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0. INTRODUCTION AND STATEMENT OF RESULTS

On which matrices can a sequence of row operations always be replaced
by a sequence of column operations?

Ž .This simple question, which could should? be asked by any freshman
student of linear algebra, admits an easy analysis when the matrix takes
entries in a field. We study here what happens when the entries are taken

Ž .to lie in a ring, always except for Proposition 1.4 below commutative and
Ž .with identity 1, and later Sect. 4 onwards assumed to be an integral

domain. When a square matrix A has the property that each sequence of
row operations on A is equivalent to a sequence of column operations,
and vice versa, we call the matrix bireducible.

The first step in the study of row and column operations taken by
researchers in K-theory is to observe that, for matrices of determinant 1,
only one kind of operation needs be considered, namely, those that add a
multiple of one row or column to another. Such an operation is obtained

Ž . Ž .by left in the case of rows or right for columns multiplication by an
elementary matrix. Elementary n = n matrices look like the identity matrix

Ž .except for a single off-diagonal entry; they generate the subgroup E R ofn
Ž .the special linear group SL R .n

One is thus led to consider the equality of the left and right cosets of
Ž .E R with representative A. For invertible A, the problem reduces to then

Ž . Ž . Ž .normality of E R in the general linear group GL R . Because E Rn n nq1
Ž . Ž . Žis normalized by GL R in GL R embedded by direct sum with then nq1
. Židentity 1 = 1 matrix , the problem disappears in the larger dimension see

Ž . .1.4 below . It is thus strictly a question in unstable K -theory. To ensure1
Ž . Ž .the normality of E R in GL R , certain conditions are commonlyn n

imposed.
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We shall refer to the following as the stock conditions on R and n. Note
Ž . Ž .that the condition E R s SL R which appears below is satisfied by all2 2

Žrings of stable rank 1, or, more generally, by all GE -rings such as2
.Euclidean domains . Alternatively, if R is the ring of all continuous real or

Ž .complex functions on a topological space, then E R is the commutator2
Ž . Ž .Ž .subgroup of SL R . Condition b ii is satisfied by all Banach algebras.2

Ž .Stock Conditions. a n G 3 or
Ž .b n s 2 and at least one of the following holds:
Ž . Ž . Ž . Ž . Ži E R s SL R or a characteristic subgroup of SL R such as2 2 2

.its commutator subgroup ;
Ž .ii R is an R-algebra such that for all r g R, there exists e ) 0 in R

< <for which 1 q xr is a unit in R whenever x - e ;
Ž . Ž . Ž . Ž .iii E R s SL R l E R .2 2 4

w x Ž w x Ž .Ž .. Ž .Under these conditions, it follows from 8 or 9 for b ii that E Rn
Ž . Ž .is a normal subgroup of GL R . Moreover, within M R scalar matricesn n

are central. We therefore have, as a guide to our research, the following
result.

PROPOSITION 0.1. Under the stock conditions, e¨ery product of a scalar by
an in¨ertible matrix is bireducible.

Our aim is thus to investigate when the converse statement holds, and
also what can be said in the more delicate case when n s 2 but Condition
Ž .b does not apply. We highlight some of our findings here. We remark
that in the next two theorems the stock conditions are in fact used only for
the argument in one direction.

THEOREM 0.2. Under the stock conditions, an n = n matrix o¨er a
domain is bireducible if and only if after each localization at a maximal ideal it
becomes the product of a scalar and an in¨ertible matrix.

This result is proved at the end of Section 4. For computational
purposes, the following is perhaps the most useful characterization of
bireducibility, at least for relatively small matrices over domains. The

Ž . Ž . Ž .equivalence of i and ii is shown in Section 3, while iii is handled in
Section 5.

THEOREM 0.3. Let A be an n = n matrix A o¨er a domain satisfying the
stock conditions. Then the following are equï alent.

Ž .i A is bireducible;
Ž .ii either A s 0 or A has a nonzero determinant which dï ides e¨ery

product of an entry of A with a cofactor of A;
Ž .iii the determinant of A dï ides e¨ery product of n entries of A.
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Generalization of this result to nondomains is also discussed in Section
Ž . Ž .3 below. A consequence of the impartiality of Conditions ii and iii

above with respect to left and right multiplication is as follows.

COROLLARY 0.4. Under the stock conditions on a domain, the property
that any sequence of row operations is replaceable by a sequence of column
operations is equï alent to the property that any sequence of column operations
is replaceable by a sequence of row operations.

Further analysis, in Section 5, leads to the following result. It is remark-
able that a stable K group should emerge here, from a discussion of0
unstable K phenomena.1

THEOREM 0.5. The entries of an n = n bireducible matrix A o¨er a
Ž .domain R generate an ideal whose class in Pic R has order dï iding n. If this

class is trï ial, then A is the product of a scalar and an in¨ertible matrix.

From a number of interesting examples, we are able to discern the
following, in Section 5.

'w xw xEXAMPLE 0.6. Over the polynomial ring Z y 5 x :

not every 2 = 2 invertible matrix is bireducible;
for even n G 4, not every bireducible n = n matrix is the product of a

scalar and an invertible matrix;
for odd n, an n = n matrix is bireducible if and only if it is the

product of a scalar and an invertible matrix.

1. PRELIMINARIES

Let R be a commutative ring with unity 1 and A an arbitrary n = n
Ž .matrix over R. We always take n G 2. We denote by M R the ring of alln

Ž .square matrices of size n, by GL R the general linear group of invertiblen
Ž .n = n matrices, and by SL R the special linear group of determinant 1n

Ž . Ž .matrices. We use the usual notation E R for the subgroup of SL Rn n
Ž Ž .generated by the elementary matrices that is, the matrices E x s I qi j n

.xE , where x g R, i / j, and E is the standard matrix unit .i j i j

� 4DEFINITION 1.1. Let X be a nonempty subset of R, with X s 1
Ž .written as 1. We define E X to be the multiplicative group generated byn

n = n elementary matrices over X. We set

LR R , X s A g M R E X A : AE R� 4Ž . Ž . Ž . Ž .n n n n

and

RL R , X s A g M R AE X : E R A .� 4Ž . Ž . Ž . Ž .n n n n
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Ž . Ž .In case X s R, a matrix in LR R, R l RL R, R is called a bire-n n
ducible matrix over R.

Ž . ² :For any matrix A g M RA , we define R A to be the ideal of Rn
generated by the n2 entries of A.

Ž . � t < Ž .4 tObserve that LR R, X s A A g RL R, X where A denotes then n
Ž .transpose of A. Therefore, it is sufficient to work with either LR R, Xn

Ž . Ž .or RL R, X . It is easy to see that for any result concerning LR R, X ,n n
Ž .there is a corresponding one for RL R, X . From now on, we shall mainlyn

Ž . Ž .be concerned with LR R, X . Clearly, LR R, X is nonempty as itn n
contains the zero matrix. We first list some easy results concerning

Ž .LR R, X . Their proofs are straightforward, so we leave them to then
reader.

Ž .LEMMA 1.2. For any subsets X, Y of R with X : Y, LR R, Y :n
Ž . Ž . Ž .LR R, X . In particular, LR R, R : LR R, 1 .n n n

With respect to matrix multiplication, the following are obvious.

Ž . Ž . Ž .LEMMA 1.3. i A g LR R, R if A is in the normalizer of E R inn n
Ž .GL R .n

Ž . Ž .ii LR R, R is closed under matrix multiplication.n

Ž . Ž . Ž .iii Let d g R. If A g LR R, X , then dA g LR R, X . The con-n n
¨erse is also true if d is not a zero dï isor in R.

Ž .Note that the converse of Lemma 1.3 iii is false in general. For
3 0 Ž .example, we take R s Zr6Z and A s g M Zr6Z . It is easy to seež / 20 0

1 0 Ž . Ž .that ? A f A ? E R , whereas the zero matrix 2 A is in LR R, 1 .ž / 2 n1 1
Ž .We can apply 1.3 to a result which, although well known, seems

Ž . Ž .difficult to locate in the literature. We embed GL R in GL R viany1 n
the map A ¬ A [ 1.

Ž .PROPOSITION 1.4. For any ring R not necessarily commutatï e ,

GL R : LR R , R .Ž . Ž .ny1 n

Ž . Ž .Proof. For A s a g GL R , and b g R, we use the relationi j ny1

ny1
y1A E b A s E ba ,Ž . Ž .Łn j nh jh

hs1

Ž .together with its counterpart for E b . For n s 2, there is no otherin
possibility to consider. These relations also suffice for the cases n G 3,
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because there we have

y1y1
E b s E 1 E b E 1 E bŽ . Ž . Ž . Ž . Ž .Ž . Ž .i j in n j in n j

when i, j F n y 1.
Ž . Ž . Ž .Thus in all cases GL R normalizes E R , and so Lemma 1.3 iny1 n

applies.

Notwithstanding this result, bireducibility does not in general behave
well with respect to the usual stabilization; this may be seen from the
integral matrices

2 0 02 0 , .0 2 0ž /0 2 ž /0 0 1

Evidently, the first is bireducible, but the second is not. For a variant of
stabilization which does work, see Corollary 3.5 below.

Ž .Our final preliminary lemma reveals the point of introducing LR R, X ,n
namely, that it defines a functor. We shall often apply it to the situation
where R is a domain and f is the embedding of R in its field of quotients.

LEMMA 1.5. Let S be a ring and f : R ª S a ring homomorphism. If
Ž . Ž .f# : M R ª M S is the ring homomorphism induced by f , thenn n

Ž Ž .. Ž Ž ..f# LR R, X : LR S, f X . In particular, if R is a subring of S and f isn n
Ž . Ž .the inclusion, we then ha¨e LR R, 1 : LR S, 1 .n n

Ž .2. MATRICES IN LR R, 1 WITHn
ZERO DETERMINANT

Ž .LEMMA 2.1. Let A g LR R, 1 and let ¨ , . . . , ¨ be the row ¨ectors ofn 1 n
A. Suppose that one of the ¨ectors ¨ is a linear combination of the others.i
Then A s 0.

Proof. Suppose that ¨ is a linear combination of the other rows.i
Ž . Ž .Consider the matrix E 1 A with i / j. By assumption E 1 A s AE fori j i j

Ž .some E g E R . Therefore, ¨ s ¨ E for t / i. As ¨ is a linear combina-n t t i
Ž .tion of the others, ¨ s ¨ E also. However, the ith row of E 1 A isi i i j

¨ q ¨ . It follows that ¨ s 0. Hence ¨ s 0 for all j / i. Again, ¨ is ai j j j i
linear combination of the others; we must have ¨ s 0 also. Thereforei
A s 0.

Ž .COROLLARY 2.2. Let R be a domain. If A g LR R, 1 and det A s 0,n
then A s 0.



BERRICK, BOEY, AND LEUNG902

Proof. We first assume that R is a field. Since det A s 0, the row
vectors of A are linearly dependent. Therefore, one of the vectors is a
linear combination of the others. By Lemma 2.1, A s 0. Now, we come
back to the case when R is a domain. Let K be the field of quotients of R.

Ž .By Lemma 1.5, A g LR K, 1 . By the previous argument, A s 0.n

The following generalization is an easy consequence of Corollary 2.2.
Ž .Recall that the radical rad I of an ideal I is the intersection of all prime

ideals containing I.

Ž . ² :COROLLARY 2.3. Suppose that A g LR R, 1 . Then R A :n
Ž Ž ..rad R det A .

Proof. It suffices to show that if P is a prime ideal containing det A,
² :then R A : P. Consider the domain RrP and epimorphism

Ž . Ž . Ž .f : R ª RrP. By Lemma 1.5 f# A g LR RrP, 1 and det f# A s 0.n
² :By Corollary 2.2, R A : P.

As we shall see later, the above result can be improved if R is a domain.
Here is an immediate application of Corollary 2.3 to the situation where

Ž .rad 0 s 0.

Ž .COROLLARY 2.4. Suppose that R is a reduced ring and A g LR R, 1n
with det A s 0. Then A s 0.

Ž .COROLLARY 2.5. Let R be a domain. If A g LR R, X , then adj A gn
Ž .LR R, X .n

Proof. When det A s 0, this is immediate from Corollary 2.2 above.
Ž . X Ž . XOtherwise, suppose that E g E X has E g E R with EA s AE . Passn n

to the quotient field K, over which A is invertible. There we have, with
d s det A,

adj A E y EX adj A s Ay1 dE y AEX adj A s 0. BŽ . Ž . Ž .Ž .

Ž .3. MATRICES IN LR R, 1 WITHn
NONZERO DETERMINANT

Ž . ² : ² : Ž .LEMMA 3.1. Let A g LR R, 1 . Then R A ? R adj A s R det A .n

² : Ž : Ž .Proof. Always, R A ? R adj A = R det A . To show the reverse in-
Ž .clusion, we apply Lemma 1.5 in order to pass to the ring Rr det A .

Equivalently, we assume that det A s 0.
Ž . Ž . t Ž .Let us write A s a and adj A s c where c denotes the u, ¨ -r s u¨ u¨

Ž .cofactor. For p / q, we consider the matrix E 1 A. By assumption,p q
Ž . Ž . Ž .A g LR R, 1 ; therefore E 1 A s AE for some E g E R . Left-multi-n p q n
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Ž .Ž . Ž .plying both sides by adj A, we obtain that adj A I q E A s det A E.n p q
Ž . Ž .Ž .Consequently, we get adj A E A s det A E y I . As the ijth entry ofp q n

Ž .adj A E A is c a , we conclude that c a s 0.p q p i q j p i q j
Thus for all p, i the matrix c A has qth row zero whenever q / p, andp i

Ž . Ž .is in LR R, 1 by Lemma 1.3 iii . Hence by Lemma 2.1 it is the zeron
matrix, as required.

Note that, even over a domain, the converse of Lemma 3.1 as worded is
not true in general. When n G 3 one has to make provision for the
possibility that a nonzero matrix has zero adjoint, as happens with, for
example,

1 0 0
.0 0 0ž /0 0 0

Ž .From Corollary 2.2, such a matrix cannot lie in LR R, 1 . The nextn
examples show that there are deeper obstacles when n s 2.

Ž . w x w xEXAMPLE 3.2. a Let F be field and R s F x, y . In 4 , Cohn has
proved that the matrix

1 y xy yx 2

A s g SL R _ E R .Ž . Ž .2 22ž /y 1 q xy

Ž . ² : ² : Ž .As A g SL R , it is clear that R A R adj A s R det A s R. On the2
w x y1 Ž . Ž .other hand, Silvester 7, p. 121 has shown that A E 1 A f E R .12 2

Ž . Ž .Hence A g SL R _ LR R, 1 .2 2

Ž . w x Ž .b It follows from 3 that the argument of a goes through when
Žthe field F is replaced by any Noetherian ring of dimension 0 for

.example, ZrmZ .
Ž . Ž w x .c Similarly after 4 again , over the discretely ordered ring R s

w xZ x ,

1 y 2 x yx 2
g SL R _ LR R , 1 .Ž . Ž .2 2ž /4 1 q 2 x

Ž . w xd Again using 3 , one can show that, over the polynomial ring
'w xw xR s Z y 5 x , the matrix

' '1 q 3 2 q y 5 x 1 y 4 y 5 xŽ . Ž .
g SL R _ LR R , 1 .Ž . Ž .2 2'ž /9 x 1 y 3 2 q y 5 xŽ .
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y1'Ž w x w xw xActually, the arguments of 3 pertain to Z y 5 x, x ; however, we
.may apply Lemma 1.5 to reduce to R.

However, as we show now, the converse to Lemma 3.1 is true with some
Ž . Ž .extra assumption on R. This proves the equivalence of i and ii in

Theorem 0.3.

Ž .THEOREM 3.3. Suppose that A g M R satisfiesn

² : ² :R A ? R adj A s R det A / 0.Ž .

Ž . Ž .Ž .Suppose further either that R satisfies Stock Condition a or b ii or else,
Ž .2 Ž .Ž .with N as the annihilator ideal of det A , that RrN satisfies b i or

Ž .Ž . Ž .3b iii . Then det A A is bireducible. In particular, if det A is not a zero
dï isor in R, then A is bireducible.

Proof. We write d s det A and pass to R s RrN where A ¬ A. By
Ž . Xassumption, for any matrix B in M R there are matrices F, F such thatn

dF s adj A BA, dFX s AB adj A .Ž . Ž .
X Ž . Ž .Although F, F need not be unique in M R , their images in M Rn n

X Ž . Ž .are unique, and so determine functions F , F : M R ª M R , respec-A A n n
tively. To see that F

X (F is the identity mapping, suppose that G inA A
Ž . Ž . Ž .M R has dG s AF adj A where, as above, dF s adj A BA. Thenn

X2 2 Ž .d G s d B, so that, in M R , G s B, as required. Similarly, F (F isn A A
Ž . Ž .the identity, so that F is bijective. We next show that F B F B sA A 1 A 2

Ž . Ž . Ž .F B B . From the equations dF s adj A B A and dH s adj A B B AA 1 2 i i 1 2
we obtain

d2F F s adj A B A adj A B A s d adj A B B A s d2H ,Ž . Ž . Ž .1 2 1 2 1 2

which gives the required relation. Hence F restricts to an automorphismA
Ž .of GL R .n

Ž . Ž .Ž .When Stock Condition a or b ii holds for R, it is easily seen to hold
Ž .also for R, so that we may appeal to the fact that E R is characteristic inn

Ž . w x Ž Ž .. Ž .GL R 9, Theorem 3 to deduce that F E R s E R . To considern A n n
Ž .Ž . Ž .the situation when Condition b i or iii holds, first observe from the

Ž .equation dF s adj A BA that because n s 2 we have det F y det B g N,
Ž .whence det F B s det B. Thus F restricts to an automorphism ofA A

Ž . Ž .Ž . Ž Ž ..SL R . Then again, under Stock Condition b i , we have F E R s2 A n
Ž . Ž .Ž . ŽE R . In the case b iii , this follows from Lemma 3.4 below whichn

Ž . .makes GL R the image of F and the relation4 A[ A

F B [ I s F B [ I .Ž .Ž .A[ A 2 A 2
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Ž . Ž . Ž .Because E R is characteristic in GL R , when B g SL R each ex-4 4 2
Ž . Ž .pression lies in SL R l E R . So the condition applies. In summary, we2 4

Ž Ž .. Ž .always have F E R : E R .A n n
Ž . Ž . Ž .In particular, for any E in E R , since E R ª E R is surjective wen n n

X Ž . 2ŽŽ . X. 3Žcan find E g E R with d adj A EA y dE s 0. This makes d EA yn
X. 3 Ž . XAE s 0, and therefore d A g LR R, R . Likewise, by arguing with F ,n A

3 Ž . 3we obtain that d A g RL R, R . Hence d A is after all bireducible.n
Ž .Finally, when d is not a zero divisor, we can apply Lemma 1.3 ii to

conclude that A is itself bireducible.

This theorem allows us to stabilize in the following way. Given A g
Ž . Ž .M R , we consider its direct sum A [ ??? [ A g M R . The followingn m n

is easily checked.

ˆLEMMA 3.4. For A s A [ ??? [ A o¨er R, if

² : ² :R A ? R adj A s R det AŽ .

then

ˆ ˆ ˆ² : ² :R A ? R adj A s R det A .Ž .

The con¨erse holds pro¨ided that d is not a zero dï isor in R.

The theorem, combined with Lemma 3.1, now has an easy application
here.

Ž .COROLLARY 3.5. If R is a domain and A g LR R, X , then the directn
sum of m copies of A has

A [ ??? [ A g LR R , X .Ž .m n

The con¨erse is also true under the stock conditions.

The situation for nondomains in the above theorem is illustrated by the
following example.

w x Ž 4 3.EXAMPLE 3.6. Let F be a field and let R s F t r t y t . Then the
matrix

t 0 0
0 t 0A s � 020 0 t

satisfies

3² : ² : ² :R A s R A ? R adj A s R det A .Ž . Ž .
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w x Ž 2 .However, over the residue ring F t r t , A has just one row zero. Hence
Ž .by Lemmas 1.5 and 2.1 A f LR R, 1 . On the other hand, observe that3

Ž . 3det A A s t I is bireducible.3

It is interesting to note that, for n G 3, we do not have any example of a
matrix A that satisfies the equation

² : ² :R A ? R adj A s R det AŽ .

Ž . Ž .and yet fails to have det A A g LR R, R . In some cases, for examplen
when R is a reduced ring, this is because the annihilator of det A

Ž .3coincides with that of det A . More seriously, our main device for
Ž .constructing matrices outside LR R, 1 is Lemma 2.1. However, it has then

following counterpart.

PROPOSITION 3.7. Let A satisfy the equation

² : ² :R A ? R adj A s R det AŽ .

Ž .and suppose that det A A has as one of its rows a linear combination of the
Ž .others. Then det A A s 0.

Proof. First observe that the assertion is equivalent to that obtained by
replacing the matrix A by EA, where E is any elementary matrix. By
taking a suitable product of elementary matrices, we may therefore pass to

Ž .the situation where A s a has h-th row annihilated by det A. Then,i j
Ž . twith adj A s c , we have for all s, ti j

det A a s a c a .Ž . Ýst h j h j st
j

However, the hypotheses force all of the right-hand side terms to be zero
because det A divides each c a .h j st

Ž .4. DESCRIPTION OF MATRICES IN LR R, 1n

For the remainder of this paper, R is a commutative domain with
identity 1 and quotient field K. In this section, our objective is to

Ž .determine matrices in LR R, 1 . Recall from Proposition 0.1 that undern
our stock conditions the set

<R ? GL R [ aA a g R , A g GL R� 4Ž . Ž .n n

Ž .is a subset of LR R, 1 . The following elementary example shows that wen
may reasonably expect the converse often to be true.
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PROPOSITION 4.1. Let R be a unique factorization domain. Then
Ž . Ž .LR R, 1 : R ? GL R .n n

Ž .Proof. Suppose that A g LR R, 1 with d as the greatest commonn
divisor of the entries of A. Then A s dAX, with, by Lemma 1.3, also

X Ž . XA g LR R, 1 . Now from Corollary 2.3, any prime divisor of det A wouldn
divide all the entries of AX, and so contradict our choice of d. Hence

X Ž .det A is a unit in R, so that indeed A g R ? GL R .n

Ž .Note that Example 3.2 a shows that when n s 2 this inclusion may be
proper. By appealing to Lemma 3.1, we may generalize the proposition to
GCD-domains. Recall that a domain R is a GCD-domain if for every
finitely generated ideal I in R, there exists a smallest principal ideal
containing I.

LEMMA 4.2. Let R be a GCD-domain. Ra is the smallest principal ideal
containing a , . . . , a if and only if Rab is the smallest principal ideal that1 n
contains ba , . . . , ba .1 n

Proof. Suppose that Ra is the smallest principal ideal containing
a , . . . , a and Rc is the smallest principal ideal containing ba , . . . , ba . As1 n 1 n
it is clear that Rab contains ba , . . . , ba , we have Rc : Rab. Therefore,1 n
c s bcX. As R is a domain, RcX contains a , . . . , a . Thus RcX = Ra. Hence1 n
Rc s Rab.

Ž .PROPOSITION 4.3. Let R be a GCD-domain. Then LR R, 1 : R ?n
Ž .GL R .n

Proof. By assumption, there exists a principal ideal Ra which is the
² :smallest principal ideal containing R A . As in Proposition 4.1, we can

X X Ž . X Ž . twrite A s aA . Write A s a and adj A s c . To establish thei j p q
invertibility of AX, it suffices to show that det AX divides all c .p q

We first fix some p, q. By the lemma, the smallest principal ideal that
contains each a is R and the smallest principal ideal that contains everyi j

Ž X. <Ž .a c is Rc . From Lemma 3.1, det A a c for all i, j. Hencei j p q p q i j p q
Ž X.R det A contains a c for all i, j. By the assumption on R, we concludei j p q

X XŽ .that R det A = Rc . This proves that det A divides c .p q p q

Ž .Our strategy is to find a sufficient condition for a matrix A g LR R, 1n
Ž .to be in R ? GL R . As the argument above may suggest, principal idealsn

Ž . ² :figure in this approach. Clearly, if a matrix A g R ? GL R , then R A isn
principal. Surprisingly, the latter condition is also sufficient for A g R ?

Ž . Ž . ŽGL R if A g LR R, 1 but not in general, as the matrix A givenn n 1
.below illustrates .

Ž . ² :PROPOSITION 4.4. Let A g LR R, 1 . If R A is principal, then A g R ?n
Ž .GL R .n
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² :Proof. By Lemma 2.2, we may assume det A / 0. Suppose that R A s
X X Ž .Ra for some a g R. Write A s aA , where A g LR R, 1 by Lemma 1.3.n

² X: ² X:Clearly, R A s R. So, by Lemma 3.1, we have that R adj A s
Ž X. Xy1 Ž X. X Ž . XR det A . That means A s 1rdet A adj A g M R . Hence A gn

Ž .GL R .n

At this point it is useful to insert an immediate deduction from Lemma
3.1.

Ž .COROLLARY 4.5. If A g LR R, 1 and A / 0, then the fractional idealn
² :R A is in¨ertible.

There is, however, a loss of information in this step. For example, the
integral matrix

2 0A s1 ž /0 4

² : Ž .has R A an invertible indeed, principal ideal, although evidently1
² : ² : Ž .R A ? R adj A / R det A .1 1 1
Next, recall that a commutative ring is semilocal if it has only a finite

number of maximal ideals.

THEOREM 4.6. If R is a semilocal domain, then

LR R , 1 s LR R , R s RL R , 1 s RL R , R s R ? GL R .Ž . Ž . Ž . Ž . Ž .n n n n n

Ž Ž . . Ž . Ž .Proof. As ever see 0.1 above , R ? GL R : LR R, R for n G 3.n n
The result is also true for n s 2, because semilocal rings have stable rank

Ž . Ž . w x Ž . Ž .1, making E R s SL R 2, V.3.4 . To see that LR R, 1 : R ? GL R ,2 2 n n
Ž .we again need consider only nonzero A g LR R, 1 . Then by the aboven

² : w xcorollary, R A is invertible. A well-known result 5, Theorem 60 guaran-
² :tees that R A is principal. So the result follows from Proposition 4.4.

An interesting alternative proof of the theorem for a local domain with
Ž .n G 3 derives from Petechuk’s characterization of automorphisms of E Rn

w x6 . Thus the automorphism F of Theorem 3.3 must have the formA

˘«k y1F E 1 s CE 1 C ; i / jŽ . Ž .Ž .A i j i j

˘Ž . � 4for some C g GL R and « g 0, 1 , where the automorphism k sends ann
Ž t.y1elementary matrix E to E .

Suppose that « s 0. We then have

E 1 AC s AC E 1 ; i / j.Ž . Ž . Ž . Ž .i j i j
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By a straightforward computation, it is easy to check that AC is a scalar
y1 Ž .matrix dI . Therefore, A s dC g R ? GL R .n n

Suppose that « s 1. The equation now becomes

k̆y1 y1A E 1 A s CE 1 C ; i / j.Ž . Ž .i j i j

Ž .Ž . Ž . Ž .We thus obtain E 1 AC s AC E y1 for all i / j. Again by ai j ji
straightforward computation, we get AC s 0. As C is invertible, A s 0.
Thus A always has the desired form.

We are now ready for the proof of Theorem 0.2. Let A be a nonzero
Žmatrix. Then Theorems 3.3 and 4.6 imply the chain of equivalences only

.the last of which makes use of the stock conditions :

for any maximal ideal m , A g R ? GL R ;Ž .m n m

m for any maximal ideal m , A g LR R , 1 ;Ž .n m

² : ² :m for any maximal ideal m , R A ? R adj A s R det A ;Ž .m m m

² : ² :m R A ? R adj A s R det A ;Ž .
m A g LR R , R .Ž .n

5. THE PICARD GROUP

The combination of Corollary 4.5 and Proposition 4.4 suggests investiga-
² :tion of when an invertible ideal R A is principal. This is detected

w ² :x ² : Ž .precisely by the class R A of R A in the Picard group Pic R of R.

Ž . Ž .PROPOSITION 5.1. Suppose that A g LR R, 1 . Then A g R ? GL R ifn n
w ² :x Ž .and only if R A s 0 g Pic R .

Thus much of our earlier information on GCD-domains and semilocal
domains is simply expressed by the statement that there the Picard group
vanishes. On the other hand, even when the group is nontrivial, it can still
be very useful, by virtue of the next lemma.

Ž . ² :n Ž .LEMMA 5.2. If A g LR R, 1 , then R A s R det A .n

² :n Ž .Proof. To prove R A s R det A , it suffices to show that for every
² :n Ž . Ž .maximal ideal m , R A s R det A . Since A g LR R, 1 , also A gm m n

Ž .LR R , 1 by Lemma 1.5. As R is a local domain, we can applyn m m
X X Ž .Theorem 4.6 to see that A s aA where a g R and A g GL R .m n m

n n² : Ž . Ž .Obviously, R A s R a s R det A .m m m
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Ž .These two results immediately yield Theorem 0.5, the equivalence of i
Ž .and iii in Theorem 0.3, and the following.

Ž . Ž .THEOREM 5.3. If Pic R contains no n-torsion, then LR R, 1 : R ?n
Ž .GL R .n

Ž . Ž .COROLLARY 5.4. LR R, 1 : R ? GL R , pro¨ided that eithern n

Ž . Ž . Ž .a the multiplicatï e group of units of K R is n-torsion free; or0

Ž . Ž .b R is a Krull domain whose ideal class group Cl R is n-torsion free;
or

Ž .c R is a ring of algebraic integers in a finite field extension of the
rationals Q whose class group has order coprime to n.

Ž . Ž . wProof. In each case, Pic R embeds in the given group. For a , see 7,
x Ž . w x Ž . Ž .p. 48 ; for b , see 1, p. 187 ; c is a special case of b where the class

group is known to be finite.

We give an example to show the necessity of the coprimality condition in
the corollary.

'w xLet R s Z y 5 . Its class group is of order 2, corresponding to the fact
2'Ž . Ž . Ž .that the ideal I s R 2 q R 1 q y 5 is not principal, although I s R 2

is principal. This prompts us to take n s 2, and consider the matrix

'1 q y 5 2
A s .ž /'2 1 y y 5

² : ² :Evidently, R A s R adj A s I. Thus

² : ² :R A R adj A s R 2 s R det A .Ž . Ž .

Unfortunately, the stock conditions are not known to apply here; so we
Ž .cannot use Theorem 3.3 to deduce that A g LR R, 1 . Instead we pass2

Ž .into ‘‘stable territory’’ via Lemma 3.4, to conclude that A [ A g LR R, 1 .4
² : ² :However, since R A [ A s R A is not a principal ideal, A [ A f R ?

Ž . Ž . Ž .GL R . We therefore have R ? GL R as a proper subset of LR R, 1 . A4 4 4
similar statement holds when 4 is replaced by any larger even integer.

' 'w x w xw xSince Z y 5 embeds in Z y 5 x as a direct summand, the example
Ž .also shows via Lemma 1.5 that the corresponding statement holds over

Ž .the polynomial ring. This ring was the subject of Example 3.2 d . We may
'Ž . w xw xtherefore summarize our knowledge of LR R, 1 for R s Z y 5 x asn



ROW VERSUS COLUMN OPERATIONS 911

follows:

n s 2: LR R , 1 does not contain R ? GL R .Ž . Ž .2 2

n even, n G 4: LR R , 1 properly contains R ? GL R .Ž . Ž .n n

n odd: LR R , 1 s R ? GL R .Ž . Ž .n n
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