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The problem under consideration is that of the scattering of time periodic elec- 
tromagnetic fields by metallic obstacles. A common approximation here is that in 
which the metal is assumed to have infinite conductivity. The resulting problem, 
called the perfect conductor problem, involves solving Maxwell’s equations in the 
region exterior to the obstacle with the tangential component of the electric field 
zero on the obstacle surface. In the interface problem different sets of Maxwell 
equations must be solved in the obstacle and outside while the tangential 
components of both electric and magnetic fields are continuous across the obstacle 
surface. Solution procedures for this problem are given. There is an exact integral 
equation procedure for the interface problem and an asymptotic procedure for large 
conductivity. Both are based on a new integral equation procedure for the perfect 
conductor problem. The asymptotic procedure gives an approximate solution by 
solving a sequence of problems analogous to the one for perfect conductors. 

1. INTRODUCTION 

This paper continues a study, begun in [4], of scattering of time harmonic 
electromagnetic fields by metallic obstacles, the eddy current problem. The 
work in [4] was restricted to a very special class of two-dimensional 
problems. Here we treat the full three-dimensional situation. 

Although the technical details of the present paper are far more 
complicated than those of [4] the general outline is exactly the same. Two 
ideas are developed. The first is a boundary integral procedure for the eddy 
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current problem. The second is an asymptotic procedure which applies for 
large conductivity and reflects the skin efict in metals. The key to both 
methods, just as in [4], is the introduction of a new integral equation 
procedure for the boundary value problem corresponding to perfect con- 
ductors. 

Let Q’ be a bounded region in R3 and fl = (a’)‘. Q is to represent air and 
R’ a metallic conductor. We suppose there are incident electric and magnetic 
fields, E” and Ho, satisfying Maxwell’s equations in air. The total fields E, H 
satisfy the same Maxwell equations as E” and Ho in Q but a different set in 
0’. Across the interface S = 30 = 3R’ the tangential components of both E 
and H must be continuous. 

We assume that E” and Ho are time periodic with a single frequency and 
require that E and H should have the same property. We make the standard 
assumptions that conduction (displacement) currents can be neglected in air 
(metal). Then, with appropriate scaling, the eddy current problem is (see 

1111) 

curl E = H, curl H = a2E in 0 

curl E = H, curl H = i/3’E in 0’ (P,,) 

E;: =E;, H;=H; on S. 

Here a and p > 0 are dimensionless parameters. The subscript T denotes 
tangential component and the superscripts plus and minus denote limits from 
0 and 8’. The fields E and H must be such that E-E’ and H -Ho 
represent scattered fields. 

At higher frequencies the constant /I is usually large and this leads to the 
perfect conductor approximation. Formally this means solving only the B 
equation and requiring that E, = 0 on S. If we let E and H denote the 
scattered fields, we then obtain the problem 

curl E = H, curl H = a*E in Q 

E, = -Et on S. 
PWC) 

THEOREM 1.1. There exists at most one solution of (P,,) for any a > 0 
andO<p<a. 

The proof of uniqueness for P,, can be found in [9] and the proof for 
(P,& is a minor variation which we omit. 

A first integral equation procedure for (P,,) was given in [ 1 ]. There have 
been a number of subsequent procedures for (P,,) (see 16, 9, 121). All of 
these lead to integral equations of the second kind. We also give an integral 
equation procedure for (P,,) but ours leads to a type of first-kind equation. 
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Our motivation for this new method, as in [4], is that it gives a simple 
procedure for the calculation of the quantity H, on S. This enables us to 
formulate an integral equation procedure for (P,,) and to give our 
asymptotic scheme. 

Our method is similar to that in [6] but contains important differences. In 
particular our analysis is in terms of Sobolev spaces. This facilitates the 
formulation of Galerkin schemes, a subject which is explored in [7]. 

Let us describe the asymptotic procedure. Let 7 be the distance from S 
measured into 0 along the normals to S. Then we obtain two different 
asymptotic expansions: 

id 

E in *,. 
H 

(A,) 

(A, ,> 

In these formulas the E, and H, are independent of p. The exponential in 
(A,,) represents the skin effect. 

The various coefficients can be computed recursively. E,, Ho in (A,) is 
simply the perfect conductor approximation, that is, the solution of (P,,). 
One calculates the successive E, and H, in (A,) by solving a sequence of 
problems of the same form as (P,,) but with boundary values determined 
from earlier coefficients. The E, and H, in (A,,) are obtained by solving 
ordinary differential equations in the variable t. 

The asymptotic procedure, when it is valid, gives a great reduction in 
complexity of solution since it involves solving only the boundary value 
problems of the form (P,,). 

A theoretical numerical analysis of a Galerkin method for (P,,) is given 
in 171. Reference [4] contains the results of numerical experiments in the 
two-dimensional case. These exhibited quite high accuracy in the integral 
equation methods and the validity of the asymptotic approximation over a 
very wide range of p values. 

The plan of the paper is as follows. In Section 2 we describe our integral 
equation methods for (P,,) and (P,,). ([7] has a variational formulation 
which we propose to implement numerically). In Section 3 we first consider 
the special case of a half-space and illustrate the method formally. This 
suggests the theorems which should be true in the general case and we give a 
precise statement of them. 

The equations which appear in our integral equation methods involve 
pseudo-differential operators on S. We give quite precise existence and 
regularity theorems for these in Section 3. The regularity results play a 
central role in the theoretical analysis of the variational procedures. The 
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proofs of these theorems are technically complicated and are presented in 
Sections 4 and 5. 

In Section 6 we describe our asymptotic procedure. For ease of presen- 
tation we will present it for the half-space case. 

2. THE INTEGRAL EQUATION METHODS 

Let us begin by stating the conditions under which we operate. In order to 
avoid technical assumptions about smoothness we will assume throughout 
that S is a regular analytic surface. There will be another condition which is 
based on the following well-known result. 

THEOREM 2.1. There exists a sequence (a,}, k = 1,2,..., such that if 
GL # ak then curl E = H, curl H = a2E in R’, E, = 0 on S implies E s H = 0 
in 0’. 

Throughout the paper we require 

a f  ak, k = 1, 2,... . (2.1) 

Our methods, like others, are based on the Stratton-Chu formulas from 
[ 111. To describe these we need some notation. We will let n denote the 
exterior normal to S. Given any vector field v defined on S we have 

v = vT + uNn, v,=nx(vxn) (2.2) 

where vT, which lies in the tangent plane, is the tangential component of v. 
We introduce the idea of a simple layer. We set 

q?(r) = r- leiyr. (2.3) 

cp,(lx - Yl), x - - ( x, , x2, x3), y = ( y, , yZ, yj), is a fundamental solution of the 
Helmholtz equation, dw = -y2w and when y is real and positive it satisfies 
the Sommerfeld radiation condition. We define the simple Zayer V, for 
density v/ for the surface S by 

qv)=cj v(Y>~~lx-YlPY~ c= (4n)-‘. (2.4) 
s 

For a vector field v on S we define VAv) by (2.4) with v replacing v/. 
We collect in the following lemma some of the well-known results 

about V,. 
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LEMMA 2.1. For any complex y, 0 < arg y & n/2 and any continuous p 
on S: 

(i) Vjw) is continuous in R3, 

(ii) d V,(w) = --y2 V@) in Q U R’, 

(iii) VJv)(x) = 0(1x1-’ eiylxi) as 1x1-+ co, 

(F(x))* =+~v(x)+~sKy(x,v)p(y)dS, on& 

(iv)’ 

Ky(x~Y)=w-Yl-‘) as y-x. 

For vector densities v, V,(v) satisfies (i)-(iii) of Lemma 4.1. As we show 
in Section 4, (iv) yields the following additional result. 

LEMMA 2.2. For any complex y, 0 < arg y < 42 and any continuous v 
on S, 

(n X curl V,(v)(x))* = * $(x) + f /s K,(x, y) v(y) dS, 

where the matrix function KY satisj?es Ky(x, y) = O(l x - y I -‘) as y -t x. 

The Stratton-Chu formulas state the following. If Curl E = H and 
curl H = i/32E in R’ then 

E = VfiD(n x H) - curl VA@ x E) + grad V&,(n . E) 
in R’. 

H = curl VA o(n x H) - curl curl VA o(n x E) 
(2.5) 

Similarly, if curl E = H, curl H = a2E in R and E and H represent scattered 
fields then 

E = V,(n x H) - curl V,(n x E) + grad V,(n . E) 

H = curl V,(n X H) - curl curl V,(n X E) 
in a. (2.6) 

If n x H, n x E and n . E were all known then (2.6) would yield a solution 
of (P,,) but this is too much information; we know only n x E. The 
standard treatment of (P,,) starts from (2.6) but sets n x H and n . E equal 
to zero and replaces -n X E by an unknown tangential field L: 

E = curl V,(L), H = curl curl V,(L). (2.7) 

’ Here again the plus and minus denote limits from 0 and 0’. 
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Imposition of the boundary condition then yields an integral equation of the 
second kind for L in the tangent space to S. 

The method (2.7) is analogous to solving the Dirichlet problem for the 
scalar Helmholtz equation with a double layer. It has the drawback, for our 
purposes, that having found L it is hard to determine H, (or equivalently 
n x H) on S. It is not too difficult to see that calculating n X H on S 
involves finding a second normal derivative of V,(L). 

Our method for (P,,) is analogous to solving the scalar problems with a 
simple layer (see [5]). (In [4] our method reduces to exactly that of [5].) We 
again use (2.6) but this time we set n x E = 0 and replace n X H and n . E 
by unknowns J and M. Thus we take 

E = V,(J) + grad V,(M), H = curl V,(J). (2.8 1 

If we can determine J then in this case we can use Lemma 2.2 to determine 
n x H, hence H, on S. 

We need equations to determine J and M. The first of these comes from 
the boundary condition. For any field v defined in a region containing S we 
will have grad v/ = (grad IV), + (grad w), n and there is a surface differential 
operator grad, such that grad, li/ = (grad w), on S. We set 

A~‘(J,M)-A”(J)+A’*(M)= V,(J),+grad, V,(M) 

and then the boundary condition in (P,,) becomes 

(2.9) 

A (‘)(J M) = -E” a 3 T’ (2.10) 

Another equation is required. To see what it is we note that the equations 
for (P,,) require that div E = div H = 0 in Q. For (2.7) this is automatic but 
for (2.8) only div H is automatically zero; hence we must somehow 
guarantee that div E = 0. We assert that it suffices to make div E = 0 on S. 
For it follows from (2.8) and (2.3) that dE = --a*E; hence A div E = 
-a* div E in Q. Moreover div E satisfies the radiation condition. Hence, by 
uniqueness for the scalar exterior Dirichlet problem div E = 0 on S implies 
div E = 0 in a. 

Our other condition, then, is div E E 0 on S. We can state this condition 
in a little more useful fashion. Note first that div grad V,(M) = AV,(M) = 
-a2Va(M). We can also simplify div V,(J) on S. First we note that for any 
field v defined in a neighbourhood of S we can define the surface divergence 
div, by div v = div, v + n&/&r. (This operator, like grad,, is discussed in 
Section 4.) We have: 

LEMMA 2.3. For any dijierentiable tangential field v, 

div V,(v) = V,(div, v) on S. 
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div v,(v)(x) = c J V(Y) - grad, v~(Ix - YI) ds, 
s 

=-cj div,(v(y)y,,(lx-yl))ds, 
S 

+cj d iv, V(Y) vJlx - Y I) ds, 
s 

= V,(div, Y)(X) 

since Is div, w(y) ds, = 0 for any w. 
If we define 

A z’(J, M) z A “(5) + A **(M) = -V,(div, J) + a* V,(M) (2.11) 

then the condition div E = 0 on S becomes 

A ;*)(J, M) = 0. (2.12) 

We set A,(J, M) = (A”‘(J, M), A (‘)(J, M)) and combine (2.10) and (2.12) 
into 

A&J, M) = (-Et, 0). k?J 

Our procedure for (P,,) proceeds as follows. We let E and H this time 
denote the total fields. We again use (2.8) in s2 and we use its analog in 0’. 
Thus we put 

E = E” + V,(J) + grad V,(M), H = Ho + curl V,(J) 

E = VJ~ J.i> + grad vdib(m), H = curl Vdi,,(j) 

in R 

in R’. 
(2.13) 

We must insure that div E = 0 in J2 and 8’; hence we obtain Ai(J, M) = 
A>-,O’,m)=O. w e must have EG = E; on S; hence Az’(J, 44) = 

A %,(I, m) - Et on S. We must also have Ht on S and for this we use 
Lemma 2.2. Define 

K,(v)(x) = J K&G Y> V(Y) 4. (2.14) 
S 
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Then by Lemma 2.2 we will have (n x H)’ = (n X H)); hence H,’ = H, on 
S if 

J + K,(J) = -j + Kfib(j) - 2n x Ho on S. (2.15) 

Let us again combine the equations for (P,,) by writing 

C,,(J, M, j, m) = (A z’(J, M) - A ‘$ & m), A L*‘(J, M), 

J + K,(J) +.i - K~,Cj),A’$j,(i, m)). (2.16) 

Then the equations are 

C,,(J, M, j, m) = (-Et, 0, -2n x Ho, 0). (EdA 

It is not difficult to verify that if we have div E = 0 in (2.8) then (2.8) 
gives a solution of Maxwell’s equations with a similar result for (2.13). Thus 
we have the following result: 

THEOREM 2.2. (i) If (J, M) is a solution of (E,,) with J differentiable 
and M continuous then (2.8) yields a solution of (POK). 

(ii) Zf (J, M, j, m) is a solution of (E,& with J, j differentiable and 
M. m continuous then (2.13) yields a solution of (P,,). 

Remarks. 1. The method for (P,,) is capable of handling the case of 
dielectric obstacles as well. Here one simply replaces i/?’ in R’ by p’ and the 
method proceeds in exactly the same way if d/j’ is replaced by /3 in all the 
formulas. 

2. The method for (P,,) can clearly be used for the interior boundary 
problem. 

3. The method can be modified to handle the boundary problem. 
either interior or exterior, in which H, is specified on S. If one seeks a 
solution of curl E = H, curl H = iP2E in .R’, for instance, with n X H =X 
on S then one can take 

E = “Ji oci) + grad VJi b(m), H = curl Vcli o(j) 

In later sections we will establish that Eqs. (E,,) and (E,,) have 
solutions which will be as smooth as desired if E” and Ho are sufficiently 
smooth. In [7] we give a variational formulation for Eqs. (E,,) and discuss 
approximate solutions with finite elements. This analysis is related to that 
in [2] and [3]. 

409!101.‘2 3 
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3. THE HALF-SPACE CASE 

In this section we give a formal treatment of the case in which R is the 
half-space x3 > 0, x = (xi, x2, x3). All our formulas are greatly simplified. 
We have n(x) = e3 and the first simplification is that K, in Lemma 2.1(v) is 
identically zero. It is also true that the matrix K, in Lemma 2.2 is zero as we 
will verify shortly. 

We have here M(y) = M(y, , y2) and 

yof)W = v’y * M on S, (3.1) 

where the star denotes convolution. Similarly 

and 

V,(J) = V,(J), = ‘pY * J’e, + ‘pY * J2e2 on S. (3.2) 

We also have 

grad, Y,(M)=&(6?r*We, +&,*We2 (3.3) 
1 2 

div J(Y) = J~,(Y,~ y2) + J:,(Y, y Ye>, V,(div J) = (Do * div J. 

Finally, we have, for v = v’(y,, y2) e, + u2(y,, y,)e,, 

n X curl V,(v) = e3 x 
I 
-& V,(u2)e, +& V,(u’)e, 

+ ($ .,,I;, - & Yy@i) e31 

=-~V~(o’)e,--~V,(v2)e2. 
3 3 

Thus, from Lemma 2.1 (iv) with K, = 0 we conclude 

(n X curl V,(v))* = * fv. 

With the simplifications Eqs. (E,,) become 

(3.4) 

W,*J+~rp,*Me,+~~,*Me2=4nb 
1 2 

-~,*divJ+a*rp,*~=O, 
(3.5) 
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where 8’(xl,xJ = --E;(x1,x2, 0) = -Ey(xI,x2, 0) e, - Ei(x,, x2, 0) ez. 
These equations are easily solved with Fourier transforms. For any f(v) 
which are functions of x,, x2 we write 

for the transforms. We have (f * g)* = 27cf lg*. We transform equations 
(3.5) and obtain 

cp,(J* + il,%f) = 28^, cp,(--i< . J^ + a*M^) = 0. (3.5’) 

From these we find 

MA = (fp,(a’ - [(I’))-’ 2it. 8^ 

f = --i&W* + 2(pz)p’ K. 
(3.6) 

We can identify the solution from (3.6) by using the following result. 

LEMMA 3.1. p, = (I(/’ - y2)y2* 

Proof: Suppose V,(f) = g on xj = 0. Then we havef^(o, = 2g-. On the 
other hand consider the function V(X) = V,(f)(x) for xj > 0. We have 

Au = -y2u with 0(x,, x2, 0) = g(x, , xJ. We can solve this problem another 
way. We assert that 

4x) = -2 -Y& q?>(x). 
3 

This follows immediately from Lemma 2.1 specialized to the present case 
and uniqueness. We have, then, 

I I  

-2 $ v,(f) = 4 & v,(g) = -4(y2 + A,) v,(g) in x3 > 0 
3 3 

where A, = a’/axy + J’/axz. If we let x3 1 0 and use Lemma 2.1 on the left 
side we obtain 

f=-n-‘(A,+y’)y,* g 

or taking transforms,f^ = 2(15/’ - 7’) lpi g^. Comparing the two expressions 
for f - yields the conclusion. 

From Lemma 3.1 we have 
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Thus from (3.6), we deduce that 

M=-x-‘yl,*div&Y=-4V,(div8). 

We have also 

(&-’ = (/<I’ - a2)1’2 

= (l<1* - a’)(l<l’ - CI~)-~‘~ 

=Gl’-a’)co,. 

Hence (3.6), and (3.7) yield 

(3.7) 

J = grad,(4V,(div a)) - 2(A, + a2)(7c)-’ p, * 47 

= 4 grad, V,(div 8) - 2(A, + a’) V,(a). (3.8) 

The results (3.7) and (3.8) are formal but they suggest the appropriate 
theorems for (E,,). Let H’(R2) denote the Sobolev space of order r for R*, 
that is, the completion of CF(R’) under the norm 

14; =jR2(1 + lt12)'l~-(O12 &, (3.8’) 

let H’(R*) be the space of a vector function with components in H’(R2), and 
let Hr.’ = Hr(R2) X HS(R ‘). Lemma 3.1 implies that the map y + V,(v) is a 
pseudo-differential operator, with symbol (ill’ - y2)-1’2, and hence of order 
minus one in the sense of [7]. It follows that w--t V,(w)(v + V?(v)) maps 
H’(R 2)(H’(R ‘)) into H’+ ‘(R 2)(Hr+ ‘(R ‘)). Moreover div, and grad, are 
operators of order one and hence take H’(R’) and H’(R2) into HrP1(R2) 
and H’- ‘(R 2), respectively. 

The results of the preceding paragraph show that, in the half-space case, 
A(” defined by (2.9), takes H’- ‘Y into H’(R2) while AL2’, defined by (2.1 l), 
taie; H-1.’ ’ mto H’-‘(R’). Hence A, maps H’- l,r into Hr3’-‘. Equations 
(3.7) and (3.8) g ive a formula for the inverse of A,. These formulas suggest 
the correct result for Eqs. (E,,) in the general case. Let H’(S), H’(S) and 
ff’.S be as above but for the surface S. See [lo] for the appropriate 
definitions. Then we will establish the following result. 

THEOREM 3.1.* Suppose F E H’(S) for some real r. Then the equations 

A ,(J, M) = (F, 0) (3.9) 

have a unique solution (J, M) E H’-l.“. 

* Recall we are assuming a # ak. 
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This result in conjunction with Theorem 2.2 yields an existence theorem 

for PacJ 

COROLLARY 3.1. If E” E H’(R’) for k > $ then there exists a solution of 

Pa,). 

ProoJ If E” E H’(R’), k > 1, then the trace theorem implies that 
E: E Hk-l”(S). By Theorem 3.1, (E,,) has a solution (J,M) E 
Hkp3’2qkp I’*. But for k - 5 > 2, J and M will then be differentiable hence we 
have a solution of (P,,) by Theorem 2.2. 

We turn now to (Pa&. For the half-space case Eqs. (E,,) become 

(“,xJ-OJiB*j+~(L”,rM--Wii3 *m)e, 
I 

-on:~divJ+a2~,*M=0, -~~/ia*divj+P2~V~s*m=0 

J+j= ,iu, 

where .R(x’,x2) = -2e, x H’(x,,x,,O) = 2H$x,,xz,0)e, 
2Hy(x,, x2, O)e,. If we transform we obtain 

cp,(J  ̂+ i&V-) - ‘p^Jio(j^ + itmA) = 2Y  ̂

-it. J^ + a2M  ̂ = -it. j^ + $‘m^ = 0, J  ̂ + ĵ  =#‘̂ . 
(3.11) 

We solve (3.11). We observe first that if we take the inner product of 
(3.ll)r with it, use (3.1 l),,,, and substitute from Lemma (3.1) we obtain 
(IJY,)~’ M* - (cp>, J1 m* = -2ir. 5. Next we take the product of (3.11), 
with i< and use (3.1 l),,, to obtain a2M- + /?‘m^ = it . Gf. We can solve 
these two equations for M  ̂ and m-. Put 

Then 

DA = (a’(~++,)- +/3’(~p,)~‘)~‘. (3.12) 

Once Ma and ml are determined one can solve (3.11) for J  ̂ and ĵ . We will 
have 
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We can no longer determine the solution of (E,,) explicitly but we can 
still use (3.13) and (3.14) to determine the regularity. We observe that 
Lemma 3.1 implies that the following estimates hold for large 1 c 1: 

fP,(O= OW’>> P;ipo(r) = OW’)> D-(r)= O(l<l-1). (3.15) 

We will make the same regularity assumption on B as in (P,,), that is, 
8’ E H’(R ‘). Now recall that 8’ = -E, while 09p = 2Hi e I - 2Hy e, . Since we 
have Ho = curl E” we can anticipate then that 3 E H’- ‘(R’). 

Our goal is to have the same regularity that we had for (P,,), that is, 
J, j E H*-‘(R’), M, m E H’(R*). The formulas (3.13) and (3.14) show, 
however, that we will not get this for arbitrary B E H’(R*) and 
ZE Hr-‘(R*). For we will then have div,BE H’-‘(R*) and 
div,Z E Hr-*(R*). Then by (3.15), the first terms on the right in (3.13) 
will be in H’(R*) but the second terms will be in H’-*(R*). In order to get 
the regularity we want we require of Z that it lie in H’. This also turns out 
to be so in the general case. We will prove the following. 

THEOREM 3.2. Suppose 8’ E H’(s) and ZE Hrf’(s) for some real r. 
Then the equations 

C,,(J, M j, m> = (a, 0, x, 0) 

have a unique solution with (J, M) and (j, m) in H’-I,‘. 

COROLLARY 3.2. If E” E Hk(lR3) for k > q then there exists a solution 

of (Pm,). 

Proof: If E” E Hk(lR3) then it follows that H = curl E is in Hk-‘([R3). 
We have, accordingly, 

E, E Hk-l’*(S), n x H E Hkp3’*(S). 

These are the forcing terms in Eqs. (E,,) and by Theorem 3.2 we conclude 
that those equations have a solution with J, j E Hk-“*(S) and 
M, m E Hk-5’2(S). But then if k - $ > 2 it follows that J, j, M, m are all 
differentiable and we can use Theorem 2.2 again to obtain the existence of a 
solution of (P&. 

4. PRELIMINARY RESULTS 

In this section we develop the necessary machinery to prove the theorems 
of the preceding sections. As a first step we discuss some geometric ideas. 
We introduce coordinate systems for S. These consist of a finite number of 
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coordinate patches S, ,..., S, covering S. For each patch there is a region 
r, c R* and a map X, such that x = X,(U), u = (u,, UJ E R*, covers S,. 
The mappings are compatible on overlapping regions. To say that S is a 
regular analytic surface means that the individual maps from r, to r, on 
overlaps are analytic and that X,,,I and Xk,UI are linearly independent. 

We use the X, to generate local coordinate systems in R”. We set 

e,(u) =X,,, e2(u) =Xu2, e&J = e,(u) X e*(u) (4.1) 

where we have suppressed the subscript k. Then the equations 

x = X(u) + tij e,(u), uEC lu,l<6 (4.2) 

will define a coordinate system for a region U, c R” with U, = 0 
corresponding to S,. We will assume that u3 > 0 corresponds to fin. 

One must use these coordinate systems to define the various quantities in 
Section 2. It simplifies our formulas and calculations if the coordinate 
systems are orthonormal, that is, 

ei(u) + ei(u) = dii (4.3) 

and we will assume that this is so. (Such choices can always be made.) 
Given any vector field v in one of the U, it can be represented as 

v = u,e, + u2e2 + u3e3 = vT + u,e,. (4.4) 

One readily checks that vT = e3 x (v x e3). Since the coordinate system is 
orthonormal if we are given a scalar field x or a vector field v in uk we can 
calculate grad x, div v, and curl v by the usual formulas and we can define 
the surface operators grad, and div, by 

grad, x = (grad XL = x,, e, + x,,,e2 1 div, v = L’,.,! + u*.~,. (4.5) 

We turn now to the integral operators V,. Here we use the ideas of I10 1. 
We introduce a partition of unity C & = 1 subordinate to the S,. Then we 
define V,(w) for a scalar field v on S by 

V(Xk(U)> rk@) 4,(1x - Xk(U)l> du. (4.6)’ 

’ The orthonormality of the coordinate system implies that the surface element is unity. 
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For x E S, (4.6) gives 

W(xk(u>> tktXkCU)) 4y(Ixj - *k(')l) d"' (4.7) 

Analogous expressions hold for V,(v) when v is a vector field on S. 
Formula (4.7) is the basis for the idea of pseudo-differential operators on 

S. If w E CF(Sk) for some patch Sk then V,(w) will be in C“‘(S,). The idea 
is to extend that definition to I$S which need not be C” but lie in some 
Sobolev space on S. It is clear from (4.7) that one need concentrate only on 
the quantities XV,(W) where x and w have support in the same patch Sk. 

Let x, I,U E Cp(Sk). Then we have 

where 

K,(V 24 - v> = cxGw>> TqlJw - Wu)l)* (4.9) 

In the terminology of [lo], K, is called the kernel of the pseudo-differential 
operator VY. Let us introduce the Fourier transform w1 of @, 

y^(() = (27~)~“~ I,? (T(u) eil'U du. 

Then (4.8) may be rewritten in the form 

where 

a&U, <) = (2~)~“’ x(X(U))jRz e-‘S’qK(U, q) dq. 

a,(U, c) is called the symbol of V,. Note that 

a,(V 0 = xGWM,W~ .I- (0 

Suppose that K&U, q) has an asymptotic expansion of the form 

K,(U, q> - f K:(V ‘I) 
n=r 

(4.10) 

(4.11) 

(4.12) 
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where K” is homogeneous of degree n in q. It will follow then that the 
(distribmional) Fourier transform of K,, that is, uy, has an expansion of the 
form 

a,(U, r> - y qu, 0 (4.13) 
n-r 

where a: is homogeneous of degree --n - 2 in r. In the terminology of 1101 
one says that if (4.12) holds then V, is an operator of order r and that 
a’(U, <) is its top order symbol. The operator V,, is called elliptic if 
ar(U, l) # 0 for < f 0. 

We now summarize some results from 1101 on pseudo-differential 
operators on S. Let H’(S) denote the Sobolev space of order t on S. (These 
are defined by introducing a partition of unity on S and using (3.8’) locally.) 

LEMMA 4.1. Suppose A is a pseudo-differential operator of order r on S. 
Then 

(i) A is a continuous map from H’(S) into H’-‘(S)for any t. 

(ii) If A is elliptic the map A: H’(S)-+ H’-‘(S) is Fredholm. 

(iii) If A is elliptic then ty E H’(S) and Ay E H’(S) implies 
ty E HSt ‘(S) and there is a constant C,,, such that 11 VII,, I < C,., IIAyIl,. 

The above results extend to mappings from tangential fields on S into 
tangential fields. A pseudo-differential operator v -+ V,(v) is elliptic if the 
determinant of its top order symbol is non-zero for 5 # 0 and Lemma 4.1 
holds for such operators. 

We apply the preceding ideas to the operators V,. We first obtain the 
expansion (4.12). Consider the first the expression IX(U) - X(u)l. Recall 
that we are assuming S is analytic. It follows that the functions X are 
analytic and that 

IX(U) - X(u)1 = _ F M,,(U, 24 - U) 
u=l 

where M,, is homogeneous of degree v in u - U. Moreover it is easy to check 
that the orthonormality of the coordinate system gives M,(U, u - U) = 
IU - UI. Next we see from (2.3) that #Jr) = r-l C,J?O/+$-j. Thus we find 

q$(Ix(U) -X(u)/) = Iu - UI -’ + c k;(U, u - U) 
u-0 

(4.14) 

with k; homogeneous of degree V. Substitution of (4.14) yields (4.12) with 
r=-1 and 

K,‘(U,rl)=c~(~(U))/rl/-‘. (4.15) 
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If we use Lemma 3.1 we see that 

ayl(U,r)=CX(X(U))lrl-l. (4.16) 

In our later computations a central role will be played by the special 
operator Vi. We observe that 

#yCr) = 4iCr) f (4 f l> + @y(y), 
k=l 

(4.17) 

and we write accordingly 

‘y(W) = vi(W) f ry(W) + wy(lv), (4.18) 

where 

qw>= (iY t ~,W(x) = c j V(Y) @,(1x - 4) ds,. (4.19) 
S 

Since @Jx - y I) starts with terms of order /x - y 1 the same type of 
argument as above shows that IV, is an operator of order minus three. The 
operator r, takes H’(S) into H’(S) for any t. We summarize: 

LEMMA 4.2. 
Ht+3(S). 

V, = Vi t Gy where qy is a continuous map for H*(S) into 

Now we obtain a result for Vi. 

LEMMA 4.3. The map y -+ V,(w) is bijective from H’(S) into H” ‘(S) for 
any real r. 

Proof. From (4.15) and (4.16) we see that Vi is an elliptic pseudo- 
differential operator of order minus one. Hence it maps H’(S) into Hrt ‘(S) 
for any r and is a Fredholm operator. We assert that as a map from 
H-“‘(S) to H1’2(S), Vi is self-adjoint. Indeed the dual of H-“*(S) is 
H”*(S) and for smooth function w  and x one has 

J 
S 

‘Y(X) Vi(x)(X) dsx = 1 X(X> Vi(W)(X) dsx 
S 

because @i depends only on Ix - y 1. Since Vi is Fredholm we can thus 
conclude that Vi is bijective from H-1’2(S) to H”‘(S) if we can show that 
Vi(v/) = 0 implies I,U E 0. But once we know the result for r = -f the 
regularity result (iii) of Lemma 4.1 shows that Vi is bijective from H’(S) to 
H’+‘(S) for any real r. 

Suppose, then, that V,(y) = 0 for v E H-“*(S). We conclude by 
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Lemma 4.1 (iii) that w E H’(S) for any real r and hence I,U is continuous. Put 
V(X) = c J”, I&) gi(lX - y 1) ds,. By Lemma 2.1, u is continuous in R3 and 
satisfies Au - v = 0 in R and 0’; moreover u = O(e-“‘/lxl) as 1x1-+ co and 
u = 0 on S. Easy Green’s theorem arguments imply that v = 0 in R and 0 
and Lemma 2.l(iv) then implies I+I = 0. 

We can establish results analogous to those above for the map v + V,(v).,.. 

LEMMA 4.4. (V,), = (Vi)* + Vi where: 

(i) (Vi)T is bijective H’(S) into Hr”(S), 

(ii) SC?; maps H’(S) continuously info H”“(S). 

Proof: We recall that (V,(V))~ = n x (V,(v) x n). We substitute the series 
(4.17) into V, to obtain V,(v) = V,(v) + T,(v) + W,(v) in analogy to (4.18). 
Just as before, the tangential component of W,(v) will produce an operator 
Y; of order minus three. Similarly 

n(x) X (T,(v) X n(x)) = (iy + 1) en(x) X i ( v(y) X n(y) ds 
13 

+ Jsv(y) x (n(x) - n(y)) ds,/. (4.20) 

But n(x(U)) - n(X(u)) = O(l U - u I) so the second term on the right of 
(4.20) will be an operator of order minus three. This verifies (ii). In order to 
verify (i) we first write, as above, 

Vi(v)T (X) = n(x) X Vi(v X n) + n(x) X C Ji V(y) 

x (n(x) - n(y)) $,(1-y - Y I) 4, 

G 7 ‘(v) + P’(v) (4.21) 

where ‘zi’ is an operator of order minus two. One verifies, just as with Vi(w), 
that 7. is an elliptic operator of order minus one, hence takes H’(S) into 
H”‘(S) and is Fredholm. We assert that, once again, % is self-adjoint from 
H - l”(S) to H”‘(S), the calculation being as before. 

We want to show that %‘ is bijective from H’(S) to H’+‘(S) for any real 
r. From the preceding paragraph and our earlier argument it suffices to show 
that g‘(v) = 0 implies v z 0. Suppose p.(v) = 0 and set w(x) = 

c js MY> x n(y) iAX - Y I> ds,. Then Aw - w =O in a and Q’ from 
Lemma 2.1. We do not, however, have w = 0 on S but only n X w = 0 on S, 
which is equivalent to w7 = 0 so we need further argument. 
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We apply Green’s theorem to a’ and obtain the following: 

=-i,w. ($$ds-lQ,tr(Vw(Vw)T)dx. (4.22) 

If we do the same calculation for Q (with a limiting argument) we obtain 

=l,w. (g)‘ds-lhtr(Vw(Vw)‘)&. (4.23) 

We add (4.22) and (4.23) and note that, by Lemma 2.1, (awl&r- - 
(awl&r)’ = v x n, which is tangential to S. Hence we have, on S, 

From this we conclude w = 0 in Q and Q’. But then v x n = 0, on S, which 
is equivalent to v = 0. 

We show now that (Vi)T is bijective. Consider the equation Vi(v)T = f for 
f E H’+ l(S), r 2 -f . From (4.2 1) and our result about T this is equivalent 
to 

v+57-1wv=~r-Lf. (4.24) 

Now T’-“ZT takes H’(S) into Hri’(S) since 7T is of order minus two. 
Since H”‘(S) is compact in H’(S) we conclude that (4.24) is a Riesz- 
Schauder system. If v is a solution of the corresponding homogeneous 
system then an argument analogous to that for T shows that v = 0. Hence 
(4.24) has a unique solution and the proof of Lemma 4.4 is complete. 

In the next section we will need one more property of the operator ( VJT 
and we give this property now. 

LEMMA 4.5. div, P’,(v), = V,(div, v) + &?Jv) where &TTY is a continuous 
map from H’(S) into H’+‘(S). 

ProoJ Our first observation is that, just as in (4.21), we have 

v,(v), = n x (v,(v) x n) = n x v,(v x n) + T(v), (4.25) 



SOLUTION OF EDDY CURRENT PROBLEM 361 

where 59; is of order minus two. Since div, is an operator of order one it 
suffices to verify the result for the first term on the right of (4.25). 

In local coordinates we have 

V,(v X n) = $ (V,(v X n) . ei(U)) e,(U) 
i-1 

and 

n X V;.(v X n) = cl(U) x (V,(v X n)) 

= -(V&v X n) . e,(U)) e,(U) + (V,(v X n) . e,(U)) e,(U). 
(4.26) 

We have aiso v(u) x n(u) = -c’(u) e,(u) + t”(u) e,(u). Now we calculate as 
follows: 

div,(n x I’,(v x n)) 

= - & (V,(v X n) . e*(U)) + $ (V,(v X n). e,(W) 
I 2 

= c .‘j \/(-L.?(u) e,(u) + t.‘(u) e2(u)) . e2(U> $- @,W(U) - JW)l) 
I 

+ (-v’(u) e,(u) + v’(u) e,(u)) . e,(U) FL 7 @,(w? - W)[ du. / 

Then, as in earlier calculations, we can approximate IX(U) - X(U)( by 
/ U- u / so that a/au, and a/au, can be replaced by -a/au, and -a/au,, 
respectively. Continuing the approximation we can replace e,(U) and e,(U) 
by e,(u) and e*(u) and hence replace (-u*(u) e,(u) + c’(u) e*(u)) . e2(U) by 
c’(u) and (-v’(u) ei(u) + v’(u) e*(u)) . e,(U) by -v’(u). An integration by 
parts yields the integral c j”, div v(y) #,(1x - ~1) dsY modulo terms which will 
correspond to “;. 

The next results of this section give a proof of Lemma 2.2. As in our 
earlier calculations we need only consider V,(v)(x) for v having support in a 
patch S, and x lying in U,. We have 

curl,(4y) 4,(1x - .A) = -V(Y) x grad, $,(1x - ~1). 

In addition, we have 

grad, 4,(1x - Y I) = @;(Ix - ~1) f$ 

(4.27) 

(4.28) 

f&(r)=-$+0(l) as r+ 0. 
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NOW we use local coordinates and approximate. We have x - Y = 
X(U) + U,e,(u> -X(U). One can check that 

X(u) =X(U) + e,(U)(u, - U,) + e2(U>(U2 - U,) + a(U, u - U) 

where a is homogeneous of degree two in u - U. This yields, in view of the 
orthonormality of the coordinate system, 

Ix - y12 = / U- u[* + U: + 2U,e,(U). a + b(U, u - U) (4.29) 

where b is homogeneous of degree three in u - U. Thus we have by (4.28) 

grad, #,(Ix - Y I> = MV(u, - W + e2P)(u2 - K> 
+ U,e,(U) + .a. }[I U- uI* + U:]p3’2. (4.30) 

Since v is a tangential lield we have v(u) = u’(u) e,(u) + u’(u) e*(u) and 
v x grad,#,(lx-yl)= [(U-ulz + CT:]-“‘. 

WWM4 X elW)(ul - u,> + e,(u) x e,W>(u, - U2> + u3el(u> x e3(u>l 

-~‘W{e2W X elV.Wl - W + e2(u) x e2W(u2 - U2> + U3e2(u) x e3(u)l 

+ . ..I. (4.3 1) 

To calculate the operator in Lemma 2.2 we have to take the cross product 
of n with curl V,(v). In local coordinates we have n = e,(U) and we note the 
following formulas: 

e3W> X (e,(u> x e,(u)> = -elW> . e3W 
e,(U) X (e&4 X e,(U)> = -e2W el@> . e,(u) 
e3W> X (e2@> X e,(u)> = -e,(u) e3(u> . e*(u) 
e,(U) X (e2W X e2W> = -e2W e3W> . e2(u) 

(4.32) 

e3(U> X Mu) x e3(u>) = e,(u) - e,(U) e,(U) . e,(u) 

e,(U) X (e2@> X e,(U)> = e2(u) .- e,(U) . e2(u). 

The first four quantities in (4.32) are zero to order 1~ - Ul while the last two 
are e,(u) and e*(u), respectively. Thus (4.31) yields 

n X curl V,(v) = j 1 [D’(u) cl(u) + u’(u) e*(u)] 

- u3 
’ (I u- 42 + u;)J/* + *‘- I “’ 
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If we take the limit as U, 10, U, T 0 in the first term we obtain iv(u) and 
-iv(u), respectively. A careful calculation shows that the error terms are 
O(i U - u I- ‘) and this is the statement in Lemma 2.2. 

Our final result in this section is another fact that can be obtained from 
[ lo]. The surface operator A, = div, grad, is a pseudo-differential operator 
of order 2 on S; hence so is A, - /?‘I. The latter is elliptic and self-adjoint as 
an operator on H-“*(S). Hence we can use the same argument as for Vi to 
obtain the following result. 

LEMMA 4.6. A, - $‘I is bijective from H’(S) into H’-*(S) for any real 
r. 

5. PROOFS OF THEOREMS 

In this section we provide the proof of Theorems 3.1 and 3.2. We begin 
with the proof of Theorem 3.1. Let us recall what must be shown. From 
Section 2, 

A,(J, W = (v,(J), + grad, v,(M), -V,(div, J) + u”V,(M)) (5.1) 

and we are seeking a solution of 

A,(J, M) = (F, O), F = -E;. (5.2) 

We use perturbation theory as we did in the proof of Lemma 4.4; that is, 
we reduce (5.2) to a Riesz-Schauder system. We first use Lemmas 4.2 and 
4.4 to write 

where 

A,(J, M) = A;(J, M) + B,(J, M), (5.3) 

B,(J, M) = (“Pi(J) -t grad, ma(M), -Ra(div J) 

+ (a’ + 1) V,(M) + aVP&V). 

We establish first that Ai is invertible. 

(5.4) 

LEMMA 5.1. For any real r, Ai is bijective from H’-‘*’ into H’,‘- ‘. 

Proof We consider the equations 

Vi(J)T + grad, I’,(M) = F, -Vi(divT J) - V,(M) = G. (5.5) 

Suppose we have a solution. Then we form div, of the first equation and use 
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Lemma 4.5. If we substitute for V,(div, J) from the second equation we 
obtain4 

-Vi(M) + A, V,(M) = - q(J) + div, F + G. (5.6) 

Now from Lemma 4.3, Vi is invertible and from Lemma 4.6, A, - I is inver- 
tible. Hence (5.6) yields 

M = A(J) + M” (5.7) 

A(J) = --V;‘(A, -I)-’ q(J), M” = V;‘(A, -I)-’ (div, F + G). (5.8) 

Our next step is to use Lemma 4.4 to invert the first equation in (5.5). We 
obtain 

J = Y-(M) + Jo, (5.9) 

9-(M) = -((Vi)=)- ’ grad, vi(M), Jo = ((Vi)&’ (F). (5.10) 

Now we eliminate M between (5.7) and (5.9) to obtain 

J = XLAYJ + Jo + .Y-Ma. (5.11) 

We assert that (5.11) is a Riesz-Schauder equation on H’-‘(S). To see 
this we study the regularity of /A. Since V; ‘, (AT - 1))’ and 5 are of 
orders one, minus two, and minus one, respectively, (5.8) shows that .& 
takes H’-‘(S) into ,“i(.S). On the other hand (Vi);‘, grad,, and Vi are of 
orders one, one, and minus one, respectively; hence, by (5.10), X takes 
H’“(S) into H’(S). Thus .Y& maps H’-‘(S) into H’(S) and is, accor- 
dingly, compact. One checks the same way that if F E H’(S) then 
Jo +XM” is in H’-‘(S). 

It follows from the above that (5.11) will have a unique solution in 
H’-‘(S) if the corresponding homogeneous equation has only the zero 
solution. If this is the case we can define A4 E H’(S) by (5.7). Then it is easy 
to reverse our steps to show that J, M satisfy (5.5). 

Suppose then that J is a solution of the homogeneous equation (5.11). 
Form M from (5.7) with MO = 0. In analogy to (2.8) we define E and H by 

E = Vi(J) + grad V,(M), 

Then, just as in Section 2, we will have 

H = curl V,(J). (5.12) 

curl E = H, curl H = -E in Q, E,=O on S. (5.13) 

Since E and H vanish exponentially for large 1x1, an easy variation of the 

* Recall that A,x = div, grad, x. 
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proof of Theorem 1.1 gives E = H = 0 in R. But as in an earlier proof we 
can also consider the expression (5.12) for x E Q’ and find that the same 
equations are satisfied. And, again, one concludes easily that E = H = 0 in 
0’. We claim that these facts imply that J = 0 and M = 0. From (5.12) and 
Lemma 2.1, one concludes first that M = (E . n) - (E . n)+ = 0. Then from 
Lemma 2.2 we obtain J = (n x H)+ - (n X H)- = 0 and the proof of 
Lemma 5.1 is complete. 

Once we have Lemma 5.1 we use (5.3) to write (5.2) as 

(J, M) = -A; ‘B,(J, M) + Ai- ‘(F, 0). (5.14) 

LEMMA 5.2. A,:‘B, is a continuous map from H’ -“r(S) into Hr.” ‘(S). 

Proof. We have only to count the orders of the various operators. From 
Lemmas 4.2 and 4.4, ‘ZV, and %i are both of order minus three, hence take 

H’-‘(S) and H’(S) into H’+*(S) and H”“(S), respectively. Grad,- is of 
order one and V, is of order minus one; hence, by (5.4), B, takes H’ I.’ 
into Hrt2,rt’. Then, by Lemma 5.1, A,:‘B, takes Hr-‘.r(S) into 
H rC’,Tt2(S). It follows that this operator is compact on H”- ‘,‘(S). Moreover 
for F E H’, A,:‘(F. 0) E Hrml-‘; thus (5.14) is a Riesz-Schauder system on 
H’ 1.r. 

We can argue that if (J, M) is a solution of the homogeneous equation 
(5.14) then (J, M) = (0,O) almost exactly as in the proof of Lemma 5.1. The 
only difference is that E, H defined by (5.12) satisfy 

curl E = H. curl H = -E in Q and Q’, E, = 0 on S. (5.15) 

By Theorem 1.1, E = H = 0 in B and by our hypothesis 2.1, E = H = 0 in 
Q’. Then the previous argument shows that J = 0, M = 0. This completes the 
proof of Theorem 3.1. 

The proof of Theorem 3.2 is very similar to the one just given but is a 
little complicated by the regularity requirements. We will outline the ideas, 
omitting a few technical details. 

Let us again recall the equations we have to solve. They are 

V,(J), + grad, V,(M) - VJ; Dtj)T - grad, V,,li 0(m) = 8 

-k’,(div, J) + a2 V,(M) = o 

J+K,(J)+j-K~.,@=z 

-v\/i ddiv,j) + iP* ~p~o(rn) = O. 

(5.16) 

Once again we want to reduce (5.16) to a Riesz-Schauder system. To this 
end we need the following result. 

409’101/2-4 
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LEMMA 5.3. For any real r: 

(i) The map w  + Vd B y is bijective from H’(S) into H’+ ‘(S). 

(ii) The map v + Vdo(v)T is bijective from H’(S) into H’+ l(S). 

ProoJ Condition (i) is a corollary of Lemmas 4.2 and 4.3. Indeed by 
those lemmas we can write the equation V,,qo ty = f as w  + 
V;l@‘~oy = V-‘f, a Riesz-Schauder system. An argument analogous to 
several we have given shows that w  + V,:’ @A 4 w  = 0 implies ry = 0. 
Condition (ii) follows from Lemma 4.4 in the same way. 

Now let us begin on (5.16). We take div, of (5.16), and use Lemma 4.5 
and (5.16),,, to obtain the equation 

(AT + a’) V,(M) - (AT + i/3’) VdB(m) + Ka(J) - K&&j) = div 8. (5.17) 

Now we use Lemma 4.2 and rewrite (5.17). We see from Lemma 4.2 that 

V,(M) = VA o(W + TAW (5.18) 

where pa4 is of order minus three. Accordingly we can write (5.17) as 

(4 + iP’> Vfi &4 = ( A, + iP’) VA &Vf) + (AT + a’) ~ya,(M) 

+ (a’ - i/3’) V~&kf) t Ka(J) - E-d,(j) - div 8. 

If we apply (AT + if-’ to both sides we have 

Vfi,(rn -M) = C,(M) t C,(J) + C,(i) -f: (5.19) 

In this equation C, = (AT - i/3’)-’ {(AT t a’) Fe, + (a’ - ifi’) VJ~}, C, = 
(AT t i/l’)-’ Ka,, and C, = -(AT + ifi’)-’ gd8, and one checks that all 
three are of order minus three. Also f = (AT + i/3’)-’ div B and for 
8 E H’(S) this is in H”‘(S). 

To obtain our next equation we want to invert (5.16). In analogy to (5.18) 
we observe that Lemma 4.4 yields 

Va/,(J), = Vfi o(Jh + Txo(Jh (5.20) 

where P’& is again of order minus three. Now we write (5.16), as 

or 

CVd &h = Vfi ,.dJh + T&J> + grad, V& dM - m> 

t grad, Tao(M) - 8, 

j = J + (I’,,);’ {Y&(J) t grad, V,,q#4 - m) 

t grad, Yao(M) - a}. (5.21) 
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We substitute (5.19) into (5.21) for V&,(M - m), The result has the form 

Here 
j = J + D,(M) t D,(J) t O&j) t g. (5.22) 

4 = UQX grad, (TJW - Cl(hfN 

D2 = ( V,,C & ‘V’&(J) - grad, C,(J)) 
D, = -(I’$&’ grad C,(j) 

and all three operators are of order at most minus one. Also g = 
( VUc4); ‘(grad,f- 8). Since fE H’+ ‘(S) and 8 E H’(S) we have g E 
H’ ‘(S). 

We turn next to (5.16),. We have .iv,(J) =.Rfio(J) + Ya,(J) where YfiB is 
of order minus two. Equation (5.16) yields, then, 

j t J =.?di ,+j - J) - Y&(J) + Z (5.23) 

We substitute for j -J from (5.22) to obtain 

j + J = E,(M) t E,(J) t E&j) + h - Y&[J]. (5.24) 

Here Ei =.Fd; nDi, i = 1,2, 3, and these are of order minus two at most and 
h=Z+ ?Q,gEH’(S). 

In (5.22) and (5.24) we have two equations which feature J and j. We 
obtain two more which feature M and m. The first comes from applying 
V7!, to (5.19) and is 

m - M = F,(M) + F,(J) t F&j) + k. (5.25) 

Here Fi = I$ 4 Ci are all of order minus two and k = V?/ of E H’. To get a 
second equation we first conclude from (5.16), and Lemma 5.3 that i/T’rn = 
div, j. Then we write (5.16), as 

V\J-,(div, J) + ?’ iB(div, J) - a2 VdD(M) - ol*? ia = 0 

and apply Vi/f D to obtain 

a*M = div, J + G,(M) + G,(J). (5.26) 

Here G, = --cz*V$~~;“~~ is of order minus two and G, = “2 nT hs(div J) is 
of order minus one. We compute div.&j + J) from (5.24) and substitute into 
(5.26). This yields 

i/I’m + a*kf = H,(M) t H,(J) + H,tj) + e. (5.27) 

Here H, = div, EL t G, , H, = div, E, + G, - div, Yao, and H, = div, E, 
are all of order minus one and e = div h E H’(S). 
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Equations (5.22), (5.24), (5.25), and (5.27) form a Riesz-Schauder system 
on H’-‘(S) x H’-‘(S) X H’(S) X H’(S). Each of the operators occurring on 
the right sides is of order at most minus one. The forcing terms g and h 
belong to H’(S), hence to H’-‘(S), while the forcing terms k and e belong to 
H’(S). Once again a reversal of the steps shows that if (J, M, j, m) satisfy 
(5.22), (5.24), (5.25), and (5.27) they also satisfy (5.16). By an argument 
which has become familiar the uniqueness result for (P,,) shows that the 
only solution of the corresponding homogeneous equations has all functions 
zero. Thus the proof of Theorem 3.2 is complete. 

6. THE SKIN-EFFECT APPROXIMATION 

In this section we describe our asymptotic solution for the eddy current 
problem. We carry out the calculations for the half-space problem described 
in Section 3. We do this mainly to make the procedure clearer but we 
observe that if one uses the orthonormal co-ordinate systems as described in 
Section 4 then in fact our calculations are locally exact. 

Let us study the half-space problem, then. This is 

curl E = H, curl H = a2E in x3 > 0 

curl E = H, curl H = i/3*E in xj < 0. 
(6-l) 

We have a prescribed incident field E”, Ho and the interface conditions are 

ET’ =ET, H;=HT on x3 =O. (6.2) 

The asymptotic form we want is described in (An), (An ,) of Section 1. 
For the half-space these assume the form 

E E” m E, 
H-HO+ z. H,P-’ in x3>oy 

E 
H 

in x3 < 0. 

(6.3) 

(6.4) 

The idea, then, is to substitute (6.3) and (6.4) into (6.1) and (6.2) and equate 
coefficients of like powers of ,8. 

We introduce some notation. We set x = eJ=’ 5x3. It is convenient to 
decompose fields into tangential and normal components so for any field F 
we write 

F=F+fe,, .F=F’el +F2e2. (6.5) 

For any tangential vector Y as in (6.5) we set 

.F1 = -,F*e, + Fe, = e3 X .F. (6.6) 
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Note that (;T’)I = -Sr. We also use the notation 

u-a&f =.L,e, +.L2e2, div,F=div.~=.~~,+,~~.~ (6.7) 

and be observe that, for the decomposition (6.5), 

curl F = Xi, - (grad-r f)’ - (div LF’) e, . 

We have grad x = &i &el and 

curlxF=x(~~L+~~~,-(gradf)~-(divjrl)e,J. 

(6.8) 

(6.9) 

We are now ready for the substitution of (6.3) and (6.4) into (6.1) and 
(6.2). The first observation is that we have 

curl E, = H,, , curl H,, = a’E, in xj > 0. (6.10) 

For xj < 0 the situation is complicated by the presence of the term x. From 
(6.9) and (6.4) we have 

curlE-x )L/-i/38’;+ F Iv’-i8’;+, +8”,~..,-~ 
n -0 

- (grad e,,)- - (div a;) e, I/? ’ ( , 

curl H 

(grad h,>i - (divs;) e, 1 p ” ( . 

(6.1 1 ) 

(6.12) 

whereE,,=Zn+ee,e,,. H,=q,+e,h,,. 
We equate (6.11) to 

H=x c (q+e,h,)I]-” 
n=O 

and (6.12) to 

ip2E =x ‘i/I’S;, + iP2e, + ipS; + ij3e, + 2 (ign+., +e,ie,+,),Fn( . 
I II=0 

Then we equate tangential and normal components of coefficients of like 
powers of p. This shows us first that 

go = --go = -Et, e, = 0, e, ~0. (6.13) 
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The next powers yield the equations 

&T&f=&; fiZ,l=iB, (6.14) 

h, = div a,i = 0. (6.15) 

Observe that the two equations (6.14) are the same. The next set of 
equations is (with e, = 0, h, = 0, & = 0) 

6 8: + IF:,,, = cq ; 6 of”: + GF~,~, = i&$ (6.16) 

-divg:=h,, -div G?: = ie, . (6.17) 

Before considering the general case let us pause to see what we can do so 
far. We can eliminate JY’* from Eqs. (6.16), (6.16), to obtain 

-J-i~-~,x,=ig~=-~~g~ 

or 

~12:=oq+~oqx,. 

Substituting in (6.16), gives 

4 + i&,,3 + a:,,, =q or fi 4.X) + g:,x, = 0. 

But (6.14) yields \/I &,,3 - g:,,, = 0. Hence we conclude that 

&“,x, = 8;,x3 = 0 or B;(xl,x*,xj)--~(x1,x*,o-), 

q=fig:inx, (0. 
(6.18) 

We can now start the recursion process. First we use (6.10), and (6.13) to 
conclude that 

curl E, = H,, curl H, = or’&, in x3 > 0, 

E,+ = -Et on xj = 0. 

Thus (E,, H,) is just the solution of (P,,) which we can solve. But from 
(6.2) we obtain 

o?‘; =o?‘gt = (H,,)T+ on xj =O. (6.19) 

The right side of (6.19) is known (and easily computed with our process). 
Then (6.14), (6.2), and (6.19) yield 

(Er); = (E,); = 8; = - fi (R,‘)- = - \/I; ((HO);)‘. (6.20) 
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Then by (6.10), we have a new problem for (E,, H,) which is just like (P,,) 
but with new boundary values for E, as given by (6.20). Again this is 
solvable. 

We have thus found completely the first two terms in the expansion for E 
and H in x3 > 0. In x3 < 0 we have g0 = 0, e, = e, = h, = 0. By (6.18) we 
can also determine 9; and 4 in x3 < 0, both being independent of x3. 
Equation (6.17), then determines h, . We see that (6.17)* also determine e,. 
What we have not determined so far is q in x3 < 0. For this we have to 
start on the next step. The next equations we obtain are 

J-i 8; + a:,+ - (grad, e,)‘=&, 

67 Z; + Z’:,,, - (grad h,)’ = ig3. 

We eliminate gX here just as we did 8’* in (6.16) and obtain 

Ji -;V,,? - Ji grad, h, + a:..,,, - (grad, e2)l = 0. 

But from (6.16), we obtain 

g:,,, = &qx,- dC.r,.r,. 

If we substitute (6.23) into (6.22) we obtain 

2 ti 6x, = ti g:,x3xj + 4 grad, h, + di (grad, e,) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

Now everything on the right side of (6.24) is known from earlier steps and 
we also have &;(x, , x2, 0) = H,(x, , x2, O+),, also known. Hence we can 
solve for 6. 

This process can be continued recursively. Let us outline the steps. We 
have the following equations: 

~g~+2+g~+L,X,-(grad,e,+,)‘=~+, n = 0, 1, 2,... (I,) 

fi Xk+, + Xi.,, - (grad, h,)’ = igR + z n = 0, 1, 2,... (II,) 

h, = - div 8’: n = 0, 1) 2,... (1;) 

e - idivZi nt2 - n = 0, 1) 2 ,... . (II;) 

We eliminate S;, + 2 between (I,) and (II,,) as above and obtain 

fi K,,, - fi grad, 4, + g,l+ 1,x1 - (grad, e,,+ ,)l= 0 

n = 0, 1) 2 ,... . (III,, 1 
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But (I,,) gives Z’i+ ,,X3 = d Z”,,,, - fi g,‘,,,,, + fi (grad en)Gz and if we 
substitute this into (III,) we obtain 

2 \/i’ *n,x, = fi grad h, + fi 8’i,,3,, - fi (grad e,):, + (grad e,, ,)‘. (IV,,) 

Now we can describe the recursion process. Suppose we have calculated 

4,...,4-,, ha,..., h,,, go ,..., gn’,, e, ,..., e,,, 

Then we will have also been able to calculate 

in x3 < 0. 

(E,, Ho),..., (En > H,) in x3 > 0. 

For each of these satisfies a problem of the form (P,,) with (E,,): = 8;. It 
follows that the right side of (IV,) is known; hence we know &” x in x3 < 0. 
But we have also &“; = (H,),’ and thus we determine Zn by’ integration. 
Once &” is known (II;) yields e,, z and (II,,) yields g”+ r. Then (Ii) gives 
h n+ I and we can repeat the step. 

If the co-ordinate systems are not orthonormal the equations above 
become somewhat more complicated once one goes beyong the first steps. 
The complications come in the calculation of the coefftcients in a’. What 
happens is that instead of obtaining the Zn’s by a simple integration one has 
first order differential equations to solve for them. It is important to note that 
to obtain the first order connection to the exterior field, that is, (E, , H,), it is 
not necessary to calculate any of the terms in the inner expansion. 
Equation (6.20) remains valid so we have boundary values for (E,), which 
are determined solely from H,, the infinite conductivity approximation. 

As indicated in the Introduction some more details of the asymptotic 
procedure, including numerical results, as it applies to two-dimensional 
problems, appear in [4]. Although the analysis is predicated on the 
assumption that /I is large the numerical experiments in [4] indicate that it is 
in fact valid over a very large range of p’s. A verification that the formal 
procedure is a valid asymptotic series is presented in 181 for the two dimen- 
sional problem of 141. 
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