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SUMMARY
D-type cyclins form complexes with cyclin-dependent kinases (CDK4/6) and promote cell cycle progression.
Although cyclin D functions appear largely tissue specific, we demonstrate that cyclin D3 has unique
functions in lymphocyte development and cannot be replaced by cyclin D2, which is also expressed during
blood differentiation. We show that only combined deletion of p27Kip1 and retinoblastoma tumor suppressor
(Rb) is sufficient to rescue the development of Ccnd3�/� thymocytes. Furthermore, we show that a small
molecule targeting the kinase function of cyclin D3:CDK4/6 inhibits both cell cycle entry in human T cell acute
lymphoblastic leukemia (T-ALL) and disease progression in animal models of T-ALL. These studies identify
unique functions for cyclin D3:CDK4/6 complexes and suggest potential therapeutic protocols for this
devastating blood tumor.
INTRODUCTION

D-type cyclins (D1, D2, and D3) bind cyclin-dependent kinases 4

and 6 (CDK4/6), and the activity of cyclin D:CDK4/6 complexes

promotes entry into the cell cycle (Sherr, 1995; Sherr and

Roberts, 2004). Cyclin D:CDK4/6 complexes are believed to

promote cell cycle progression through at least two functions:

by interacting with cell cycle inhibitors, such as p21Cip1 and

p27Kip1, and by the phosphorylation of the retinoblastoma tumor

suppressor (Rb). Cyclin D:CDK4/6 are thought to form ternary

complexes that bind cyclin-dependent kinase inhibitors (CDKIs)

of the p21Cip/p27Kip1 family (Sherr and Roberts, 2004). This

facilitates downstream cyclin E:CDK2 complex activity that,

along with cyclin D:CDK4/6, inactivates Rb and allows activation
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of E2F transcription factors and progression through the cell

cycle.

The functions of D-type cyclins have been studied using germ-

line gene deletion. Each knockout mouse was viable, but

displayed distinct tissue-specific defects (Ciemerych et al.,

2002; Kozar et al., 2004; Sicinski et al., 1995, 1996; Sicinska

et al., 2003, 2006). When these deficiencies were combined,

complete hematopoietic failure was observed, demonstrating

the absolute requirement for D-type cyclins within the hemato-

poietic system (Kozar et al., 2004). Cyclin D2-deficient

(Ccnd2�/�) mice display reduced proliferation of mature splenic

B cells and lack CD5+ peritoneal B cells (Solvason et al., 2000).

Cyclin D3 knockout (Ccnd3�/�) animals show defects in early

B and T cell differentiation, as well as impaired proliferation of
yclins are absolutely required in the hematopoietic system,
ession of D-type cyclins is associated with hematopoietic
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granulocytes (Cooper et al., 2006; Peled et al., 2010; Sicinska

et al., 2003, 2006). Cyclin D1 was recently suggested to

play a key role in hematopoietic stem cell quiescence and

self-renewal (Zou et al., 2011); however, Ccnd1�/� mice do not

display striking hematopoietic effects, most likely due to redun-

dancy with D2 and D3 (Sicinski et al., 1995).

Previous work has suggested that defects associated with

individual cyclin D deficiency stem from their tissue-specific

expression and that D-type cyclins are largely functionally redun-

dant. For example, high expression of cyclin D1 protein, but not

D2 or D3, is observed in both the retina and mammary tissue,

and Ccnd1�/�animals correspondingly have reduced prolifera-

tion of both the cells that contribute to the retina and breast

epithelium compartment (Sicinski et al., 1995). Genetic studies

in which endogenous Ccnd1 was substituted with Ccnd2

complementary DNA (cDNA) have demonstrated that cyclin D2

can largely replace cyclin D1 function in mammary and retina

tissue development (Carthon et al., 2005). However, these

tissues typically express a single D-type cyclin, so whether

D-type cyclins can functionally replace one another in cells

that express more than one cyclin, such as developing lympho-

cytes, remains unclear.

Aberrant cell cycle regulation is a common thread to all forms

of cancer (Hunter and Pines, 1994). Deregulated expression

of all D-type cyclins is frequently observed in hematopoietic

malignancies (Bergsagel et al., 2005; Motokura and Arnold,

1993). We have previously shown that induction of T cell acute

lymphoblastic leukemia (T-ALL), a disease caused by transfor-

mation of lymphocyte progenitors, requires cyclin D3, as expres-

sion of the oncogenic intracellular domain of Notch1 (ICN1) in

Ccnd3�/� bone marrow progenitors fails to initiate disease.

Consistent with these animal studies, cyclin D overexpression

is commonly seen in human T-ALL, with specific cyclin D ex-

pression associated with distinct T-ALL subsets (Li et al., 2008;

Sicinska et al., 2003). Early thymocyte progenitor-ALL is charac-

terized by cyclin D2 overexpression (Coustan-Smith et al., 2009),

whereas more mature forms of T-ALL are associated with D3

overexpression (Joshi et al., 2009; Li et al., 2008). Finally,

previous data have suggested that Notch signaling directly regu-

lates cyclin D3 expression, and blocking cyclin D3 expression

by g-secretase inhibition of Notch signaling prevents cell cycle

progression in human T-ALL cell lines in vitro (Joshi et al.,

2009). These data suggested that D-type cyclins and/or their

downstream interacting partners could be attractive therapeutic

targets in this type of disease.

RESULTS

Unique Roles for Cyclin D3 in Lymphocyte Development
We have previously shown that cyclins D2 and D3 are both

expressed during early stages of lymphocytic differentiation;

however, only loss of cyclin D3 leads to significant effects

on cell differentiation (Cooper et al., 2006; Sicinska et al.,

2003). To genetically test the ability of cyclin D2 to replace

cyclin D3 function, we generated mice in which Ccnd2 cDNA

was targeted to the Ccnd3 locus, such that Ccnd2 was regu-

lated by the Ccnd3 50 and 30 untranslated region (Figure S1

available online). The unique Ccnd3/2 transcript generated

from the knock-in allele was not detected in wild-type,
C

Ccnd2�/�, or Ccnd3�/� cells using quantitative PCR (qPCR)

analysis (Figure 1A). This unique transcript was specifically

produced in Ccnd3+/Ccnd2-Neo lymphocytes at low levels, but

deletion of the neomycin resistance cassette resulted in a sig-

nificant increase in messenger RNA (mRNA) expression in

Ccnd3+/Ccnd2 cells. Analysis of total Ccnd2 mRNA showed

comparable expression in Ccnd3+/Ccnd2 cells to that of wild-

type cells. As expected, Ccnd2 transcripts were decreased

in Ccnd2+/� thymocytes and diminished in Ccnd2�/� cells

(Figure 1B). To further confirm knock-in allele expression, we

generated Ccnd2�/�Ccnd3+/Ccnd2 animals and analyzed

cyclin D2 expression in lymphocytes. Although the protein

was not detected in Ccnd2�/�Ccnd3+/Ccnd2-Neo cells that

retained the neomycin resistance cassette, cyclin D2 was

readily detected in cells from knock-in animals (Ccnd2�/�

Ccnd3+/Ccnd2) that had deleted the selection cassette (Fig-

ure 1C). Furthermore, cyclin D2 expression was increased in

Ccnd3Ccnd2/Ccnd2 (hereafter, Ccnd3D2/D2) cells compared to

both wild-type and Ccnd3�/� cells, demonstrating that cyclin

D2 protein was specifically generated from the knock-in allele.

Given the role of cyclin D3 in early thymopoiesis (Sicinska

et al., 2003), we investigated T cell development in Ccnd3D2/D2

animals (Figure 1D). We found that thymus size and total thymus

cellularity of Ccnd3D2/D2 animals was reduced similarly to that

of Ccnd3�/� mice, and both were significantly decreased from

those of controls. Loss of cyclin D3 is associated with an

increase in the percentage of CD4�CD8� double negative (DN)

thymocytes and a corresponding decrease in CD4+CD8+ double

positive (DP) cells (Sicinska et al., 2003); although the overall

number of DN cells was not altered, the number of Ccnd3�/�

DP was significantly reduced. We found that the total number

of Ccnd3D2/D2 DN and DP cells was similar to that observed in

Ccnd3�/� animals (Figure 1E). Although loss of cyclin D3 did

not affect the absolute number of DN cells generated, the

percentage of DN cells was increased, while the percentage

of DP cells was decreased compared to controls (Ccnd3�/�

DN 10.2% and DP 62.4%; control DN 2.3% and DP 83.8%).

As observed in Ccnd3�/� thymocytes, the percentage of

Ccnd3D2/D2 DN cells was also increased and the percentage of

DP cells was reduced compared to controls (Figure 1F). Finally,

we quantified proliferation of Ccnd3D2/D2 pro- and pre-T cells,

which was comparable to that observed in Ccnd3�/� pro- and

pre-T cells (Figure 1G); however, both of these populations

showed a decrease in rates of proliferation in comparison to

wild-type cells. Even with high cyclin D2 expression, cyclin

D:CDK4/6 specific phosphorylation of Rb (S807/811) was

reduced in Ccnd3D2/D2 thymocytes compared to wild-type and

was similar to that observed inCcnd3�/� cells (Figure 1H). These

data demonstrated that, in early Ccnd3D2/D2 thymocytes,

despite the abundance of cyclin D2, Rb remained hypophos-

phorylated and the cells could not efficiently pass into S-phase.

In addition to its role in T cell development, cyclin D3 is also

required for early B lymphopoiesis (Cooper et al., 2006). We

found that the overall bone marrow cellularity in Ccnd3D2/D2

animals was reduced to that found inCcnd3�/�mice (Figure S1),

while control bone marrow contained a significantly higher

number of cells. Furthermore, knock-in animals had a decreased

number of pre-B cells compared to controls, and knock-in

pre-B cells had an impaired ability to proliferate compared to
ancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc. 453



Figure 1. Cyclin D3 Has Unique Functions in Normal Lymphopoiesis

(A–C) Total thymocytes were isolated from wild-type control, Ccnd2+/�, Ccnd2�/�, Ccnd2�/�Ccnd3+/Ccnd2-Neo, Ccnd2�/�Ccnd3+/Ccnd2, or Ccnd3Ccnd2/Ccnd2

animals and analyzed for expression of (A) the unique transcript generated from the Ccnd3Ccnd2 knock-in allele and (B) total Ccnd2 transcript normalized to

Gapdh by qPCR or (C) for cyclin D2, D3, and actin (loading control) expression by Western blot. Bands for cyclin D2 and actin were quantified and the relative

amount of protein indicated with the wild-type control set to 1.

(D–F) Images of thymuses, left panel (D). Thymus cellularity of control,Ccnd3�/�, andCcnd3D2/D2mice wasmeasured, and (E) the fraction of DN (CD4�CD8�) and
DP (CD4+CD8+) cells were calculated using percentages from (F) flow cytometry of CD4 and CD8 expression.

(G) Cell cycle status of pro- (CD4�CD8�CD44�CD25+) and pre-T cells (CD4�CD8�CD44�CD25lo) was measured by incorporation of DAPI using FACS analysis.

(H) Wild-type control, Ccnd3�/� and Ccnd3D2/D2 thymocytes were analyzed for Rb (S807/811), total Rb, cyclin D3, and actin by Western blot. Data represent

mean ± SD (***p < 0.001) and are representative of at least three independent experiments.

See also Figure S1.
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Figure 2. Cyclin D3 Has Nonredundant Functions in the Induction of T-ALL

(A) Lethally irradiated B6.SJL animals were transplanted with 3 3 105 pMIGR1 ICN1-IRES-EGFP wild-type or Ccnd3D2/D2 bone marrow progenitors, and

peripheral blood was collected and analyzed for DP cells by FACS. Peripheral blood analysis shown is 31 days upon transplant of transduced cells.

(B) Kaplan-Meier curve shows the survival of transplanted mice for the period of observation (**p < 0.005). Data are representative of two independent exper-

iments with five mice per condition.
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controls. Collectively, these results indicated that cyclin D2

expression could not rescue the defects in lymphocyte develop-

ment caused by the lack of cyclin D3.

Unique Roles for Cyclin D3 in Acute Lymphocytic
Leukemia
AlthoughCcnd2 expression from theCcnd3 locus did not rescue

the defect during the normal development of Ccnd3�/� early

lymphocytes, we wanted to test its ability to replace the require-

ment for cyclin D3 in oncogenic transformation, specifically in

T-ALL (Sicinska et al., 2003). We selected a Notch-driven model

of T-ALL, as more than 90% of human T-ALL shows signs of

constitutive Notch pathway activation and the majority of human

T-ALL lines are addicted to Notch1 function (Palomero et al.,

2007; Weng et al., 2004). We transduced lineage�c-Kit+ bone

marrow progenitors from wild-type and Ccnd3D2/D2 mice with

retrovirus encoding the constitutively active intracellular domain

of Notch1-IRES-enhanced green fluorescent protein (EGFP)

(ICN1-EGFP), as previously described (Espinosa et al., 2010;

Vilimas et al., 2007; Walkley et al., 2005). These cells were trans-

planted into lethally irradiated congenic wild-type mice, and

animals were monitored for the presence of CD4+CD8+ DP

leukemic cells in the peripheral blood. At 2 weeks after trans-

plant, ICN1-EGFP+ leukemic cells were detected in the blood

of control animals. Furthermore, 1 month posttransplant, the

peripheral blood of control animals contained a significant

number of ICN1-EGFP+ cells, of which 71%were DP cells, while

only a minute number of ICN1-EGFP+ cells were observed in

recipients of Ccnd3D2/D2 cells (Figure 2A). The development of

disease in hosts that received wild-type cells transduced with

ICN1 retrovirus was rapid, with all control animals succumbing

to the disease 4–6 weeks after transplant (Figure 2B). In contrast,
C

animals that received transduced Ccnd3D2/D2 cells displayed

significant protection from disease, with all animals remaining

disease-free for the entire 6-month period of observation. These

results demonstrated a specific requirement for cyclin D3, but

not cyclin D2, in the induction of T-ALL.

Endogenous Ccnd2 Protein Induction Fails to Rescue
Ccnd3–/– Phenotypes
Considering that Ccnd2 knock-in into the Ccnd3 locus did not

rescue the specific requirements for cyclin D3, we further

investigated the regulation of expression of these molecules

in early lymphocytes. We readily detected cyclin D2 protein in

purified wild-type pro-T (CD4�8�25+44�); however, this ex-

pression decreased in wild-type pre-T (CD4�8�25low/neg44�)
cells (Figure S1). However, in Ccnd3�/� cells, cyclin D2 protein

was significantly increased in pro- and pre-T cells as well as

total thymocytes. This finding suggested that ‘‘physiological’’

cyclin D2 overexpression was not able to rescue the develop-

mental block caused by cyclin D3 deficiency, in agreement

with our observations from the knock-in described in Figure 1.

Cyclin D2 overexpression appears to be posttranscriptional,

as no differences in Ccnd2 mRNA levels were detected from

wild-type and Ccnd3�/� total thymocytes (Figure S1). Further-

more, immunofluorescence analysis of cyclin D2 and D3

protein from purified DN wild-type thymocytes confirmed

previous findings, as it showed preferential induction of cyclin

D2 protein in Ccnd3�/� thymocyte progenitors (Figure S1).

Cyclin D3 expression remained unchanged in response to

Ccnd2 deletion (data not shown; Figure S1). To further investi-

gate regulation of cyclin D2 protein, we treated thymocytes

with cycloheximide, which inhibits de novo protein synthesis,

and analyzed expression over time. Cyclin D2 half-life was
ancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc. 455
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significantly increased in Ccnd3�/� cells (2.5-–4-fold) when

compared to wild-type thymocytes (Figure S3D). We also

observed that cyclin D2 protein was stabilized upon treatment

with the proteasome inhibitor MG-132, suggesting regulation

by the ubiquitin-proteasome system (Figure S1). These studies

further support our previous hypothesis, as they demonstrate

that ‘‘physiological’’ upregulation of cyclin D2 protein is unable

to ‘‘rescue’’ normal lymphocytic differentiation and induction

of leukemia.

Loss of p27Kip1 Partially Restores T Cell Development
in Ccnd3–/– Mice
We next sought to further define the functions of cyclin D3 in

regulating cell cycle during early lymphocyte development. Of

the downstream cell cycle regulators, we focused on the cell

cycle inhibitor p27Kip1, as mice deficient for p27Kip1 show

increased thymic cellularity (Fero et al., 1996; Nakayama et al.,

1996), and p27Kip1 is the only CDKI dynamically regulated at

early stages of T cell development (I.A., unpublished data). To

genetically test the interaction between cyclin D3 and p27Kip1,

we crossed Ccnd3�/� and Cdkn1b�/� mice. Analysis of cyclin

D3 and p27 protein from total thymocytes of Ccnd3�/�

Cdkn1b�/� mice confirmed the genotypes of the mice (Fig-

ure 3A). We measured total thymic cellularity and found that

the average number of Ccnd3�/�Cdkn1b�/� cells was signifi-

cantly increased compared to that of Ccnd3�/� thymocytes,

but remained significantly reduced compared to wild-type

controls (Figure 3B). Differences in total thymocyte numbers

were associated with differences in percentages and average

number of DP cells (Figures 3C and 3D). While Ccnd3�/�

Cdkn1b�/� animals displayed significantly higher percentages

and numbers of DP thymocytes than Ccnd3�/� animals, they

had significantly fewer DP cells than control mice. Taken

together, these observations suggested that ablation of p27Kip1

only partially restores development of Ccnd3�/� thymocytes.

We have previously shown that the Ccnd3�/� T cell defect

stems from a reduction in S-phase entry and cell cycle progres-

sion (Sicinska et al., 2003); thus, we next assessed the cell cycle

status of Ccnd3�/�Cdkn1b�/� early lymphocytes. We evaluated

cell cycle using DAPI and observed an increase from 11.6% to

17.5% of pre-T cells in S-G2-M phases of the cell cycle from

Ccnd3�/� and Ccnd3�/�Cdkn1b�/� animals, respectively (Fig-

ure 3E). In contrast, the percentage of Ccnd3�/�Cdkn1b�/�

proliferating pre-T cells was still reduced compared to controls.

To further investigate cell cycle, we measured CDK2-associated

activity using an in vitro kinase assay. CDK2-containing

complexes immunoprecipitated from Ccnd3�/� total thymo-

cytes showed little kinase activity toward exogenous Rb (Fig-

ure 3F). In contrast, Ccnd3�/�Cdkn1b�/� thymocytes showed

an increase in CDK2-associated activity, but this activity did

not reach the levels of control CDK2 activity. These combined

studies indicated that loss of p27Kip1 only partially restored the

cell cycle and developmental defects of early Ccnd3�/� T cells.

Notch1-Induced Transformation of Ccnd3–/–Cdkn1b–/–

Cells
We also tested the ability of Ccnd3�/�Cdkn1b�/� cells to be

transformed by Notch1 activation. Peripheral blood analysis

2 weeks after transplant revealed a small population of ICN1-
456 Cancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc.
EGFP+ DP cells in hosts that received Ccnd3�/�Cdkn1b�/�

transduced cells (Figure S2A). Similar to control mice that

received wild-type ICN1-transduced cells, all recipients of

Ccnd3�/�Cdkn1b�/� transduced cells developed disease, albeit

with slightly delayed kinetics, and succumbed to disease by

10 weeks posttransplant (Figure S2B). These data show that

additional loss of p27Kip1 was sufficient to rescue transformation

and progression to disease of Ccnd3�/� cells.

Loss of Rb Partially Restores Ccnd3–/– T Cell
Development
As loss of p27 did not completely rescue Ccnd3�/� lymphopoi-

esis at the steady state, we hypothesized that remaining activi-

ties of additional key cell cycle regulators could prevent cells

from properly entering the cell cycle in the absence of cyclin

D3. We observed that Rb was expressed and phosphorylated

in wild-type pre-T cells and that its expression, specifically the

cyclin D:CDK4/6-phosphorylated pRb (S807/811) species, was

reduced in Ccnd3�/� cells (Figure 4A). To genetically test the

importance of Rb regulation, we generated cyclin D3/Rb doubly

deficient animals by crossing Ccnd3�/� mice to Rb1F/F mice

carrying the Mx1-Cre transgene. Administration of the double-

strand RNA mimic poly(I:C) to these animals induced Cre

recombinase expression, mediating deletion of Rb1, and these

animals hereafter are referred to as Ccnd3�/�Rb1�/�. Rb was

not detectable in total thymocytes from Ccnd3�/�Rb1�/� mice,

demonstrating efficient deletion of the floxed Rb1 alleles

(Figure 4B).

As with Ccnd3�/�Cdkn1b�/� mice, the thymic cellularity of

Ccnd3�/�Rb1�/� animals was significantly increased compared

to Ccnd3�/� animals, yet significantly decreased compared to

controls (Figure 4C). Ccnd3�/�Rb1�/� animals displayed trends

in the percentages and average number of DP cells that were

similar to those seen in Ccnd3�/�Cdkn1b�/� mice (Figures 4D

and 4E), indicating that deletion of Rb1 only partially restored

Ccnd3�/� early T cell development. We next analyzed the cell

cycle of Ccnd3�/�Rb1�/� pre-T cells and detected approxi-

mately 21% of cells in S-G2-M phases, whereas only 11.5% of

Ccnd3�/� pre-T cells had transitioned beyond G1 (Figure 4F).

However, the percentage of Ccnd3�/�Rb1�/� proliferating pre-

T cells was significantly lower than that of controls (approxi-

mately 30%). We also tested CDK2-associated kinase activity

in Ccnd3�/�Rb1�/� total thymocytes by in vitro kinase assay.

CDK2-containing complexes isolated from Ccnd3�/�Rb1�/�

T cells showed partially restored ability to phosphorylate exoge-

nous Rb compared to Ccnd3�/� thymocytes (Figure 4G).

However, the CDK2 kinase activity in control thymocytes was

significantly higher, providing an explanation for the only partial

restoration of progenitor cell proliferation.

Combined Loss of p27Kip1 and Rb Restores Ccnd3–/–

T Cell Development
Our genetic analyses showed that neither p27Kip1 nor Rb loss

was sufficient to completely rescue Ccnd3�/� developmental

defects. Although there could be several alternative explanations

for this incomplete rescue (including redundancy with other

CDKI or Rb pocket proteins), we hypothesized that concomitant

inactivation of p27Kip1 and Rb could provide efficient rescue,

suggesting that cyclin D3 acts by simultaneously altering pRb



Figure 3. Loss of p27 Partially Rescues the Development of Ccnd3–/– T Cell Progenitors

(A) Total thymocytes analyzed for cyclin D3, p27, and actin expression by immunoblot.

(B–D) Total thymus cellularity of littermate control, Ccnd3�/�Cdkn1b�/�, and Ccnd3�/� mice was quantified (B), and the relative number of DN and DP cells

was calculated using total cell numbers and percentages from flow cytometry (C and D).

(E) The proliferation of pro- and pre-T cells was analyzed by measuring DAPI incorporation by flow cytometric analysis.

(F) Protein lysates were subjected to immunoprecipitation with antibody to CDK2 or normal rabbit immunoglobulin G (IgG) as control, and the ability

of precipitated complexes to phosphorylate recombinant Rb was measured by in vitro kinase assay. Results represent mean ± SD (*p < 0.05, **p < 0.01,

***p < 0.0005, ****p < 0.00005) and are representative of three independent experiments of three mice of each genotype.

See also Figure S2.
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activity and binding p27Kip1. We thus generated Ccnd3�/�

Cdkn1b�/�Rb1�/� compound mutant animals and analyzed

early T cell development. We found that ablation of both

p27Kip1 and Rb in Ccnd3�/� animals resulted in a significant

increase in total thymocyte numbers, comparable to that of

controls (Figure 5A). The number of DN cells in compound

mutant animals was also similar to wild-type thymuses (Fig-

ure 5B). Moreover, Ccnd3�/�Cdkn1b�/�Rb1�/� and control

thymuses contained an almost identical number of DP cells
C

(Figures 5B and 5C). Finally, we measured pre-T cell prolifera-

tion. Only 13.0% of Ccnd3�/� cells were in S-G2-M phases

(Figure 5D). In contrast, approximately 29% of Ccnd3�/�

Cdkn1b�/�Rb1�/� pre-T cells were in S-G2-M phases, a

percentage similar to that found in control littermate animals.

These results indicated that only simultaneous genetic dele-

tion of p27Kip1 and Rb was sufficient to completely rescue cell

cycle progression and the development of Ccnd3�/� early

T cells.
ancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc. 457



Figure 4. Deletion of Rb Partially Rescues the Development of Ccnd3–/– T Cell Progenitors

(A and B) Analysis of total Rb, pRb (S807/811), cyclin D3, and actin by immunoblot from pro- or pre-T purified from wild-type, Ccnd3�/�Rb1�/�, and Ccnd3�/�

total thymocytes.

(C–E) Total thymus numbers of littermate control, Ccnd3�/�Rb1�/�, and Ccnd3�/� mice were quantified (C), and the relative number of DN and DP cells was

calculated using total cell numbers and percentages from flow cytometry (D and E).

(F) Cell cycle analysis of pro- and pre-T cells by DAPI incorporation measured by FACS.

(G) Immune complexes were pulled-down with anti-Cdk2 antibody or normal rabbit IgG, and phosphorylation of exogenous Rb was measured by kinase assay.

Results represent mean ± SD (*p < 0.05, ***p < 0.0005) and are representative of three independent experiments of three mice of each genotype.
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Figure 5. Combined Loss of p27 and Rb Restores Ccnd3–/– T Lymphopoiesis

(A–C) Total thymus cellularity of littermate control, Ccnd3�/�Cdkn1b�/�Rb1�/�, and Ccnd3�/� mice was quantified (A), and the relative number of DN and DP

cells was calculated using total cell numbers and percentages from flow cytometry (B and C).

(D) Cell cycle status of pro- and pre-T cells was measured by DAPI incorporation by flow cytometric analysis. Results represent mean ± SD (**p < 0.005) and are

representative of two independent experiments of four mice of each genotype.
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Inhibition of Cyclin D3:CDK4/6 Complex Activity
Suppresses Human T-ALL Cell Growth
Our studies suggested that cyclin D3 has unique functions in

lymphocyte development and transformation, likely in conjunc-

tion with CDK4/6, to titrate CDKIs and inactivate Rb. We have

previously shown that cyclin D3 expression is essential for the

induction of Notch-driven T-ALL (Sicinska et al., 2003). However,

these studies did not address the potential of cyclin D3:CDK4/6

targeting during disease progression, a question of significant

clinical relevance. To address this question, we used PD-

0332991, a CDK4/6 specific small molecule inhibitor currently

in clinical trials for multiple myeloma treatment (Baughn et al.,

2006; Marzec et al., 2006; Menu et al., 2008). Initially, to confirm

interaction between cyclin D3 and CDK4/6 in T cells, we per-

formed immunoprecipitation of endogenous CDK6 in wild-type
C

thymocytes and observed specific interaction with cyclin D3

(Figure 6A). Similar cyclin D3:CDK4/6 interaction was also

observed in human T-ALL cell lines. Having confirmed this

interaction, we initiated in vitro treatments of mouse and human

T-ALL cell lines with PD-0332991. All human T-ALL lines utilized

carried NOTCH1 mutations, and the majority was absolutely

dependent on Notch activity. Although the mouse T-ALL lines

were driven by overexpression of TAL1, they also contained

Notch1-truncating PEST mutations (O’Neil et al., 2006). We

tested PD-0332991 at both 0.5 and 1 mM and found similar

effects in vitro. PD-0332991 treatment efficiently inhibited

S-phase entry of all cell lines within 15 hr, leading to accumu-

lation of cells in G0/G1 phases (Figure 6B). The effects of drug

treatment were reversible, as removal of PD-0332991 led to

efficient re-entry in the cell cycle (Figure S3). To further expand
ancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc. 459



Figure 6. Inhibition of Cyclin D3:CDK4/6 Activity Inhibits T-ALL Cell Growth In Vitro

(A) Protein lysates from wild-type and Ccnd3�/� thymocytes were prepared and subjected to pull-down with antibody to CDK6 or normal rabbit IgG and

then analyzed by immunoblot cyclin D3 antibody.
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these studies using primary leukemia samples, we in vitro

treated cells isolated from two T-ALL patients. PD-0332991

treatment led to inhibition of cell cycle progression and accumu-

lation in the G0/G1 cell cycle phase in the two T-ALL primary

samples (Figure 6C). We also compared primary T-ALL leukemia

cells at diagnosis to cells at relapse or after engraftment in

immune-deficient mice. We found a strong inhibition in all con-

ditions, despite higher cycling rates in the relapse and xenograft

cells, suggesting that PD-0332991 could be efficient in the

treatment of relapsed T-ALL (Figure 6C).

To gain a better molecular and biochemical understanding

of PD-0332991 function on human T-ALL cells, we have used

immunoblotting to define expression and activation of known

cell cycle regulators. PD-0332991 treatment efficiently sup-

pressed pRb (S807/811) phosphorylation and increased the

expression of the p27Kip1 CDKI, both hallmarks of a G0/G1 arrest

(Figure 6D). Whole-transcriptome analysis using four human

T-ALL lines led to similar results (Figures 6E and 6F). PD-

0332991 treatment suppressed the expression of key mitosis

regulators, including E2f2, Ccna2, Skp2, Cdc25a, Ccne2, and

Cdt1. PD-0332991 treatment did not affect expression of

Ccnd3 or Cdk4/Cdk6 mRNA. Gene set enrichment analysis

(GSEA) showed that PD-0332991 treatment led to significant

gene expression correlation with gene sets related to cell cycle

progression, including DNA replication, S-phase entry, and entry

into mitosis (Figure 6F). Furthermore, after 4 days exposure to

PD-0332991, we observed a significant increase in annexin

V expression compared to controls, indicating progression to

cell death after treatment (Figure 6G). These combined studies

suggested that, by inducing cell cycle arrest and apoptosis

of leukemic cells, PD-0332991-mediated inhibition of cyclin

D3:CDK4/6 activity could be an attractive therapy for T-ALL.

Inhibition of Cyclin D3:CDK4/6 Complex Activity Inhibits
T-ALL Progression In Vivo
To test the ability of PD-0332991 to suppress disease progres-

sion in preclinical models of T-ALL, we treated animals that

received cells expressing potent oncogenic forms of NOTCH1.

Upon establishment of disease at week 3, we initiated treatment

of leukemic mice by oral administration of PD-0332991 for ten

consecutive days. The effects of the treatment were rapid and

significant, as all untreated control mice died by week 12, while

the majority of PD-0332991-treated mice survived during the

period of observation (Figure 7A). Peripheral white blood counts

significantly decreased, and ICN1-EGFP+ DP leukemic cells

disappeared from the peripheral blood of the vast majority of
(B) Human and mouse (Ms.) T-ALL cell lines were treated with 1 mM PD-033299

S-phase was measured by FACS analysis of BrdU incorporation and propidium

(C) Primary human T-ALL cells (purified from the same patient) at diagnosis, relap

treated with 0.5 mM PD-0332991 for 15 hr and pulsed with 30 mM BrdU. The perc

analysis of BrdU incorporation and PI.

(D) Alternatively, cell lines were treated for 12 hr with 0.5 mMPD-0332991. Protein

against p27, Rb, and pRb (Ser807/811), or actin as a loading control.

(E) Heat map showing downregulation of genes associated with the S-phase of

(F) GSEA showing significant downregulation of genes associated with DNA re

checkpoints.

(G) Human T-ALL cell lines were treated with 1 mM PD-0332991 for 4 days and an

mean ± SD and are representative of at least three independent experiments.

See also Figure S3.

C

the treated animals (Figures 7B and 7C). In contrast, control

animals displayed splenomegaly, and analysis of control spleno-

cytes showed that the majority of cells were ICN1-EGFP+ DP

leukemic cells (Figures 7D and 7E). Histologic examination

demonstrated a significant reduction of leukemic cell infiltrations

in all tissues studied from PD-0332991-treated animals (Fig-

ure 7F). Furthermore, ICN1-EGFP+ cells showed increased an-

nexin V expression in PD-0332991-treated animals compared

to controls (Figure 7G). T-ALL cells were addicted to CDK4/6

function, as interruption of drug administration led to relapse

of the disease (data not shown), suggesting that the disease

can be reinitiated by a small number of noncycling cells with

leukemia-initiating abilities.

To extend these studies using a xenograft model, we trans-

planted lethally irradiated Rag2�/�Il2rg�/� mice with the human

T-ALL CEM cell line and administered PD-0332991 3 weeks

posttransplant for 14 consecutive days. Peripheral blood

analysis at 4 weeks posttransplant showed 55% huCD45+ cells

from untreated control mice compared to 6% huCD45+ cells

from PD-0332991-treated mice. All untreated control mice died

within 30 days of transplant, while the majority of treated mice

survived during the observation period (Figure S4). Collectively,

these studies demonstrated that cyclin D3:CDK4/6 inhibition

was able to efficiently suppress T-ALL progression leading to

disease regression in vivo.

DISCUSSION

We demonstrate here that the cyclin D3:CDK4/6 complex has

unique functions in the expansion of normally developing T cell

progenitors and induction of T cell leukemia. We show that cyclin

D2, a D-type cyclin also expressed in developing T cell pro-

genitors, cannot replace cyclin D3. Although we detected cyclin

D2 expression specifically generated by the knock-in allele,

Ccnd2 is unable to rescue the developmental defects caused

by Ccnd3 deficiency. Two additional findings support the notion

that cyclin D2 is unable to sustain expansion of thymocyte

progenitors. Initially, we found high expression of cyclin D2

protein in pro-T cells; however, the cells are largely quiescent,

suggesting that elevated levels of D-type cyclins do not always

correlate with high rates of proliferation. Moreover, we were

able to demonstrate that, in the absence of cyclin D3, D2 expres-

sion was significantly elevated. This finding suggested that

differentiating progenitors respond to the loss of cyclin D3 by

upregulating cyclin D2; however, as with Ccnd3D2/D2 genetic

replacement, this endogenous upregulation of cyclin D2 fails to
1 for 15 hr, followed by pulse with 30 mM BrdU. The percentage of cells in the

iodide (PI).

se, and as a xenograft were grown on MS5-DL1 stromal cells for 2 days, then

entages of cells in the S-phase were calculated using percentages from FACS

extracts were analyzed by SDS-PAGE followed by immunoblot with antibodies

cell cycle and DNA replication upon treatment with 1 mM PD-0332991.

plication, mitotic cell cycle, the S-phase of the cell cycle, and the cell cycle

alyzed for apoptosis by annexin V and 7-amino-actinomycin D. Data represent
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Figure 7. PD-0332991 Inhibits Cyclin D3:CDK4/6 Activity and T-ALL Progression In Vivo

(A and B) Kaplan Meier survival curve of lethally irradiated CD45.1+ B6.SJL mice transplanted with ICN1-EGFP-transduced bone marrow. Mice were treated with

150 mg/kg PD-0332991 or vehicle for ten consecutive days beginning on day 21 (***p < 0.0001). Peripheral blood was analyzed for expression of GFP, CD4, and

CD8 at both 21 and 28 days posttransplant.

(C) White blood cell counts control and PD-0332991-treated animals were measured at the endpoint analysis, 7 weeks posttransplantation. PD-0332991-treated

animals showed significantly reduced blood counts compared to controls (**p < 0.01).

(D and E) Spleens were harvested and control mice showed increased splenic mass compared to treated animals. Splenocytes were analyzed for GFP, CD4, and

CD8 expression by FACS analysis.

(F) Liver and spleen were paraffin embedded and tissue sections were stained by hematoxylin and eosin staining (H&E). Scale bars correspond to 100 mm at 10X

magnification.

(G) Apoptosis in peripheral blood, liver, and lung was measured by expression of annexin V. Data are representative of two independent experiments.

See also Figure S4.
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rescue the Ccnd3�/� phenotypes. These experiments suggest

that the two cyclins have different functions during early hemato-

poiesis, in agreement with previous reports using distinct tissue

systems. Indeed it was demonstrated that D-type cyclins could

have distinct cellular localizations and different abilities to bind

CDK inhibitors, such as p27 and p21 (Tamamori-Adachi et al.,

2008). Moreover, biochemical studies showed differential

substrate specificity between cyclin D1:CDK4 and cyclin

D3:CDK4 complexes (Sarcevic et al., 1997). Finally, other studies

suggested differential utilization of the LxCxE Rb-binding motif

between cyclin D1 and D3 (Baker et al., 2005). Although we

were able to demonstrate that cyclin D2 is unable to efficiently

phosphorylate Rb in the absence of cyclin D3, further studies
462 Cancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc.
are required to elucidate the mechanistic differences among

the three kinases in hematopoiesis.

In addition to its requirement in normal T cell development,

cyclin D3 is required for the induction of T-ALL, a disease with

rapid kinetics and characterized by increased rates of cell divi-

sion. The inhibition of T-ALL induction is not due to a complete

inhibition of T cell progenitor differentiation, as Ccnd3D2/D2

thymuses generate a significant number of mature T cell

receptor ab+ cells. Finally, the inability of cyclin D2 to rescue

the Ccnd3�/� phenotypes is unlike previous models of cyclin

‘‘rescue’’ experiments (Carthon et al., 2005; Geng et al., 1999).

This phenotypic disparity may reflect the requirement for precise

regulation of cell cycle in lymphocytes, a cell type expressing
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more than one D-type cyclin, compared to cell types where

a single D-type cyclin is expressed.

Since the Ccnd3�/� defects stemmed from the failure of

lymphocyte progenitors to proliferate optimally, we focused on

putative functions of cyclin D3 that directly regulate the cell

cycle. Using genetic animal crosses, we demonstrated that the

inhibitor p27Kip1 is only one of the critical regulators of cell cycle

during T cell development. The p27Kip1 inhibitor appears to be

a key regulator in early T cell development, as its protein expres-

sion is immediately decreased upon expression of the pre-T cell

receptor, a prerequisite for both progression of T cell differentia-

tion and induction of T-ALL (Aifantis et al., 2008). It would be

interesting to determine the specific functions of p27Kip1 in

developing T cells using specific mutants that disrupt the inter-

action between p27Kip1 and cyclin D:CDK4/6. While elimination

of p27Kip1 is sufficient to allow normal proliferation of Ccnd1�/�

mammary and retina cells (Geng et al., 2001), loss of p27Kip1

does not restore optimal proliferation of Ccnd3�/� T cells.

Indeed, phosphorylation and inactivation of Rb function by cyclin

D3:CDK4/6 complexes are another critical function, as demon-

strated using the Ccnd3�/�Rb1�/� animals. p27Kip1 and Rb are

thought to have both cell-autonomous and cell-nonautonomous

effects (Chien et al., 2006; Walkley et al., 2007). Although we

cannot exclude cell-nonautonomous effects from contributing

to the rescue of Ccnd3�/� thymocyte development, we believe

there is a cell-intrinsic component as well, since ICN1-EGFP-

transduced Ccnd3�/�Cdkn1b�/� cells were able to be trans-

formed and produce disease after transplant into wild-type hosts

(Figure S4). Our data provide genetic evidence suggesting that

only simultaneous elimination of both layers of regulation suffi-

ciently lowers the threshold for developing progenitors to enter

the cell cycle.

These data suggested that targeting cyclin D3:CDK4/6

complex function can directly target induction and progression

of T cell leukemia and, at the same time, cause minimal hemato-

logic side effects, based on the phenotypes of animals lacking

expression of cyclin D3 or CDK4/6 (Cooper et al., 2006; Malum-

bres et al., 2004; Rane et al., 1999; Sicinska et al., 2003, 2006;

Tsutsui et al., 1999). To pharmacologically target this kinase

complex, we have used PD-0332991, a small molecule selec-

tively inhibiting CDK4/6 function (Fry et al., 2004). PD-0332991

is a pyridopyrimidine that exhibits an IC50 value less than

0.01 mmol/L against cyclin D3:CDK4/6 complexes. PD-

0332991 is currently in clinical trials for the treatment of multiple

myeloma (Baughn et al., 2006; Menu et al., 2008), advanced

adult solid tumors, and refractory non-Hodgkin’s lymphoma

(Schwartz et al., 2011). The drug has a relatively long half-life

and is generally well tolerated with minimal side effects. Our

results and studies now demonstrate that PD-0332991 could

be an efficient treatment for pediatric and adult T cell leukemia.

Indeed, we were able to show rapid induction of cell cycle

arrest in both mouse and human T-ALL cell lines. Furthermore,

we show that the treatment results in cell cycle arrest of primary

human leukemia cells both at diagnosis and relapse, as well as

loss of leukemic cells by apoptosis, and inhibition of disease

progression. Previous data have shown that PD-0332991 effec-

tively inhibits the cell cycle in a breast cancer cell line, and this

is dependent on Rb, as chronic loss of Rb eventually leads

to resistance to PD-0332991 (Dean et al., 2010). Further studies
C

are required to determine whether Rb is required for PD-

0332991-induced cell cycle arrest in T-ALL. PD-0332991

efficiency against relapsed disease is particularly exciting, as

such leukemia cells are hyperproliferating, particularly aggres-

sive, and usually nonresponsive to current therapeutic protocols.

Although we have observed that PD-0332991 administration

can efficiently suppress disease progression, it most likely

does not target putative leukemia-initiating cells, as the disease

slowly relapses upon discontinuation of treatment. To further

potentiate its activity and achieve sustained remission, PD-

0332991 could be used in combinatorial treatment protocols

together with either conventional chemotherapy or next gene-

ration T-ALL-targeted therapeutic compounds, including g-sec-

retase inhibitors (Real et al., 2009) or Velcade (Menu et al., 2008;

Vilimas et al., 2007).

EXPERIMENTAL PROCEDURES

Mice

For generation of Ccnd3D2/D2 mice, see Supplemental Experimental Proce-

dures. Ccnd2�/�, Ccnd3�/�, and Rb1F/F mice were kindly provided by Piotr

Sicinski and Kay Macleod, respectively, and genotyped following published

procedures (Ciemerych et al., 2002). Rb1F/F mice were subsequently crossed

toMx1-Cre+ mice (Jackson Laboratory). Deletion of floxed alleles was induced

by intraperitoneal injection of 20 mg/kg polyI:C. Mice were injected five times,

once every other day, and analyzed 2 weeks after the last injection. C57BL/6

and Cdkn1b�/� mice were purchased from the Jackson Laboratory. All

animals were used between 4–10 weeks of age and housed in the sterile

Smilow Animal Facility at NYUMedical Center (New York, NY). All experiments

were performed according to the guidelines of the Institutional Animal Care

and Use Committee of NYU Medical Center.

Notch1 Transduction and T-ALL Induction

Retroviral supernatant was generated by transfection of HEK293T cells

with pMIGR1-Notch1-IC-IRES-EGFP retroviral construct by the calcium phos-

phate method. c-Kit+ bone marrow progenitors from wild-type control,

Ccnd3Ccnd2/Ccnd2, Ccnd3�/�, or Ccnd3�/�Cdkn1b�/� animals were purified

by magnetic selection and cultured in complete OPTI-MEM supplemented

with stem cell factor and Flt3 at 50 ng/ml and interleukin (IL)-6 and IL-7 at

10 ng/ml. Cells were incubated with retroviral supernatant plus 8 mg/ml

polybrene and subjected to three rounds of spinoculation prior to transplant.

Prior to transplantation, green fluorescent protein (GFP) expression was

analyzed by flow cytometry, and 3 3 105 ICN1-EGFP+ cells were injected

retro-orbitally into lethally irradiated C57B6.SJL (CD45.1+) hosts. Mice were

monitored for symptoms of disease by peripheral blood analysis for the

presence of CD4+CD8+ DP cells.

RNA and Protein Analyses

RNA and protein expression analyses were performed using standard molec-

ular biology procedures. Please refer to the Supplemental Experimental

Procedures for further details.

Flow Cytometry

Flow cytometry was performed essentially, as previously described (Cooper

et al., 2006). Additional details are found in Supplemental Experimental

Procedures.

PD-0332991 Treatment and Microarray Analysis

The CDK4/6-specific inhibitor PD-0332991 was generously provided by

Pfizer Global Research and Development. Human T-ALL lines (CEM,

DND41, HPB-ALL, Jurkat, and TAL1) and mouse (#130, #720, and #5146)

were treated with 0.5, 1, or 5 mM of PD-0332991, with concentrations of

0.5 and 1 mM yielding similar results in vitro. Total RNA was extracted from

PD-0332991-treated cells using the RNEasy plus mini kit (QIAGEN). RNA

was amplified with the Ovation RNA Amplification System V2 (Nugen) for
ancer Cell 22, 452–465, October 16, 2012 ª2012 Elsevier Inc. 463
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complementary RNA (cRNA) amplification and labeling. Labeled cRNA was

then hybridized to Human Genome U133 Plus 2.0 GeneChips (Affymetrix)

for microarray analysis. Affymetrix gene expression profiling data were

normalized with the robust multiarray average algorithm using GeneSpring

GX software (Agilent). The gene expression intensity presentation was gener-

ated withMulti Experiment Viewer software (http://www.tm4/org/mev/). Gene-

set enrichment analysis was performed using GSEA software (http://www.

broadinstitute.org/gsea/) using phenotype as permutation type, 1,000 permu-

tations, and signal-to-noise ratio as metric for ranking genes (Mootha et al.,

2003; Subramanian et al., 2005). Gene sets used in the analysis were taken

from the MSig database of the Broad Institute (http://www.broadinstitute.

org/gsea/msigdb/cards/).

For in vivo studies of PD-0332991 treatment, 3 weeks after transplant

of Notch1-expressing cells, transplanted mice received either 150 mg/kg

PD-0332991 in 50 mM sodium lactate or vehicle control by gavage daily for

ten consecutive days. Four weeks after transplant, peripheral blood was

analyzed for GFP, CD4, and CD8 expression. Animals were sacrificed 7 to

8 weeks posttransplant as control mice became moribund. Upon autopsy,

tissues were harvested and prepared for fluorescence-activated cell sorting

(FACS) and histological analysis. Tissues were fixed for 24 hr in 10% buffered

formalin, dehydrated, and then embedded in paraffin. Paraffin blocks were

sectioned at 5 mm and stained with hematoxylin and eosin. For xenograft

studies, sublethally irradiated Rag2�/�Il2rg�/� mice were transplanted with

53 105 human T-ALL CEMcells. Three weeks posttransplant, micewere given

either vehicle control or 150 mg/kg PD-0332991 by gavage for 14 days.

Peripheral blood was analyzed for huCD45+ cells 4 weeks posttransplant,

and survival of mice was monitored.

Primary Human T-ALL Proliferation Assays

The study was approved by the Institut Universitaire d’Hematologie Institu-

tional Review Board (Saint-Louis Hospital, Paris, France), and informed

consent was obtained from the patients. Human and xenografted T-ALL cell

samples were thawed in T-ALL medium and seeded onto MS5-DLH1 stromal

cells, as previously described (Clappier et al., 2011). After 48 hr, blasts were

reseeded onto new MS5-DLH1 (6 mm multiwell at 106 cells/ml) and treated

overnight with 0.5 mM of PD-0332991 inhibitor or solvent (DMSO), followed

by 10 mM bromodeoxyuridine (BrdU) pulse for 30 min. Bulk cultures were har-

vested, and stromal cells were removed from the suspension by two rounds of

filtration through a 70 mm strainer and panning for 30 min. The cell suspension

was then incubated with an anti-CD45 antibody, fixed and labeled with BrdU

antibody.

Statistical Analysis

All data for cell numbers, expression analysis by qPCR, and FACS analysis of

cell cycle and apoptosis represent mean ± SD. Statistical significance was

calculated using Student’s t test, with p < 0.05 considered significant. Signif-

icance of survival differences was determined by log rank test.

ACCESSION NUMBERS

The gene expression data from treated T-ALL cell lines can be found at

the GEO database (http://www.ncbi.nlm.nih.gov/geo/) using the accession

number GSE40635.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures and Supplemental Experi-

mental Procedures and can be found with this article online at http://dx.doi.

org/10.1016/j.ccr.2012.09.016.
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