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Dipion transitions of Υ (nS) with n = 5, n′ = 1,2,3 are studied using the Field Correlator Method,
applied previously to dipion transitions with n = 2,3,4. The only two parameters of effective Lagrangian
were fixed in that earlier study, and total widths Γππ (5,n′) as well as pionless decay widths ΓB B (5S),
ΓB B∗ (5S), ΓB∗ B∗ (5S) and ΓK K (5,n′) were calculated and are in a reasonable agreement with experiment.
The experimental ππ spectra for (5,1) and (5,2) transitions are well reproduced taking into account FSI
in the ππ .

© 2008 Elsevier B.V. Open access under CC BY license.
1. Introduction

In a recent series of papers [1–4] we have studied the (n,n′)
bottomonium dipion transitions Υ (n) → Υ (n′)ππ and decays
Υ (n) → B B̄, B B̄π using effective Lagrangian derived in the frame-
work of the Field Correlator Method (FCM) [5]. This Lagrangian,
as was understood in [3], contains two effective masses, playing
the role of decay vertices, Mω for pionless qq̄ pair creation, and
Mbr for qq̄ accompanied by one or two pions (kaons). It was found
that Mω is responsible for pionless decays of the type Υ (n) →
B B, B B∗, B∗B∗ , while Mbr enters into pionic decay transitions
Υ (n) → B Bπ . These are the only free parameters of the method. It
was shown in [4], that both pionless and dipion transition widths
are reasonably well described by the method for n = 4,3,2 and
n′ = 1,2,3 when theoretically sound values Mω ∼ ω ≈ 0.58 GeV
(average light quark energy in B) and Mbr ∼ fπ ≈ 93 MeV were
used.

The results of [1–3] allowed to describe the ππ spectrum in
dipion (n,n′) transitions, for n = 2,3 in [1,2] and n = 2,3,4 and
n′ = 1,2 in [3]. It was stressed in [1–3], that the structure of the
(n,n′) transition with B B , B B∗ , B∗B∗ intermediate states contains
two types of amplitudes: “a” for consecutive one-pion emission
and “b” for zero-pion–two-pion emission, and the Adler Zero Re-
quirement (AZR) establishes connection between “a” and “b”. In
this way the long-standing problem of the theoretical description
of all (n,n′) transition spectra, found in experiment [6–8] was ap-
proximately resolved. One should stress, however, that all (n,n′)
dipion transitions in [1–3] with n � 4 refer to the subthreshold
case, for n = 4 the B B threshold is only 20 MeV below the Υ (4S)
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mass. For Υ (5S) the situation is different: all three channels B B ,
B B∗ , B∗B∗ and three others with Bs mesons are open and the
corresponding imaginary parts are large due to large accessible
energy. The final state ππ interaction is operative for the open
channel amplitudes and one should calculate explicitly all terms in
the amplitude, while AZR sets limits on the soft part of spectrum.

The decays and transitions of Υ (5S) are a good check of our
method, since no new parameters are involved, and the 5S realistic
wave function was accurately calculated [9]. At the same time the
new experimental data on 5S decays [10] present several questions
for the theory:

(1) The dipion widths Γππ (5,1), Γππ (5,2), Γππ (5,3) are ∼ 1000
times larger than the corresponding widths for Γππ (nn′) with
n = 2,3,4.

(2) The hierarchy of the widths ΓB B(5S) < ΓB B∗ (5S) < ΓB∗ B∗ (5S)

occurs in experiment with Γtot(5S) ∼ 0(100 MeV).
(3) Dikaon width of Υ (5S) is ∼ 1/10 of the dipion width.
(4) The dipion spectra in (5,1), (5,2) transitions are not similar

to spectra found for n = 2,3,4, showing a possible role of ππ
FSI.

It is a purpose of the present Letter to study the Υ (5S) decays
and transitions using the same method as in [1–3] without intro-
ducing any new parameters. We shall give quantitative answers to
questions (1)–(4), finding a reasonable order of magnitude agree-
ment for all observables, however also a strong sensitivity to the
properties of the 5S wave function. The Letter is organized as fol-
lows. In Section 2 general equations of the method from [1–3] are
written for the case of Υ (5S). In Section 3 pionless decay widths
are computed and compared to experiment, whereas in Section 4
total dipion and dikaon widths are discussed. The dipion spectra
with and without ππ FSI factors are given in Section 5. Main re-
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Fig. 1. (a) Subsequent one-pion emission. (b) Two-pion emission.

Fig. 2. Realistic w.f. of Υ (5S) (broken line), the series of oscillator functions with
kmax = 15 (dotted line), kmax = 5 (solid). Note that the dotted curve is almost indis-
tinguishable from the broken one.

sults are discussed in the concluding section together with a short
summary and perspective.

2. General formalism for Υ (5S) decays and transitions

The amplitude of the dipion transition (n,m) with pion mo-
menta k1,k2 can be written according to [3] as a sum of two
terms, see Fig. 1(a), (b).

w(ππ)
nm (E)

≡ a − b

= 1

Nc

{∑
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}
, (1)

where J (1)(p,k), J (2)(p,k1,k2) are the overlap matrix elements
between wave functions Ψ (q) of Υ (5S) and ϕ(q1)ϕ(q2) of B(B∗)
mesons.

It is convenient to approximate Ψ (q),ϕ(q) by a series of os-
cillator wave functions; indeed in Fig. 2 we show the quality of
fitting of Ψ (r) by series of 5 and 15 terms. In this case the de-
pendence on k1,k2 as shown below simplifies. For the pionless
overlap matrix element one can write

J (0)
n,11(p) =

∫
d3q

(2π)3
ȳ123(p,q)

Nmax∑
k=1

c(n)

k ϕk(β1,q + cp)ϕ2
1(β2,q)

= ipi
e− p2

Δ
(1) In,11(p). (2)
ω

Here c ≈ 1, c(n)

k are χ2 fitting coefficients and ϕk – oscillator
functions for Ψ (q) and ϕ1 – for B, B∗ mesons, and β1, β2 are os-
cillator parameters for Υ (5S) and B, B∗ found from fitting. The
factor ȳ123 defined in [3] takes into account the Dirac trace struc-
ture of the overlap vertex.

In a similar way one can define J (1)
n , J (2)

n for one- and two-pion
emission integrals (K = k1 + k2)

J (1)
n,11(p,k) = e

− p2

Δ
− K2

4β2
2 In,11(p) ȳ(π)

123, (3)

J (2)
n,11(p,k1,k2) = e

− p2

Δ
− K2

4β2
2 (1) In,11(p) ȳ(ππ)

123 pi . (4)

Here ȳ(π)
123, ȳ(ππ)

123 are defined by the Dirac traces of the amplitudes
and are given in [3]. As a result, the total amplitude is written as

M = exp

(
−k2

1 + k2
2

4β2
2

)(
Mbr

fπ

)2

M1

− exp

(
− K2

4β2
2

)
Mbr Mω

f 2
π

M2. (5)

Here M1 ∼ a, M2 ∼ b, explicit expressions for M1, M2 in
terms of the integrals of overlap matrix elements J (1) , J (2) , J (0) , as
in (1), are given in [3], and here we only quote results of numerical
computations of M1, M2 for (5,1), (5,2) and (5,3) transitions.
As will be seen, both M1 and M2 do not depend strongly on
cos θ and x, so that the main dependence of M(x, cos θ) on argu-
ments comes from two exponential factors in (5) (some exclusion
is imaginary part of M1, which is peaked near |cos θ | = 1).

The differential probability of dipion transition is given by

dwππ (n,n′)
dqd cos θ

= C0μ
2
√

x(1 − x)|M|2, (6)

where we introduced variables q ≡ Mππ , q2 = (ωπ (k1)+ωπ(k2))
2 −

(k1 + k2)
2, x = q2−4m2

π

μ2 , μ2 ≡ (ΔE)2 − 4m2
π ; and numerical factor

C0 = 1
32π3 N2

c
= 1.12 × 10−4. Here ΔE ≡ M(Υ (nS)) − M(Υ (n′ S));

explicit values of μ and ΔE for (5,n′) transitions are the follow-
ing (in GeV); ΔE(5,1) = 1.4; μ(5,1) = 1.37; ΔE(5,2) = 0.837,
μ(5,2) = 0.788; ΔE(5,3) = 0.505, μ(5,3) = 0.418. Finally the to-
tal dipion width is given by

Γππ (n,n′) = C0μ
3

1∫
0

dx

√√√√ x(1 − x)

x + 4m2
π

μ2

+1∫
−1

∣∣M(x, cos θ)
∣∣2 d cos θ

2
. (7)

3. The B-meson decays of Υ (5S)

In this section we study the pionless decays of Υ (5S), namely
into B B̄, B B̄∗ + c.c., B∗ B̄∗ , Bs B̄s , Bs B̄∗

s + c.c., B∗
s B̄∗

s to which we
ascribe numbers k = 1,2, . . . ,6. The corresponding formula for the
width was derived in [3], namely

Γ
(
Υ (nS) → (B B̄)k) =

(
Mω

2ω

)2 p3
k Mk

6π Nc
(Zk)

2
∣∣ J B B

n (pk)
∣∣2

. (8)

Mk is twice the reduced mass in channel k. The corresponding
coefficients Zk account for spin and isospin multiplicities and (cf.
similar coefficients in [11]) are as follows:

Z 2
1 = 2Z 2

4 = 1, Z 2
2 = 2Z 2

5 = 4, Z 2
3 = 2Z 2

6 = 7. (9)

Here J B B
n (pk) are overlap matrix elements

pi
J B B
n (p) =

∫
d3q

3
(qi − c̄pi)Ψ

∗
n (p + q)ϕ2

B(q), (10)

ω (2π)
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Table 1
The values of two-body decay widths Γk calculated with realistic 5S wave function.

k 1, B B̄ 2, B B̄∗ 3, B∗ B̄∗ 4, Bs B̄s 5, Bs B̄∗
s 6, B∗

s B̄∗
s

pk , GeV 1.26 1.16 1.05 0.835 0.683 0.482
Mk , GeV 5.28 5.30 5.32 5.37 5.39 5.41
Zk 1 4 7 1/2 4/2 7/2
Γk/(

Mω
2ω )2 MeV 11 57 65 0.08 10 18

where c̄ = ω
2(ω+Ω)

, and ω, Ω are average energies of light and
heavy quarks in B meson, computed in [12], ω ≈ 0.587 GeV, Ω =
4.827 GeV, ωs = 0.639 GeV, Ωs = 4.83 GeV, see Table 4 in [1].

Expanding Ψn,ϕB in series of oscillator functions as in [3],

one obtains the form J B B
n (p) = e− p2

Δ (1) In11(p), where (1) In,11(p) is
a polynomial in p2, Δ = 2β2

1 + β2
2 and β1, β2 are oscillator pa-

rameters for Υ (nS) and B meson respectively, found from the
χ2 fitting procedure to the realistic wave function calculated in
[9], and for 1S , 2S , 5S states and B meson one finds respec-
tively β1(1S) = 1.08 GeV, β1(2S) = 0.81 GeV, β1(5S) = 0.75 GeV,
β2 = 0.48 GeV.

Denoting Γk ≡ Γth(Υ (5S) → channel(k)), one has

(
2ω

Mω

)2

Γk = 0.0177p3
k Mk Z 2

k

∣∣ J5(pk)
∣∣2

, (11)

where J5(p) = (1) I5,11(p)e− p2

Δ , and (1) I5,11 is given in Eq. (2). Be-
low in Table 1 the computed values of Γk for k = 1, . . . ,6 and with
kmax = 5, i.e. five oscillator terms approximating wave function of
Υ (5S) are given. Computing (1) I5,11(p) for different number of os-

cillator terms kmax, one can see, that values of I5,11(t), t = p2

β2
0

,

β0 ≈ 0.886 GeV, in the interval 0.2 � t � 2 are sensitive to kmax
and vary around the value |I5,11| ≈ 1 GeV3/2. We choose this value
to estimate the variation of Γk and find that for the dominant
channel 3 the width changes by 6%, while Γ4 can change by a
factor of 10.

We now can compare our predicted theoretical values for Γk
with experimental data from [13]. First of all the total width of
Υ (5S) is known with 10% accuracy, Γ

exp
tot = 110 ± 13 MeV [13], and

some relations were established [13]

Γ
exp

1

Γ
exp

2

< 0.92; Γ
exp

1

Γ
exp

3

< 0.3; Γ
exp

2

Γ
exp

3

= 0.324. (12)

For channels with Bs , B∗
s one has [13]

Γ
exp

4 + Γ
exp

5 + Γ
exp

6

Γtot
= 0.16 ± 0.02 ± 0.058 (13)

and also

Γ
exp

4

Γ
exp

6

< 0.16; Γ
exp

5

Γ
exp

6

< 0.16. (14)

Calculating Γtot from Table 1, one has Γtot 	 ( Mω
2ω )2160 MeV

and choosing ( Mω
2ω )2 = 0.6 one can approximately reproduce the

decay Υ (4S) → B B̄ Γtot 	 26 MeV vs Γexp = 20.5 ± 2.5 MeV (see
[3]), while for Γtot(5S) one has Γtot = 113 MeV, which is not far
from the experimental value Γ

exp
tot = (110 ± 13) MeV. However for

more accurate calculation of Γk one needs better knowledge of the
wave function.

Comparing partial widths from the Table 1 with experimental
limits (12)–(14), one can see, that all inequalities except the last
right ones in (12) and (14) are satisfied by our theoretical values,
however more work on theoretical side (explicit form of 5S wave
function) and in experiment is needed.
Table 2
The total dipion and dikaon widths for the models 1 and 2 (from top to bottom) in
comparison with experimental widths from [10].

Transition (n,n′) 51 52 53 51, KK

Γ AZI
ππ /(

Mbr
fπ

)4, MeV 1.4 0.67 0.032 0.12

Γ FSI
ππ /(

Mbr
fπ

)4, MeV 2.0 1.67 0.23 0.18

Γ
exp
ππ (n,n′), MeV 0.59 ± 0.04 0.85 ± 0.07 0.52+0.20

−0.17 0.067+0.017
−0.015±0.09 ±0.16 ±0.10 ±0.013

4. Dipion and dikaon transitions of Υ (5S)

In this section we discuss dipion spectra and angular distribu-
tions for the transitions (5,1), (5,2) and (5,3), as well as total
dipion and dikaon widths, given by Eq. (11). The differential proba-
bility dwππ

dq d cos θ
is given in (6), and integrating over dx or over d cos θ

we obtain one-dimensional spectrum

dw

dq
= C0μ

2
√

x(1 − x)

+1∫
−1

|M|2 d cos θ (15)

and angular distribution

dw

d cos θ
= 1

2
C0μ

3

1∫
0

dx

√√√√ x(1 − x)

x + 4m2
π

μ2

∣∣M(x, cos θ)
∣∣2

. (16)

The values of M, Eq. (5), were calculated using Mω
Mbr

= 6 and for
M1, M2 the same equations (23)–(25) from [3] were used as for
Υ (nS) transitions with n � 4.

At this point we impose on the amplitude M the soft pion
property, and use the AZR to rewrite Eq. (5) in the form

M = M̄
(
exp1 −exp2 f (q)

)
, (17)

where exp1 and exp2 refer to the exponential factors in (5) and
the factor f (q), later used for the FSI effects, obeys the condition
f (q2 = m2

π ) = 1. Normalizing M̄ to M2, so that M̄ = Mbr Mω

f 2
π

M2,

one can insert (17) in (15) to obtain Γππ . The corresponding values
without FSI, i.e. for f (q) ≡ 1 are given in Table 2, upper line, and
called the model 1.

For the dikaon (5,1) transition one can in first approximation
neglect the change of mπ to mK in matrix element (5), and take it
into account in phase space, also remembering that M is O ( 1

f 2
π
),

which should be replaced by O ( 1
f 2

K
). In the total width ΓK K (5,1)

one can write similarly to (7)

ΓK K (5,1) = C0μ
3
K

1∫
0

dx

√√√√ x(1 − x)

x + 4m2
K

μ2
K

+1∫
−1

d cos θ

2
|Mk|2. (18)

Here μ2
K = (ΔE)2 − 4m2

K = 0.985 GeV2, μK = 0.992 GeV.
As a result, approximating the ratio of integrals over dx as 1/2,

one obtains

ΓK K (5,1)

Γππ (5,1)
= 1

2

(
μK

μ

)3( fπ
fk

)4

= 0.194

(
fπ
f K

)4

= 0.092 ≈ 1/10, (19)

where we have used fπ = 93 MeV, f K = 112 MeV [13].
Correspondingly one obtains the last column in Table 2 from

the second one, using (19).
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5. Final state interaction in (5,n′) transitions

One of the important new features of (5S) (and higher states
like (6S)) transitions is that a large phase space is available where
both σ and f0 resonances can be seen. In (4,1) transitions f0 is at
the edge of phase space while σ in most transitions lies near the
region x = η, where amplitudes vanish and therefore no strong FSI
effects are visible in (n,n′) for n � 4.

In (5,1), (5,2) transitions the situation is different and e.g. in
the (5,1) transition the f0 resonance is well inside the available q
region.

At this point it is necessary to stress that the FSI acts differently
on one-pion (“a” or M1) amplitude and two-pion (“b” or M2) am-
plitude. Namely, for the case of M1, where two pions are emitted
from two points separated by distance L ∼ 1/Γ , Γ � 0(10 MeV),
the ππ interaction of range r0 � 0.6–0.8 fm is damped by a fac-
tor of the order of r0/L ∼ O (1/10). E.g. in the FSI description in
[14–16], the relative weight of ππ amplitudes with and without
FSI was estimated as ∼ (1/7).

Completely different situation occurs in b, (M2), where a pair
of s-wave pions with I = 0 is emitted from a point (or, rather, a
region of the order of λ ∼ 0.1 fm, λ-gluonic correlation length of
QCD vacuum). Here FSI is obligatory and is given by the Omnès–

Muskhelishvili solution f (q) = P (q2)

D(q2)
; with P (q2) – a polynomial

normalizing f (q2) at some point: we shall use normalization
f (q2 = (2mπ )2) = 1; a very close result is obtained for the Adler
zero normalization f (q = mπ ) = 1. Hence one can write f (q2) as
follows (cf. the corresponding factors in [14,15]).

f (q) = α fσ (q) + β f f0(q), (20)

f i
(
q2) = Di(q2 = 4m2

π )

Di(q2)
,

Di
(
q2) = exp

(
−q2

π

∞∫
4m2

π

dq′ 2δi(q′ 2)

q′ 2(q′ 2 − q2)

)
, i = σ , f0 (21)

and δi(q2) is the ππ phase due to the ith resonance.
In the simplest approximation one can write

fσ (q) =
[

m2
σ − m2

π )2 + γ 2
σ

(m2
σ − q2)2 + γ 2

σ

]1/2

,

f f0(q) =
[

(m2
f0

− m2
π )2 + γ 2

f0

(m2
f0

− q2)2 + γ 2
f0

]1/2

sign(m f0 − q). (22)

The factors, corresponding to the resonances yield peaks, in
(22) the σ peak is a wide structure, while f0 produces a sharp
peak near 1 GeV. Another feature of f f0(q), Eq. (22), is that it
changes sign just above position of f0 due to the jump of δ(q2)

nearly equal to π , near q = 1 GeV, [14,15].
We have fitted the experimental (5,1) and (5,2) ππ spec-

tra using the form (17) with f (q) given in (20) and obtain the
following values of parameters: mσ = 0.5 GeV, m f0 = 1.15 GeV,
γσ = 0.35 GeV, γ f0 = 0.1 GeV; α = 1, β = 0.01. We call this fit
the model 2.

The resulting curves (solid lines) are given in Figs. 3 and 4 for
(5,1) and in Figs. 5 and 6 for the (5,2) cases, together with the
curves for the model 1 ( f ≡ 1, no FSI), shown by broken lines.
Note, that in Figs. 3–6 theoretical curves were fitted to the experi-
mental width Γ

exp
ππ , which means that Mbr/ fπ were varied in the

interval 1–0.75.

6. Results and discussion

We start with the B B widths of Υ (5S) given in Table 1. It
is clear that the values Γk give only a rough estimate and ac-
Fig. 3. Comparison of theoretical predictions, Eqs. (17), (20) with experiment [10] for
the dipion spectrum, dw

dq , in the Υ (5,1)ππ transition. Theory: Eq. (17) with f ≡ 1
– broken curve, Eq. (17) with f as in Eq. (20) (parameters given in the text) – solid
line. Theoretical curve is normalized to the total experimental width Γ

exp
ππ = dw

dq dq.

Fig. 4. The same as in Fig. 3, for the angular distribution dw
d cos θ

in the Υ (5,1)ππ
transition.

Fig. 5. The same as in Fig. 3, for the dipion spectrum dw
dq in the Υ (5,2)ππ transi-

tion.
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Fig. 6. The same as in Fig. 3, for the angular distribution dw
d cos θ

in the Υ (5,2)ππ
transition.

tual values Γk depends strongly on the behaviour of the Υ (5S)

wave function. This is certainly true for the Eq. (8), derived for the
wave function in the one-channel approximation. In the next or-
ders, given by the equation

det
((

E − E(0)
n

)
δnm − wnm(E)

) = 0,

this sensitivity should be weaker, since the wave function becomes
complex and does not have zeros. Hence one might hope that
the values Γk yield the correct order of magnitude for all chan-
nels k = 1, . . . ,6, with the value ( Mω

2ω )2 ≈ 1/2 as deduced from
Γtot(Υ (4S)). Comparing Γ̄k with the widths Γk obtained for the
5S wave function approximated by 5 oscillator functions, one finds
a reasonable agreement in magnitude, except for Γ4 which is small
due to nearby zero of J5(p).

Coming now to the total dipion widths in Table 2, one can no-
tice, that our general expression (5), without FSI, yields reasonable
order of magnitude for Γππ and ΓK K if (

Mbr
fπ

) ≈ 1. Here again
strong dependence on the Υ (5S) wave function persists and re-
sults for kmax = 5 and kmax = 15 differ several times. In view of
this it is not surprising that in Table 2 theoretical widths for (5,1)

and (5,2) dipion transitions have a hierarchy different from that
of experimental widths; however the smallness of Γth(5,3) is well
explained by a small phase space factor μ3 : μ3(5,3)/μ3(5,1) ≈
2.8 × 10−2 and it is not clear, why Γexp(5,3) ≈ Γexp(5,1).

Similar results for Γππ ,ΓK K are obtained when both FSI and
AZR are taken into account.

Turning to the ππ spectra, one observes that the spectra with-
out FSI (model 1) in Figs. 3, 5 have less structure in contrast to
the experimental data [10], where peaks in spectra at q = 0.6 GeV
for (5,2) and at q ∼= 1.2 GeV for (5,1) are clearly seen and strong
cos θ dependence is observed for the (5,2) transition.

The situation is much better for the FSI − AZR approximation
(model 2) in Figs. 3, 5 where the σ and f0 peaks are seen in (5,2)

and (5,1) cases, and also the experimental U -form of the cos θ

distribution is produced in the (5,2) transition. However the much
weaker experimental cos θ dependence, Fig. 4 for the (5,1) case is
better reproduced in the model 1.

As a whole, it seems, that the spectrum, especially its lower en-
hancement at q ≈ 0.4 GeV in both (5,1) and (5,2) transitions, can
be well described by the AZR + FSI form, where the lower peak at
q ≈ 0.4 GeV is due to cancellation of two terms in (17), i.e. mainly
due to AZR.
Summarizing, we have used the theory developed in previous
papers [1–3] and applied in [3] to the subthreshold transitions
(n,n′), n � 4. This theory does not contain free parameters, the
only ones Mω and Mbr are defined previously in [3].

Exploiting this theory, we have calculated six B B-type widths
of Υ (5S), Γk , k = 1, . . . ,6 total dipion widths of (5,n′), n′ = 1,2,3
transition, and dipion spectra and cos θ distributions of (5,n′)
transitions. We have succeeded in explaining approximately all 4
points, mentioned in introduction:

1. Total widths Γππ (5,n′) are O (1 MeV).
2. The sequence of inequalities between ΓB B , ΓB B∗ , ΓB∗ B∗ and

corresponding widths for Bs Bs , occur naturally.
3. Dikaon width of (5,1) is ≈ 1/10 of the corresponding dipion

width.
4. Dipion spectra of (5,1), (5,2) transitions require inclusion of

FSI with σ and f0 peaks and the appearance of the peak at
Mππ ≈ 0.4 GeV is possible due to a nearby zero of amplitude.
We stress, that our method allows to reproduce the sophisti-
cated (5,1) spectrum in Fig. 3 with good accuracy, using the
same FSI parameters as for the (5,2) spectrum in Fig. 5.

5. In addition the unusual (U -type) cos θ dependence is quanti-
tatively explained for the (5,2) transition as consequence of
FSI.

We have observed strong dependence of all results on the prop-
erties of the Υ (5S) wave function, in particular on the position of
its zeros, which in turn may serve to derive it from the total set of
experimental data.

As a whole, our method allows to understand the basic features
of all Υ (nS) transitions and decays, however more work is needed
to explain all data in detail.
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