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a b s t r a c t

A simple and efficient method for solving hypersingular integral equations of the first kind
in reproducing kernel spaces is developed. In order to eliminate the singularity of the
equation, a transform is used. By improving the traditional reproducing kernel method,
which requires the image space of the operator to be W 1

2 and the operator to be bounded,
the exact solutions and the approximate solutions of hypersingular integral equations of
the first kind are obtained. The advantage of this numerical method lies in the fact that, on
one hand, the approximate solution is continuous, and on the other hand, the approximate
solution converges uniformly and rapidly to the exact solution. The validity of the method
is illustrated with two examples.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

This aim of this work is to develop a numerical algorithm for the hypersingular integral equations of the first kind of the
form

a(x)
∫ 1

−1

ϕ(t)
(t − x)2

dt +

∫ 1

−1
L(t, x)ϕ(t)dt = f (x), −1 ≤ x ≤ 1, (1.1)

where the unknown function ϕ(x) has square-root zeros at the end-points, that is, ϕ(x) =
√
1 − x2g(x) with g(x) smooth,

a(x) is bounded and belongs to L2[−1, 1], L(t, x) is a regular square-integrable function of t and x, and f (x) is smooth. The
first integral is understood in the sense of Hadamard finite part, that is,∫ 1

−1

ϕ(t)
(t − x)2

dt = lim
ε→0+

[∫ x−ε

−1

ϕ(t)
(t − x)2

dt +

∫ 1

x+ε

ϕ(t)
(t − x)2

dt −
ϕ(x + ε)+ ϕ(x − ε)

ε

]
, −1 ≤ x ≤ 1. (1.2)

Eq. (1.1) arises frequently in a variety of mixed boundary value problems in mathematical physics such as water wave
scattering and radiation problems involving thin submerged plates [1–4] and fracture mechanics [5]. Usually, Eq. (1.1) is
solved approximately by an expansion–collocation method [6].

In this work, we will present a new simple and effective method for the reproducing kernel space.
To solve Eq. (1.1), we first slide over the hypersingular integral term of Eq. (1.1). Note that in the sense of Cauchy principal

value,∫ 1

−1

√
1 − t2

t − x
dt = −πx
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holds. Therefore,∫ 1

−1

ϕ(t)
(t − x)2

dt =

∫ 1

−1


1 − t2

g(t)
(t − x)2

dt =
d
dx

∫ 1

−1


1 − t2

g(t)
t − x

dt

=
d
dx

∫ 1

−1


1 − t2

g(t)− g(x)
t − x

dt + g(x)
∫ 1

−1

√
1 − t2

t − x
dt



=
d
dx

[∫ 1

−1


1 − t2

g(t)− g(x)
t − x

dt − πxg(x)
]

=

∫ 1

−1


1 − t2

−g ′(x)(t − x)+ g(t)− g(x)
(t − x)2

dt − π

xg ′(x)+ g(x)


.

Then Eq. (1.1) can be converted into

a(x)
∫ 1

−1


1 − t2

−g ′(x)(t − x)+ g(t)− g(x)
(t − x)2

dt +

∫ 1

−1


1 − t2L(t, x)g(t)dt = f (x)+ πa(x)


xg ′(x)+ g(x)


= f1(x), −1 ≤ x ≤ 1. (1.3)

In Eq. (1.3), −g ′(x)(t−x)+g(t)−g(x)
(t−x)2

is regarded as g ′′(x)
2 as t = x. So −g ′(x)(t−x)+g(t)−g(x)

(t−x)2
∈ C([−1, 1]×[−1, 1]). Thismeans that the

singularity of Eq. (1.1) has been removed. When computing integrals, the Gauss–Chebyshev quadrature rule of the second
kind is an appropriate choice.

In this work, by solving Eq. (1.3), wewill give the exact solution of Eq. (1.1), denoted by a series, in the reproducing kernel
space. After truncating the series, the approximate solution is obtained. The approximate solution converges uniformly and
quickly to the exact solution of Eq. (1.1) on the interval [−1, 1]. It is worth pointing out that, unlike other numerical method
solutions, our numerical approximate solution is continuous and converges uniformly to the exact solution of Eq. (1.1). The
two experiments at the end show the efficiency of our method.

2. Preliminaries

Definition 2.1. W [−1, 1] = {u(x)|u′′(x) is an absolutely continuous real-valued function

on [−1, 1] and u′′′
[x] ∈ L2[−1, 1]}. (2.1)

The inner product and the norm ofW [−1, 1] are defined as follows:

(u, v)W [−1,1] =

2−
i=0

u(i)(−1)v(i)(−1)+

∫ 1

−1
u′′′(x)v′′′(x)dx, ∀u, v ∈ W [−1, 1]. (2.2)

Theorem 2.1. The reproducing kernel of space W is

R(x, y) =


R1(x, y), y ≤ x
R2(x, y), y > x

where

R1(x, y) =
1

120


276 + 195y + 40y2 + y5 + 5x


39 + 56y + 18y2 − y4


+ 10x2 (1 + y)2 (4 + y)


.

R2(x, y) =
1

120


276 + 195x + 40x2 + x5 + 5y


39 + 56x + 18x2 − x4


+ 10y2 (1 + x)2 (4 + x)


.

See the Appendix for the proof of Theorem 2.1, above.

3. Several lemmas

Let us discuss how to solve ϕ(x) from Eq. (1.1) in the next two sections.
Put

U[−1, 1] = {u(x)|u(x) is real and absolutely continuous on the interval [−1, 1]}.

Define operator A as follows:

(Ag)(x) = a(x)
∫ 1

−1


1 − t2

−g ′(x)(t − x)+ g(t)− g(x)
(t − x)2

dt +

∫ 1

−1


1 − t2L(t, x)g(t)dt, −1 ≤ x < 1. (3.1)
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We can easily obtain the following four lemmas.

Lemma 3.1. Suppose that u(x) ∈ C[−1, 1], and for a fixed xi ∈ [−1, 1], u(x) ∈ C1
[−1, xi], u(x) ∈ C1

[xi, 1]; then
u(x) ∈ U[−1, 1].

Lemma 3.2. Let k(t, x) ∈ C([−1, 1] × [−1, 1]); then
 1
−1 k(t, x)dt ∈ C[−1, 1].

Lemma 3.3. Let h(t) ∈ L2[−1, 1], k(t, x) ∈ C([−1, 1] × [−1, 1]); then
 1
−1 h(t)k(t, x)dt ∈ C[−1, 1].

Lemma 3.4. Let k(t, x) ∈ L2([−1, 1] × [−1, 1]), h(t) ∈ C[−1, 1]; then
 1
−1 k(t, x)h(t)dt ∈ L2[−1, 1].

Lemma 3.5. Operator A maps W [−1, 1] into L2[−1, 1].

Proof. Taking any g(x) ∈ W [−1, 1], using −g ′(x)(t−x)+g(t)−g(x)
(t−x)2

∈ C([−1, 1] × [−1, 1]) and Lemma 3.2, it follows that the
first integral in A belongs to C[−1, 1]. Besides, from L(t, x) ∈ L2([−1, 1] × [−1, 1]) and Lemma 3.4, one obtains that the
second integral in A belongs to L2[−1, 1]. Hence, A mapsW [−1, 1] into L2[−1, 1]. �

Let {xi}∞i=1 be a dense subset of interval [−1, 1]. Put

ψi(x) = [AtR(x, t)](xi). (3.2)

Theorem 3.1. ψi(x) ∈ W [−1, 1].

Proof. (a) From

ψi(x) = [AtR(x, t)](xi) = a(xi)
∫ 1

−1


1 − t2

−
∂
∂t R(x, xi)(t − xi)+ R(x, t)− R(x, xi)

(t − xi)2
dt

+

∫ 1

−1


1 − t2L(t, xi)R(x, t)dt,

it follows that

ψ ′′

i (x) = a(xi)
∫ 1

−1


1 − t2

−
∂3

∂x2∂t
R(x, xi)(t − xi)+

∂2

∂x2
R(x, t)−

∂2

∂x2
R(x, xi)

(t − xi)2
dt

+

∫ 1

−1


1 − t2L(t, xi)

∂2

∂x2
R(x, t)dt

= I + II,

ψ ′′′

i (x) = a(xi)
∫ 1

−1


1 − t2

−
∂4

∂x3∂t
R(x, xi)(t − xi)+

∂3

∂x3
R(x, t)−

∂3

∂x3
R(x, xi)

(t − xi)2
dt

+

∫ 1

−1


1 − t2L(t, xi)

∂3

∂x3
R(x, t)dt

= III + IV.

Since L(t, xi) ∈ L2[−1, 1], ∂
2

∂x2
R(x, t), ∂

3

∂x3
R(x, t),

−
∂3

∂x2∂t
R(x,xi)(t−xi)+

∂2

∂x2
R(x,t)− ∂2

∂x2
R(x,xi)

(t−xi)2
∈ C([−1, 1] × [−1, 1]) and Lemma 3.3,

we obtain I, II, IV ∈ C[−1, 1]. Because
−

∂4

∂x3∂t
R(x,xi)(t−xi)+

∂3

∂x3
R(x,t)− ∂3

∂x3
R(x,xi)

(t−xi)2
belongs to C([−1, xi] × [−1, 1]) and C([xi, 1] ×

[−1, 1]), it follows that III ∈ C[−1, xi] and C[xi, 1]. Therefore, ψ ′′

i (x) ∈ C[−1, 1], ψ ′′′

i (x) ∈ C[−1, xi] and C[xi, 1]. It follows
that ψ ′′

i (x) ∈ U[−1, 1] and ψ ′′′

i (x) ∈ L2[−1, 1] from Lemma 3.1. Thus, according to the definition of W [−1, 1], ψi(x) ∈

W [−1, 1]. �

4. Main results

Theorem 4.1. {ψi}
∞

i=1 defined by (3.2) is complete in W [−1, 1].

Proof. From Theorem 3.1, ψi(x) ∈ W [−1, 1]. Let u ∈ W [−1, 1] such that (u, ψi) = 0. From

0 = (u, ψi) = (u(x), AtR(x, t)(xi)) = [At(u(x), R(x, t))](xi) = (Atu(t))(xi) (4.1)

and the density of {xi}∞i=1 being in [−1, 1], we obtain Au = 0. Note that Au = 0 has a unique solution. We obtain u = 0. �
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Fig. 1. The figure of the absolute error ϕn − ϕ for Example 5.1 for n = 5, 15, 25.

Using the Gram–Schmidt process, we orthonormalize the sequence {ψi}
∞

i=1 and obtain the orthonormal system {ψ i}
∞

i=1,
that is,

ψ i =

i−
k=1

βikψk, βii > 0, i = 1, 2, . . . .

{ψ i}
∞

i=1 is an orthonormal basis ofW [−1, 1].

Theorem 4.2. Let {xi}∞i=1 be a dense subset of [−1, 1]; then:
(a) The exact solution of Eq. (1.1) is ϕ(x) =

√
1 − x2

∑
∞

i=1 f̃iψ̄i, where f1(x) = f (x) + πa(x)

xg ′(x)+ g(x)


, f̃i =

∑i
k=1

βikf1(xk), i = 1, 2, . . . .
(b) ϕn(x) =

√
1 − x2

∑n
i=1 f̃i r̄i converges uniformly to the exact solution ϕ(x) of Eq. (1.1).

Proof. (a) Let ϕ(x), g(x) be the exact solutions of Eq. (1.1) and (1.3) respectively. We have

(g, ψk) = (g, [AtR(x, t)](xk)) = At(g, R(x, t))(xk) = Ag(xk) = f1(xk).

So,

(g, ψ̄i) =

i−
k=1

βik(g, ψk) =

i−
k=1

βikf1(xk) = f̃i.

Hence, ϕ(x) =
√
1 − x2g(x) =

√
1 − x2

∑
∞

i=1(g, r̄i)ψ̄i =
√
1 − x2

∑
∞

i=1 f̃iψ̄i.
(b) Write gn(x) =

∑n
i=1 f̃iψ̄i; then ϕn(x) =

√
1 − x2gn(x). Since

‖R(x, y)‖2
W = (R(x, y), R(x, y)) = R(x, x)

is a polynomial of x, we obtain that for any −1 ≤ x ≤ 1,

|ϕn(x)− ϕ(x)| =


1 − x2|gn(x)− g(x)| =


1 − x2|(gn(y)− g(y), R(x, y))|

≤ ‖gn − g‖ · ‖R(x, y)‖W ≤ M‖gn − g‖.

So, from ‖gn − g‖W → 0, as n → ∞, the conclusion follows. �

5. Numerical Examples

In this section, we will demonstrate the effectiveness of the proposed method by considering two concrete examples of
Eq. (1.1). Denote byϕ(x) andϕn(x) the exact solution and the approximate solution of the examples considered, respectively.
And in the computation, the nine-point Gauss–Chebyshev quadrature rule of the second kind is used.

Example 5.1. Considering the following hypersingular integral equation:∫ 1

−1

ϕ(t)
(t − x)2

dt +

∫ 1

−1
(t + x)ϕ(t)dt =

π

2
(1 − 6x2)+

π

8
x, −1 ≤ x ≤ 1. (5.1)

ϕ(x) =
√
1 − x2x2 is the exact solution of Eq. (5.1). Take {xi}mi=1 = {−1+

2i
n }

n
i=0 ∪{−1+

2i
n +

1
n }

n−1
i=0 ∪{−1+

i
n +

1
2n }

2n−1
i=0 ∪

{−1 + 0.004i}20i=1 ∪ {1 − 0.004i}1i=20. The absolute errors ϕn − ϕ for n = 5, 15, 25 are given in Fig. 1.

Example 5.2. Another hypersingular integral equation is given by∫ 1

−1

ϕ(t)
(t − x)2

dt +

∫ 1

−1
txϕ(t)dt = −8πx3 +

17
8
πx − π, −1 ≤ x ≤ 1. (5.2)

whose exact solution is ϕ(x) =
√
1 − x2(1 + 2x3). {xi}mi=1 is chosen the same as in Example 5.1. The absolute errors ϕn − ϕ

for n = 5, 15, 25 are given in Fig. 2.
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Fig. 2. The figure of the absolute error ϕn − ϕ for Example 5.2 for n = 5, 15, 25.
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Appendix

In the following, the proof of Theorem 2.1 will be given.

Proof. Using the formula for integration by parts three times, one has∫ 1

−1
u′′′v′′′dx = u′′v(3) |1

−1 −u′v(4) |1
−1 +uv(5) |1

−1 −

∫ 1

−1
uv(6)dx, (A.1)

and further

(u, v) =

2−
i=0

u(i)(−1)v(i)(−1)+

∫ 1

−1
u′′′v′′′dx

= u(−1)[v(−1)− v(5)(−1)] + u(1)v(5)(1)+ u′(−1)[v′(−1)+ v(4)(−1)]

− u′(1)v(4)(1)+ u′′(−1)[v′′(−1)− v(3)(−1)] + u′′(1)v(3)(1)−

∫ 1

−1
uv(6)dx,

and thus

(u(y), R(x, y)) = u(−1)
[
R(x,−1)−

∂5

∂y5
R(x,−1)

]
+ u(1)

∂5

∂y5
R(x, 1)+ u′(−1)

[
∂

∂y
R(x,−1)+

∂4

∂y4
R(x,−1)

]
− u′(1)

∂4

∂y4
R(x, 1)+ u′′(−1)

[
∂2

∂y2
R(x,−1)−

∂3

∂y3
R(x,−1)

]
+ u′′(1)

∂3

∂y3
R(x, 1)

−

∫ 1

−1
u(y)

∂6

∂y6
R(x, y)dy.

In order to obtain (u(y), R(x, y)) = u(x), it is enough to require the following equalities to hold:

−
∂6

∂y6
R(x, y) = δ(y − x) (A.2)

R(x,−1)−
∂5

∂y5
R(x,−1) = 0,

∂5

∂y5
R(x, 1) = 0 (A.3)

∂

∂y
R(x,−1)+

∂4

∂y4
R(x,−1) = 0,

∂4

∂y4
R(x, 1) = 0 (A.4)

∂2

∂y2
R(x,−1)−

∂3

∂y3
R(x,−1) = 0,

∂3

∂y3
R(x, 1) = 0. (A.5)

From (A.2), we have ∂6

∂y6
R(x, y) = 0 as y ≠ x. Its characteristic equation is λ6 = 0. Hence, λ = 0 (sixfold); we obtain

R(x, y) =


c0(x)+ c1(x)y + c2(x)y2 + c3(x)y3 + c4(x)y4 + c5(x)y5 y ≤ x,
d0(x)+ d1(x)y + d2(x)y2 + d3(x)y3 + d4(x)y4 + d5(x)y5 y > x.

(A.6)
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Integrating both sides of (A.2) from x − ε to x + ε with respect to y and letting ε → 0, one gets

∂5

∂y5
R(x, x − 0)−

∂5

∂y5
R(x, x + 0) = 1. (A.7)

Meanwhile, integrating indefinitely on both sides of (A.2) with respect to y, we can obtain in turn that for a fixed x, as a
function of y, ∂

i

∂yi
R(x, y), i = 4, 3, 2, 1, 0, are all continuous, that is

∂ i

∂yi
R(x, x + 0) =

∂ i

∂yi
R(x, x − 0), i = 0, 1, 2, 3, 4. (A.8)

Substituting the results ci, di obtained from (A.3)–(A.5), (A.7), (A.8) into (A.6), R(x, y) is obtained. �
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