< 2(3H(β)+3H(2μ))n2
. Now let us

bound the number of ways the consistent edges intersecting {x, y, z} can be chosen. Since for any
pair a,b ∈ X , we cannot have {abx,aby,abz} ⊂ H, the number of ways to place these type of edges is
at most 7|X |2/2.

Altogether the number of 3-graphs satisfying (1), (2) and (3) but violating (4) is bounded by

2n+1n323n2(3H(β)+3H(2μ))n2∣∣Forb(n − 3, T5)
∣∣(7|X ||Y | + 7

|X|2
2

)
. (22)

Since log2 7 < 2.81, max{|X ||Y |, |X |2/2} � (2/9 + μ)n2 − 1, and

n + 1 + 3 logn + 3n

n2
+ 3H(β) + 3H(2μ) + 1

n2
<

1

100
,

(22) is upper bounded by∣∣Forb(n − 3, T5)
∣∣2 7n2

11

as required. �
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6.5.5. 3-graphs satisfying (1), (2), (3) and (4) but violating (5)
Let us denote the 3-graphs H described in the title of this section by Forb(1)(n, T5, η,μ). Our goal

in this section is to prove the following lemma.

Lemma 22. The number of H ∈ Forb(1)(n, T5, η,μ) is at most(
2−αn3 + 2−n/10)S(n).

Lemma 22 will be proved in several steps. First we need some more definitions. Let H ∈
Forb(1)(n, T5, η,μ) and (X, Y ) be an optimal partition of H. The shadow graph of the inconsistent
edges with respect (X, Y ) is

G := G H(X, Y ) :=
⋃
y∈Y

L X,Y (y).

Let Forb(n, T5, η,μ,α) ⊂ Forb(1)(n, T5, η,μ) be the collection of 3-graphs H whose every optimal
partition (X, Y ) satisfies |G H(X, Y )| < 100αn2.

Lemma 23. For n sufficiently large∣∣Forb(1)(n, T5, η,μ) − Forb(n, T5, η,μ,α)
∣∣ < 2−αn3

S(n). (23)

Proof. Let us count the number of H ∈ Forb(1)(n, T5, η,μ) − Forb(n, T5, η,μ,α). We can fix an op-
timal partition in at most 2n ways, and a shadow graph G in at most 2n2

ways. As H satisfies
condition (3), there is no α-rich edge of H. Since for any edge xy ∈ G there is a z ∈ Y such that
xyz ∈ H, hence there are at most 2H(α)n ways to choose L X (x, y). Given G , the number of inconsis-
tent edges is at most |G||Y |/2 (each is counted twice). The number of consistent triples that are not
edges is at least |G|(|X |−αn)/2 for the following reason: for each edge xy ∈ G , there is a vertex z ∈ Y
with xyz ∈ H. Since there is no α-rich edge, e.g. xyz is not an α-rich edge, |L X (x, y)| � αn, and so
the number of consistent triples containing x and y that are not edges is at least |X | − αn. The factor
two arises as these triples are counted at most twice. Since

(|X |
2

)|Y | � 2n2/9, we conclude that the
number of vertex triplets which could be consistent edge, is at most

2n3

27
− |G|

2

(|X | − αn
)
� 2n3

27
− |G||X |

2
+ αn3.

Each of these could either be included in H or not. Altogether we obtain∣∣Forb(1)(n, T5, η,μ) − Forb(n, T5, η,μ,α)
∣∣ < 2n2n2

2H(α)n|G|2
|G||Y |

2 2
2n3
27 − |G||X|

2 +αn3

= 2
2n3
27 − |G|(|X|−|Y |−2H(α)n)

2 +αn3+n2+n

< 2
2n3
27 −2αn3

where the last inequality follows from |G| � 100αn2, |X | − |Y | > n/4 and H(α) < 0.01. The lower

bound on S(n) from Lemma 11, and n sufficiently large gives S(n) > 2
2n3
27 −αn3

. Consequently,∣∣Forb(1)(n, T5, η,μ) − Forb(n, T5, η,μ,α)
∣∣ � 2−αn3

S(n)

and the proof is complete. �
Now we shall show that the number of non-semi-bipartite 3-graphs in Forb(n, T5, η,μ,α) is much

smaller than the number of semi-bipartite 3-graphs. First we partition Forb(n, T5, η,μ,α) into O (n2)

classes, and for each class we construct a bipartite graph Bi . One part of Bi will be the elements of a
class C , and the other part of Bi will be the set of semi-bipartite 3-graphs S(n). Bi will have the prop-
erty that the degree of the vertices in C will be exponentially larger than the degrees in S(n). This



J. Balogh, D. Mubayi / Journal of Combinatorial Theory, Series A 118 (2011) 1494–1518 1515
approach will allow us to prove the following lemma. Clearly Lemma 23 and Lemma 24 immediately
imply Lemma 22.

Lemma 24. For n sufficiently large∣∣Forb(n, T5, η,μ,α) − S(n)
∣∣ < 2−n/10 S(n).

Proof. For 0 < i � 100αn2 let Ci ⊂ Forb(n, T5, η,μ,α) − S(n) be the collection of 3-graphs which
have an optimal partition in which the shadow graph of inconsistent edges has exactly i edges. We
construct a bipartite graph Bi with parts Ci and S(n). An H ∈ Ci will be joined in Bi to the following
set of semi-bipartite 3-graphs, denoted by Φ(H):

– Remove all edges which contain an edge of G (the shadow graph of H) (so all the inconsistent
edges will be removed).

– For every xy ∈ G add some collection of edges axy to H where a ∈ X .

First we give a lower bound on the degree (in Bi ) of a vertex H ∈ Ci . Here we have to give a
lower bound on the number of edges of the form axy where xy ∈ G (and say y ∈ Y ). Each edge
can be counted at most twice, so the number of edges that we must decide to add to H is at least
(|X | − 1)i/2, therefore degBi

(H) � 2(|X |−1)i/2.
Before proceeding further we need the following.

Claim. Let H ∈ S(n) such that Φ−1(H) �= ∅. Then the number of partitions of [n] which are optimal partitions
of Φ−1(H) is at most

2H(10μ)n.

Proof. If F ∈ Φ−1(H) then F ∈ Forb(n, T5, η,μ,α) so it has a partition with at most ηn3 in-
consistent edges. Let F j ∈ Φ−1(H) have an optimal partition (X j, Y j) for j = 1,2. We claim that
|X1�X2| < 10μn. Indeed, otherwise w.l.o.g. |X1 − X2| � 5μn. Then by Definition 12 (v) we have
||Y1| − n/3|, ||Y2| − n/3| < μn so |X2 ∩ Y1| � 3μn and |X1 ∩ X2| > n/4. This makes it possible to
find many inconsistent edges inside X2, as using Definition 12 (iii)

∣∣{abc ∈ H: a,b ∈ X1 ∩ X2, c ∈ X2 ∩ Y1}
∣∣ � 3

16
μn3 > ηn3.

This contradiction shows that the optimal partitions do not differ too much from each other. To com-
plete the proof of the Claim, we may count the number of optimal (X2, Y2) by first picking the
vertices of |X1�X2| and observing that this determines (X2, Y2). �

Now we fix an H ∈ S(n), and give an upper bound on its degree in the auxiliary graph. Recall that
in forming H we did not change any of the consistent edges that did not contain any edge of G .

– The number of ways G could be chosen is at most
(n2

i

)
.

– Given (X, Y ) and G , the number of ways the inconsistent edges could be added is at most 2i|Y |/2.
– Given G , and xy ∈ G , as xy arises from an inconsistent edge that is not α-rich, the number of

consistent edges on xy in the source 3-graph is at most αn. This gives at most
( n
αn

)i possibilities
to choose the consistent edges that contain an edge of G .

By the Claim, the number of optimal partitions (X, Y ) is at most 2H(10μ)n . So for each H ∈ S(n)

we have

degBi
(H) � 2H(10μ)n

(
n2

i

)
2i|Y |/2

(
n

αn

)i

�
(
2H(10μ)n+6 logn+|Y |/2+H(α)n)i

.
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Trivially, |Ci |/|S(n)| is at most the ratios of the bounds of the degrees, i.e.,

|Ci |
S(n)

�
(
2H(10μ)n+6 logn+|Y |/2+H(α)n−|X |/2+1/2)i

.

Since ||Y | − n/3| � μn, and μ is sufficiently small, |X | − |Y | � n/3 − 2μn � n/4. Consequently, the
expression above is upper bounded by 2−in/9. We conclude that

∣∣Forb(n, T5, η,μ,α) − S(n)
∣∣ �

100αn2∑
i=1

|Ci| � n2 S(n)2−n/9 < S(n)2−n/10

and the proof is complete. �
6.6. Completing the proofs of Theorems 1, 3 and 16

In this section we will simultaneously prove Theorems 1, 3 and 16 by induction on n. Write
Theorem P (n) for the statement that Theorem P holds for n. Also, let Theorem 3(η,n) denote the
statement that Theorem 3 holds for n with input parameter η.

Let us first choose η > 0 sufficiently small so that the hierarchy of the parameters in (16) holds
and η is a valid input parameter for Theorem 3. The structure of the induction arguments in the three
proofs is as follows:

Theorem 1(n − 1) → Theorem 16(n) → Theorem 3(η,n) → Theorem 1(n).

The above will prove that Theorems 1 and 16 hold, and that Theorem 3 holds with input η. Since this
is proved for each η > 0 that is sufficiently small, it also proves Theorem 3.

With input parameter η, Theorem 2 outputs ν and n0. Let n1 > n0 be sufficiently large such that
for every n > n1 Lemmas 13, 11, 18, 19, 20, 21 and 22 hold. We also require 1/n1 to be much smaller
than all the fixed small constants in (16). Let c > 100 be chosen so that Theorem 16 holds with C1 = c
for all n � n1, Theorem 3 with input η holds with C ′ = c for all n � n1 and Theorem 1 holds with
C = c for all n � n1. Now we fix

C = 2C ′ = 4C1 = 4c > 400.

Proof of Theorem 16. We wish to prove Theorem 16(n), so as indicated above, we may assume The-
orem 1(n′) for n′ < n. We recall that if H ∈ Forb(n, T5, η,μ) − S(n), then H violates one of the
conditions (1)–(5). Consequently, an upper bound for |Forb(n, T5, η,μ) − S(n)| is obtained by sum-
ming the bounds in Lemmas 18–22, which is∣∣Forb(n − 1, T5)

∣∣22n2/9−βn2/5 + ∣∣Forb(n − 1, T5)
∣∣ · 2n2/17 + ∣∣Forb(n − 3, T5)

∣∣26n2/9−α2n2/3

+ ∣∣Forb(n − 3, T5)
∣∣27n2/11 + (

2−αn3 + 2−n/10)S(n).

We may assume that Theorem 1(n′) holds for all n′ < n with parameter C . Hence we can upper bound
this expression by

S(n − 1)
(
C2−(n−1)/10 + 1

)(
22n2/9−βn2/5 + 2n2/17)

+ S(n − 3)
(
C2−(n−3)/10 + 1

)(
26n2/9−α2n2/3 + 27n2/11) + S(n)

(
2−αn3 + 2−n/10).

Let us upper bound the terms above separately. Since n > n1, Lemma 11 (ii), yields S(n − 1) �
S(n)2−(2n2−5n+1)/9. As β is sufficiently small (by (16)), we also have 22n2/9−βn2/5 > 2n2/17. Therefore

S(n − 1)
(
C2−(n−1)/10 + 1

)(
22n2/9−βn2/5 + 2n2/17) < S(n)

(
C2−(n−1)/10 + 1

)
2−βn2/6.

Similarly, using S(n − 3) � S(n)2−(6n2−27n+28)/9 and 26n2/9−α2n2/3 > 27n2/11 we obtain

S(n − 3)
(
C2−(n−3)/10 + 1

)(
26n2/9−α2n2/3 + 27n2/11) < S(n)

(
C2−(n−3)/10 + 1

)
2−α2n2/4.
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Summing up these bounds, we conclude that |Forb(n, T5, η,μ) − S(n)| is upper bounded by

S(n)
[(

C2−(n−1)/10 + 1
)
2−βn2/6 + (

C2−(n−3)/10 + 1
)
2−α2n2/4 + 2−αn3 + 2−n/10].

After expanding the expression above, we see that each of the six summands is upper bounded by
C1
6 S(n)2−n/10 and we finally obtain∣∣Forb(n, T5, η,μ) − S(n)

∣∣ � S(n)C12−n/10.

This completes the proof. �
Proof of Theorem 3. We wish to prove Theorem 3(η,n), so as indicated above, we may assume The-
orem 16(n). We also use Lemmas 13, 11 (i) and C ′ = 2C1:∣∣Forb(n, T5, η) − S(n)

∣∣ �
∣∣Forb(n, T5, η) − Forb(n, T5, η,μ)

∣∣ + ∣∣Forb(n, T5, η,μ) − S(n)
∣∣

� 2n3(2/27−μ3/500) + C12−n/10 S(n)

� C12−n/10 S(n) + C12−n/10 S(n)

= C ′2−n/10 S(n). �
Proof of Theorem 1. We wish to prove Theorem 1(n), so as indicated above, we may assume Theo-
rem 3(η,n). We also use Theorem 2, Lemma 11 (i) and C = 2C ′:∣∣Forb(n, T5) − S(n)

∣∣ �
∣∣Forb(n, T5) − Forb(n, T5, η)

∣∣ + ∣∣Forb(n, T5, η) − S(n)
∣∣

� 2(1−ν)2n3/27 + C ′2−n/10 S(n)

� C ′2−n/10 S(n) + C ′2−n/10 S(n)

= C2−n/10 S(n). �
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