A class of Frattini-like subgroups of a finite group

Yanming Wang

Institute of Mathematics, Peking University, Beijing 100871, People’s Republic of China

Communicated by K.W. Gruenberg
Received 6 January 1991
Revised 15 March 1991

Abstract

Let G be a finite group and π a set of primes. We consider the families of subgroups of G:

$\mathcal{F}_1 = \{ M \leq G, |G:M|_{\pi} = 1 \}$,

$\mathcal{F}_2 = \{ M \leq G, |G:M|_{\pi} = 1, |G:M| \text{ is composite} \}$.

Denote $Q_{\pi}(G) = \bigcap \{ M : M \in \mathcal{F}_1 \}$ if \mathcal{F}_1 is nonempty, otherwise $Q_{\pi}(G) = G$ and $S_{\pi}(G) = \bigcap \{ M : M \in \mathcal{F}_2 \}$ if \mathcal{F}_2 is nonempty, otherwise $S_{\pi}(G) = G$. The purpose of this paper is to investigate these subgroups further.

1. Introduction

Of late there has been considerable interest in the study of analogs of the Frattini subgroup of a finite group and investigation of their properties, particularly, their influence on the structure of the group (see [1-4]). In [2], Bhattacharya and Mukherjee introduce the subgroups $Q_{\pi}(G)$ and $S_{\pi}(G)$ and exhibit their relationship with the given group G under the hypothesis of G being π-solvable. In [3], Guo gets a result with the same hypothesis. The objective of this paper is to investigate these groups further and to show that the π-solvable assumption is unnecessary in their main result. All the main results in [2] and [3] have been generalized.

The main results of this paper are as follows:

Theorem. Let G be a finite π-separable group. Then:

(i) $\Phi_{\pi}(G)/O_{\pi}(G) = \Phi(G/O_{\pi}(G))$ is a nilpotent π'-group and $\Phi_{\pi}(G)$ is π-closed.

(ii) Both $S_{\pi}(G)/O_{\pi}(G)$ and $S_{\pi}(G)/O_{\pi}(G)$ are supersolvable.

0022-4049/92/05.00 © 1992 – Elsevier Science Publishers B.V. All rights reserved
Corollary. Let G be a finite π-separable group. Suppose that both N and M are normal subgroups of G with $N \leq \Phi_{\pi}(G)$. Then M is π-closed if and only if MN/N is π-closed.

For convenience, we give some notations and definitions first.

Let π be any set of primes and π' the complementary set of primes. Let G be a finite group. Then we denote $N \leq G$ to indicate that N is a maximal subgroup of G. Also, $|G : M|_\pi$ denotes the π-part of $|G : M|$. Consider the following families of subgroups:

- $\mathcal{F}_1 = \{M: M \leq G, |G : M|_\pi = 1\}$,
- $\mathcal{F}_2 = \{M: M \leq G, |G : M|_\pi = 1, |G : M|$ is composite $\}$,
- $\mathcal{F}_3 = \{M: M \leq G, |G : M|$ is composite $\}$.

Definition. $\Phi_{\pi}(G) = \bigcap \{M: M \in \mathcal{F}_1\}$ if \mathcal{F}_1 is nonempty, otherwise $\Phi_{\pi}(G) = G$.

$S_{\pi}(G) = \bigcap \{M: M \in \mathcal{F}_2\}$ if \mathcal{F}_2 is nonempty, otherwise $S_{\pi}(G) = G$.

$L(G) = \bigcap \{M: M \in \mathcal{F}_3\}$ if \mathcal{F}_3 is nonempty, otherwise $L(G) = G$.

A group G is called π-separable if every composition factor of G is either a π-group or π'-group. A group G is called π-solvable if every composition factor of G is either a π'-group or a p-group with $p \in \pi$. Clearly, G is π-separable if and only if G is π'-separable. Each π-solvable group is π-separable.

When G is π-solvable, one can easily show that both $\Phi_{\pi}(G)$ and $S_{\pi}(G)$ are solvable. If we only assume that G is π-separable, then $S_{\pi}(G)$ need not to be solvable. For instance, let G be a nonabelian simple group and $\pi = \pi(G)$. Then G is π-separable but not π-solvable, both \mathcal{F}_1 and \mathcal{F}_2 are empty and $\Phi_{\pi}(G) = S_{\pi}(G) = G$.

All the groups in this paper are finite.

2. Preliminary results

Property 2.1. G is π-separable \iff every chief factor of G is either a π-group or π'-group.

G is π-solvable \iff every chief factor of G is either a π'-group or a p-group with $p \in \pi$.

Lemma 2.2. Let $K \leq G$. Then:

1. $\Phi_{\pi}(G)/K \leq \Phi_{\pi}(G/K)$; consequently, if $K \leq \Phi_{\pi}(G)$, it follows that $\Phi_{\pi}(G/K) = \Phi_{\pi}(G/K)$.
2. $S_{\pi}(G/K) = S_{\pi}(G/K)$; consequently, if $K \leq S_{\pi}(G)$, it follows that $S_{\pi}(G/K) = S_{\pi}(G/K)$.
3. $O_{\pi}(G) \Phi(G) \leq \Phi_{\pi}(G) \leq S_{\pi}(G)$ and $O_{\pi'}(G) \Phi(G) \leq \Phi_{\pi}(G) \leq S_{\pi}(G)$.
4. $1 = O_{\pi}(G/O_{\pi}(G)) = O_{\pi}(G/O_{\pi}(G)) = O_{\pi}(G/S_{\pi}(G))$.

Proof. (1) and (2) are clear by definition (see [2, Lemma 1]). \(\forall M \leq G \): if \(O_\pi(G) \neq M \), then \(G = MO_\pi(G) \) and so \(|G : M| \) is a \(\pi \)-number. Hence \(O_\pi(G) = \Phi_\pi(G) \leq S_\pi(G) \). Since \(\Phi(G) \leq \Phi_\pi(G) \), (3) follows. \(O_\pi(G/\Phi_\pi(G)) \leq \Phi_\pi(G)/\Phi_\pi(G) = 1 \) by (1) and (3). The same proof for \(S_\pi(G) \) yields (4).

Lemma 2.3. Let \(G \) be a finite \(\pi \)-separable group. Then:

1. Every maximal subgroup of \(G \) has index which is either \(\pi \)-number or a \(\pi' \)-number.
2. \(\Phi_\pi(G) \cap \Phi_\pi(w) = \Phi(w) \) and \(S_\pi(G) \cap S_\pi(w) = L(G) \) is solvable.
3. If \(L \trianglelefteq G \) and \(L \) is a \(\pi' \)-subgroup, then \(L \leq \Phi_\pi(G) \Leftrightarrow L \leq \Phi(G) \) and \(L \leq S_\pi(G) \Leftrightarrow L \leq L(G) \).

Proof. (1) We use induction on \(|G| \). Since \(G \) is \(\pi \)-separable, \(O_\pi(G)O_\pi(G) \neq 1 \). Without loss of generality, we assume that \(O_\pi(G) \neq 1 \). If \(G = O_\pi(G) \), there is nothing to prove. Assume that \(G \neq O_\pi(G) \). \(\forall M \leq G \): if \(O_\pi(G) \neq M \), then \(G = O_\pi(G)M \) and so \(|G : M| \) is a \(\pi \)-number. If \(O_\pi(G) \subseteq M \), then \(|G : M| = |G/O_\pi(G) : M/O_\pi(G)| \) is either a \(\pi \)-number or a \(\pi' \)-number. We are done.

(2) The equations follow from (1). We show that \(L(G) \) is solvable by induction on \(|G| \). We assume that \(L(G) > 1 \). Let \(p = \max\{q : q \in \pi(L(G))\} \) and \(P \in \text{Syl}_p(L(G)) \). If \(N_{L(G)}(P) = G \), then \(1 \neq P \leq G \) and \(P \leq S_\pi(G) \cap S_\pi(w) \). Then \(L(G/P) = L(G)/P \) by Lemma 2.2(2). Hence both \(P \) and \(L(G)/P \) are solvable and so is \(L(G) \). If \(N_{L(G)}(P) \neq G \), then \(\exists M \leq G \) with \(N_{L(G)}(P) \leq M \). Since \(L(G) \leq G \), the Frattini argument yields that \(G = L(G)N_{L(G)}(P) = L(G)M \). By (1), \(|G : M| \) is either a \(\pi \)-number or a \(\pi' \)-number. If \(|G : M| \) is composite, then \(L(G) \leq M \), a contradiction. Therefore, \(|G : M| = q \) is a prime which divides \(|L(G)| \). Since \(N_{L(G)}(P) \leq M, N_{L(G)}(P) \leq M \cap L(G), |G : M| = |L(G) : M \cap L(G)| = 1 \) (mod \(p \)) which is contrary to the choice of \(p \). The result now follows.

(3) It follows directly from (2) and Lemma 2.2(3).

3. Properties of \(\Phi_\pi(G) \)

We call an element \(x \) in \(G \) a \(\pi \)-non-generator if for any subset \(T \subseteq G \) with \(|G : \langle T \rangle|_\pi = 1 \), \(G = \langle T, x \rangle \) implies that \(G = \langle T \rangle \).

Theorem 3.1. \(\Phi_\pi(G) = \langle x : x \in G, x \text{ is a } \pi \text{-non-generator of } G \rangle \).

Proof. Let \(x \) be a \(\pi \)-non-generator of \(G \). If \(x \not\in \Phi_\pi(G) \), then there exists a maximal subgroup \(M \) of \(G \) with \(|G : M|_\pi = 1 \) such that \(x \not\in M \). Hence \(G = \langle M, x \rangle \neq M \), contrary to the fact that \(x \) is a \(\pi \)-non-generator. Conversely, \(\forall x \in \Phi_\pi(G) \), if \(x \) is not a \(\pi \)-non-generator, then there exists a subset \(T \) of \(G \) with \(|G : \langle T \rangle|_\pi = 1 \) and \(G = \langle T, x \rangle \) but \(G \neq \langle T \rangle \). Take \(M \) to be a maximal subgroup of \(G \) containing \(\langle T \rangle \), then \(M \) has \(\pi' \)-index and \(x \in M \), a contradiction.
Corollary 3.2. (1) Suppose that \(N \leq G \) and \(U \leq G \). If \(N \leq \Phi_\pi(U) \), then \(N \not\leq \Phi_\pi(G) \).

(2) If \(N \not\leq G \), then \(\Phi_\pi(N) \leq \Phi_\pi(G) \).

Proof. (1) If \(N \not\leq \Phi_\pi(G) \), then there is \(M \leq G \) with \(|G : M|_\pi = 1 \) and \(N \leq M \).

Hence \(G = NM = UM, U = U \cap G = N(U \cap M) \), since

\[
|U : U \cap M| = |N(U \cap M)|/|U \cap M| = |N|/|N \cap M| = |NM|/|M| = |G : M|.
\]

Hence \(N \leq \Phi_\pi(U) \leq U \cap M \), a contradiction.

(2) If \(N \not\leq G \), then \(\Phi_\pi(N) \) char \(N \not\leq G \). Hence \(\Phi_\pi(N) \not\leq G \). By (1), \(\Phi_\pi(N) \not\leq \Phi_\pi(G) \). Assume that \(N \not\leq N_1 \leq \cdots \leq N_k = G \), then \(\Phi_\pi(N_i) \leq \Phi_\pi(N_i) \leq \cdots \leq \Phi_\pi(G) \). \(\square \)

We call a group \(G \) \(\pi \)-closed if \(O_\pi(G) \) is a Hall \(\pi \)-subgroup of \(G \).

Theorem 3.3. Let \(G \) be a finite \(\pi \)-separable group. Then:

(1) \(\Phi_\pi(G)/O_\pi(G) = \Phi(G/O_\pi(G)) \) is a nilpotent \(\pi' \)-group and \(\Phi_\pi(G) \) is \(\pi \)-closed.

(2) Let \(K \leq G \) and \(K \leq \Phi_\pi(G) \). Then \(M \) is \(\pi \)-closed if and only if \(MK/K \) is \(\pi \)-closed for every normal subgroup \(M \) of \(G \).

(3) If \(G = G_1 \times \cdots \times G_k \), then \(\Phi_\pi(G) = \Phi_\pi(G_1) \times \cdots \times \Phi_\pi(G_k) \).

Proof. (1) By Lemma 2.2(4), we only need to show that

\[
\Phi_\pi(G)/O_\pi(G) = \Phi(G/O_\pi(G)).
\]

Assume that the result is false and consider a counterexample \(G \) with minimal order. Then:

(i) \(O_\pi(G) = 1 \).

In fact, if \(O_\pi(G) \neq 1 \), consider \(\tilde{G} = G/O_\pi(G) \), by Lemma 2.2(1), \(\Phi(G/O_\pi(G)) = \Phi_\pi(G)/O_\pi(G) \) and \(O_\pi(G/O_\pi(G)) = 1 \). Hence

\[
\Phi_\pi(G)/O_\pi(G) \cong \Phi_\pi(\tilde{G})/O_\pi(\tilde{G}) = \Phi(\tilde{G}/O_\pi(\tilde{G})) \cong \Phi(G/\Phi_\pi(G)),
\]

a contradiction.

(ii) \(\Phi(G) = 1 \).

If \(\Phi(G) \neq 1 \), we consider \(\tilde{G} = G/\Phi(G) \). Since \(\Phi(G) \) is nilpotent and \(O_\pi(\Phi(G)) \leq \Phi_\pi(G) = 1 \) by (i), we have that \(\Phi(G) \) is a \(\pi' \)-subgroup. Let \(L/\Phi(G) = O_\pi(G/\Phi(G)) \not\leq G/\Phi(G) \). Then \(L \not\leq G \) and \(\Phi(G) \) is a Hall \(\pi' \)-subgroup of \(L \). By the Schur–Zassenhaus Theorem, [5. 9.1.2], there is a Hall
Frattini-like subgroups

Let \(L \) be a \(\pi \)-subgroup of \(L \) such that \(L = L_1 \Phi(G) \) and all the Hall \(\pi \)-subgroups of \(L \) are conjugate to \(L_1 \) in \(L \). A direct generalization of the Frattini argument yields that \(G = N_G(L_1) \Phi(G) = N_G(L_1) \), i.e., \(L_1 \subseteq \Phi_\pi(G) \). This implies that \(O_\pi(G) = 1 \), since \(\Phi_\pi(G) - \Phi_\pi(G)/O_\pi(G) \cong \Phi(G)/O_\pi(G) \). By the choice of \(G \),

\[\Phi_\pi(G)/O_\pi(G) \cong \Phi_\pi(G)/O_\pi(G) = \Phi(G)/O_\pi(G) \cong \Phi(G/O_\pi(G)), \]

contrary to our assumption.

(iii) The conclusion.

If \(\Phi(G) \neq 1 \), then there exists a minimal normal subgroup \(N \) of \(G \) which is contained in \(\Phi(G) \). Since \(G \) is \(\pi \)-separable, \(N \) is either a \(\pi \)-group or a \(\pi' \)-group. From (i) follows that \(N \) is a \(\pi' \)-group. Now from Lemma 2.3(3) it follows that \(1 \neq N \leq \Phi(G) = 1 \), a contradiction. This shows that \(\Phi(G) = \Phi(G) = 1 \), contrary to the choice of \(G \). The result now follows.

(2) If \(MK/K \) is \(\pi \)-closed, then \(L/K \leq G/K \), where \(L/K \) is a Hall \(\pi \)-subgroup of \(MK/K \). We prove that there exists a Hall \(\pi \)-subgroup \(L_1 \) of \(L \) and every Hall \(\pi \)-subgroup of \(L \) conjugates to \(L_1 \) in \(L \) by use induction on \(|L| \). In fact, since \(K \subseteq \Phi_\pi(G) \) is \(\pi \)-closed, if \(O_\pi(K) \neq 1 \), the induction yields the result. If \(O_\pi(K) = 1 \), then \(K \) is a \(\pi' \)-subgroup and hence \(K \) is a normal Hall \(\pi' \)-subgroup of \(L \). Our result now follows from the Schur–Zassenhaus Theorem [5, 9.1.2]. Let \(L_1 \) be a Hall \(\pi \)-subgroup of \(L \). Then \(L_1 \) is also a Hall \(\pi \)-subgroup of \(MK \). Since \(G \leq L \),

\[|G : N_G(L_1)| = |L : N_L(L_1)| \leq |L : L_1| \]

is a \(\pi' \)-number, Lemma 2.3(1) yields that \(G = N_G(L_1) \). Hence \(L_1 \leq G \). Therefore, \(MK \) is \(\pi \)-closed and so is \(M \).

(3) Since \(O_\pi(G_1 \times \cdots \times G_k) = O_\pi(G_1) \times \cdots \times O_\pi(G_k) \) and \(\Phi(G_1 \times \cdots \times G_k) = \Phi(G_1) \times \cdots \times \Phi(G_k) \), by (1), \(\Phi_\pi(G/O_\pi(G)) = \Phi(G/O_\pi(G)) \); this yields our result. \(\square \)

4. Properties of \(S_\pi(G) \)

Theorem 4.1. Let \(G \) be a finite group. Let \(\mathcal{F} \) be a solvable saturated formation containing the formation of finite nilpotent group. Suppose that \(M \) is a normal subgroup of \(G \) with \(\Phi(G) \leq M \). Then \(M \in \mathcal{F} \) if and only if \(M/\Phi(G) \in \mathcal{F} \).

Proof. Assume that the result is false and consider a counterexample \(G \) with minimal order. Then \(\Phi(G) \neq 1 \). Let \(N \) be a minimal normal subgroup of \(G \) with \(N \leq \Phi(G) \). Then:

(1) \(M \) is solvable and \(M/N \in \mathcal{F} \).
In fact, \mathcal{F} is solvable and $M/\Phi(G) \in \mathcal{F}$ yields that M is solvable. Since $N \cong \Phi(G)$,

$$\frac{(M/N)/\Phi(G/N)}{(M/N)/(\Phi(G)/N)} \cong M/\Phi(G) \in \mathcal{F},$$

the minimal choice of G yields that $M/N \in \mathcal{F}$.

(2) There exists $V \in \mathcal{F}$ such that $M = NV$ with $V \leq G$.

From (1) it follows that M is solvable and $M_{\pi} \leq N$. By the Gaschütz Theorem [5, 9.5.4], there exists an \mathcal{F}-covering subgroup V of M such that $M = M_{\pi}V = NV$.

Since $M \leq G$, $\forall g \in G$, $NV = M = M^{g} = NV^{g}$ and V^{g} is also a \mathcal{F}-covering subgroup of M, the same theorem asserts that $V^{g} = V^{h}$ for an element $h \in H$. That is, $G = NN_{G}(V) = \Phi(G)N_{G}(V) = N_{G}(V)$ and so $V \leq G$.

(3) $M \in \mathcal{F}$.

Since N is a minimal normal subgroup of G and $V \leq G$, $N \cap V \leq G$. Hence $N \cap V = 1$ or $N \cap V = N$. If $N \cap V = N$, then $N \leq V$ and $M - NV - V \in \mathcal{F}$ by (2).

If $N \cap V = 1$, then $M = N \times V \in \mathcal{F}$ since N is nilpotent and $N \in \mathcal{F}$ by our assumption. Hence $M \in \mathcal{F}$.

The last contradiction yields our result. \square

Theorem 4.2. Let G be a finite π-separable group. Then $S_{\pi}(G)/O_{\pi}(G)$ is supersolvable.

Proof. Assume that the result is false and consider a counterexample G with minimal order. Then:

(i) $O_{\pi}(G) = 1$ and $S_{\pi}(G) \neq 1$.

It is a trivial fact as in the proof of Theorem 3.3.

(ii) $\Phi(G) = 1$.

As proved in Theorem 3.3, we can show that $O_{\pi}(\tilde{G}) = 1$. Since $S_{\pi}(\tilde{G}) = S_{\pi}(\tilde{G})/O_{\pi}(\tilde{G}) \cong S_{\pi}(G)/O_{\pi}(G)$, by the choice of G,

$$S_{\pi}(G)/O_{\pi}(G) \cong S_{\pi}(\tilde{G})/O_{\pi}(\tilde{G}) = S_{\pi}(G)/\Phi(G)$$

is supersolvable. By Theorem 4.1, $S_{\pi}(G)$ is supersolvable and so is $S_{\pi}(G)/O_{\pi}(G)$, contrary to our assumption.

For simplicity, we denote $S_{\pi}(G)$ to be S and the Fitting subgroup of S by F.

(iii) $F = N_{1} \times \cdots \times N_{k}$, where N_{i} are minimal normal subgroups of G. $G = FL$ with $L \cap F = 1$ for a subgroup of G.

Let N be a minimal normal subgroup of G which contained in $S_{\pi}(G)$. Since G is π-separable and $O_{\pi}(N) \cong O_{\pi}(G) = 1$, we have that N is a π'-group and so $N \leq S_{\pi}(G) \cap O_{\pi}(G)$ is solvable by Lemma 2.3(3). Hence N is a solvable minimal normal subgroup of G and so N is an elementary abelian p'-subgroup with $p \in \pi'$. Certainly $N \leq F$. Since F is a nilpotent normal subgroup of G, $O_{\pi}(F) = 1 = \Phi(F)$ by (i) and (ii). F is abelian. Let H be a maximal among all
subgroups of \(F \) which can be expressed as the direct product of minimal normal subgroups of \(G \). Then \(H \trianglelefteq G \) and \(H \) is abelian. Let \(L = \min\{ T : T \trianglelefteq G, HT = G \} \). Then \(H \cap L = 1 \). In fact, \(H \cap L \triangleleft G \). If \(H \cap L \neq 1 \), since \(\Phi(G) = 1 \), \(\exists M < G \) such that \(H \cap L \not\subseteq M \) and so \(G = (L \cap H)M \). Note that \(L = L \cap G = (L \cap M)(L \cap M) \) and \(L \cap M \neq L \). However, \(G = LH = (L \cap M)H \), contrary to the minimal choice of \(L \). Since \(F = H(F \cap I) \) and \(F \cap I \triangleleft F \), \(F \cap L \neq F \cap I \), then there is a minimal normal subgroup \(N \) of \(G \) with \(N \leq F \cap L \). As \(H \cap L = 1 \), we conclude that \(H < N \times H \). This contradicts the maximal choice of \(H \) and therefore \(F \cap L = 1 \). This follows that \(F = H \) and the result follows.

(iv) \(|N_i|\) is a prime for all \(i \in \{1, \ldots, k\} \), \(S' \leq C_s(F) = F \), \(S/F \) is abelian group.

In fact, (iii) implies that \(|N_i| = p_i^{t_i}\) with \(p_i \in \pi' \). Since \(\Phi(G) = 1 \) and \(1 \neq N_i \trianglelefteq G \), \(\exists M_i < G \) with \(N_i \not\trianglelefteq M \) and \(G = N_iM_i \). It is clear that \(N_i \cap M_i = 1 \) and \(|G : M_i| = |N_i| = p_i^{t_i} \) is a \(\pi' \)-number. If \(|G : M_i| \) is composite, then \(N_i \triangleleft S \triangleleft M_i \), a contradiction. Hence \(|N_i|\) is a prime.

\[
G/C_G(N_i) = N_\pi(N_i)/C_G(N_i) \trianglelefteq \text{Aut}(N_i)
\]

is cyclic. Therefore, \(G' \leq C_G(N_i) \) and \(G' \leq \cap_{i=1}^k C_G(N_i) = C_G(F) \), \(S' \leq G' \cap S \triangleleft C_s(F) \). Since \(F \) is abelian, \(S = F(S \cap L) \) with \(L \) chosen as in (iii), \(C_s(F) = F(L \cap C_s(F)) = FL_1 \), where \(L_1 = L \cap C_s(F) \triangleleft L \) and commutes with \(F \), hence \(L_1 \triangleleft S \). If \(L_1 \neq 1 \), then there is a minimal normal subgroup \(N \) of \(S \) which is contained in \(L_1 \). \(N \) is a subnormal subgroup of \(G \) and \(\text{O}_\pi(N) \triangleleft \text{O}_\pi(G) = 1 \). This yields that \(N \) is a \(\pi' \)-group. \(N \leq \text{O}_\pi(G) \) and \(N \) is solvable by Lemma 2.3, hence \(N \) is a solvable minimal normal subgroup of \(S \) and so \(N \triangleleft S \). Now then that \(1 \neq N \leq F \cap L = 1 \), a contradiction. The result now follows.

Now, \(S_\pi(G) \) is supervolvable by the definition and (iv). This contradicts the choice of \(G \) and completes the proof of the theorem. \(\square \)

We can easily get the following corollaries:

Corollary 4.3. Let \(G \) be a \(\pi \)-separable group. Then:

1. \(S_\pi(S_\pi(G)) = S_\pi(G) \) and \(S_\pi(S_\pi(G)) = S_\pi(G) \).
2. \(G/O_\pi(G) \) is supervolvable \(\iff \) \(G/S_\pi(G) \) is supervolvable \(\iff \) \(S_\pi(G) = G \).

Proof. (1) \(\forall M < S_\pi(G) \) with \(|S_\pi(G)/M| = 1 \), \(O_\pi(G) \trianglelefteq M \). Since \(S_\pi(G)/O_\pi(G) \) is supervolvable,

\[
|S_\pi(G) : M| = |S_\pi(G)/O_\pi(G) : M/O_\pi(G)|
\]

is a prime. Hence \(S_\pi(G) \) is the empty set and \(S_\pi(S_\pi(G)) = S_\pi(G) \).

(2) It is trivial to show that \(S_\pi(G) = G \Rightarrow G/O_\pi(G) \) is supervolvable \(\Rightarrow \) \(G/S_\pi(G) \) is supervolvable by the Theorem. If \(G/S_\pi(G) \) is supervolvable, then \(G/S_\pi(G) = S_\pi(G/S_\pi(G)) = S_\pi(G)/S_\pi(G) \), hence \(G = S_\pi(G) \). \(\square \)
Corollary 4.4. Suppose that a finite group G is both π_1-separable and π_2-separable with $\pi_1 \cap \pi_2$ is empty set. Then $S_{\pi_1}(G) \cap S_{\pi_2}(G)$ is supersolvable.

Proof. Let $S_{\pi_1}(G) \cap S_{\pi_2}(G) = H$. By Theorem 4.2, both $H\Phi_{\pi_1}(G)/O_{\pi_1}(G)$ and $H\Phi_{\pi_2}(G)/O_{\pi_2}(G)$ are supersolvable. So we have that

$$H \cong H\Phi_{\pi_1}(G) \cap O_{\pi_1}(G) = H\Phi_{\pi_1}(G) \cap S_{\pi_1}(G) \cap O_{\pi_1}(G) \cap S_{\pi_2}(G)$$

is supersolvable. We are done. □

Remark 1. Let G be a finite group. If we set $\pi = \pi(G)$, then G is π-separable with $O_{\pi}(G) = 1$ and $S_{\pi}(G) = L(G) = \{M: M \triangleleft G\}$, where $|G:M|$ is composite. Hence $L(G)$ is supersolvable in any case. This is a result from Bhatia [1].

Remark 2. Let G be a finite π-solvable group or a finite π-separable group with $\pi = \{p, q\}$. Then both $\Phi_{\pi}(G)$ and $S_{\pi}(G)$ are solvable.

Proof. We use induction on $|G|$.

(1) If G is π-solvable, $\forall N \triangleleft \Phi_{\pi}(G)$ (or $S_{\pi}(G)$) with that N is a minimal normal subgroup of G, N is a p-subgroup with $p \in \pi$ or N is a π'-subgroup. If N is a π'-subgroup, then N is solvable by Lemma 2.3(3). Hence N is solvable in any case. Now, Lemma 2.2 implies the result.

(2) If G is a π-separable group with $\pi = \{p, q\}$, then $O_{\pi}(G)$ is solvable by the Burnside Theorem on p^aq^b-group. Theorem 3.3 and Theorem 4.1 yields the solvability of G. □

Remark 3. Since G is π-separable if and only if G is π'-separable, we can get similar results by replacing π' in the position of π.

Acknowledgment

The author wishes to thank the referee for several helpful comments.

References