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The set of perturbative solutions of the renormalisation group equation relative to the coupling 
constant known in quantum field theory is studied. It is shown that it is generated by the 
continuous iteration of a particular solution. The iteration parameter, which may be complex, is 
the parameter of an abelian group whose generator is proportional to ft. Two new lemmas are 
derived. They are useful to construct a simple algorithm to find the continuous iteration of 
various .functions and to deduce trivially, from the already known iteration of a function, the 
continuous iteration of a whole family of functions. It is pointed out how one can find iterations 
of functions which do not satisfy the perturbative boundary condition. The algorithm has been 
implemented in REDUCE and several examples are discussed. 

1. Introduction 

The renormatisation group (RG) equations have been extensively used for many years in 
quantum field theory (Stueckelberg & Peterman, 1953; Gell-Mann & Low, 1954; 
Bogoliubov & Shirkov, 1959; Callan, 1970; Symanzik, 1970). 

One of these equations expresses the invariance of physical quantities with respect to a 
redefinition of the coupling constant. It reads 

fl(f(o~)) = dfd(~ ~ fl(a). (1) 

fl(a) is the so-called renormalisation group function while c~ and f(a) are, respectively, the 
coupling constant and the redefined coupling constants. Equation (1) is a functional 
equation which was already known to the mathematician Hadamard  and which has been 
considered in several other domains of science. Not  willing to be exhaustive, let us ment ion 
that it is used in the study of branching processes (Harris, 1963) and it has been studied by  
computer scientists (Knuth, 1969; Brent & Traub, 1980) essentially from the point of view 
of complexity theory. 

In quantum field theory, the current way to exploit this equation is to f indf (a l so  called 
the "running coupling constant") for a given renormalisation group function ft. Moreover ,  
the equation is considered in a perturbative framework where fl and f are expressed as 
asymptotic series. 

We present here a further investigation of this equation. In section 2, we describe the 
content of Eq. (1) within the "perturbative" boundary condition. We relate our  
considerations to the existing literature. We point out that, introducing the operation of 
"iterative exponentiation" or continuous iteration, the set of solutions generates all the 
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elements of an abelian group whose generator is proportional to ft. Next, we prove two 
new lemmas. The first gives a new expression of the solutions f in terms of the iteration 
parameter, the second expresses relations between solutions corresponding to different fls. 
This second lemma makes possible the construction of solutions which do not obey the 
perturbative boundary condition. 

In section 3, we explain how to calculate the iterations in a systematic and simple way 
and we discuss several interesting examples. Section 4 gives a short account of an 
application of iterations (Hans, 1985) and discusses other closely related conditions 
imposed on fl(a) and f(a) which have been considered in the literature. 

2. The Solutions of the RG Equation and Their Properties 

The formal solutions of Eq. (1) are given by 

where f(~, C) = g ~  i(K~(a) + C), 

f~  dod K~(~) = fl(r 

(2) 

(3) 

and C is an arbitrary constant. Equation (2) is formal to the extent that we do not know 
K e and we cannot tell whether K~ 1 exists or not. Equation (2) is known as the ABEL 
equation. 

f(a, C) has the two properties 

and f(a, 0) = a, (4a) 

fl ~ ,~fl =~ f(o~, C) ~ f(a, ,~C). (4b) 

EXAMPLES 
(i) If 

then 3(a) = 3a, (5) 

(ii) if f(a) = aePC; (6) 

then fl(a) = a 2, (7) 

f(a) = 1 -- C------~" (8) 

If f(a, ~l) 
respectively, then 

f(f(a, r r = K-pl(Kp(f~ r r 
= K ;  i(K#(a) + r + ~2) 

=f(a ,  ~i + r 

is a solution corresponding to C = ~i + ~2. 

and f(a, r are two solutions of Eq. (2) corresponding to C = ~i and 42, 

(9) 

So, f also satisfies the translation functional equation discussed by Aczel (1966). This 
equation can also directly be deduced from Eq. (1) because of the properties of the 
derivative operator if we confine ourselves to solutions which are differentiable. As long as 
we consider solutions which admit a well-defined derivative with respect to a, there is a 
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complete equivalence between Eq. (9) and Eq. (1), and the set of solutions of Eq. (1) has the 
same properties as the corresponding subset of solutions of Eq. (9). 

We consider 4 = 1 and write 

f(a,  1) =- f(a). (10) 

From Eq. (9), it follows that the nth iterate off(a) is also a solution of Eq. (1). We define the 
iterative exponentiation operation for all n by 

f ( f ( . . . f ( a ) . . . ) )  =- f  ~ f o . . .  o f =- f o o n; (11) 

n is the iterative exponenfiation exponent. 
The functional Eq. (9) allows us to extend this concept for all real or even complex 

values of n. We can indeed rewrite it. 

f(a, ~1) o J(O~, 42) = (f(a) ~ ~ 41) ~ (f(~ ~ ~ 42) 

=f(a)  oo ({~ +42). (12) 

So, the set of solutions of Eq. (1) is entirely given by the "continuous iteration" of a 
particular solution (here defined as riot, 1). 

This concept of continuous iteration is not new; it was first introduced by Cayley (1860) 
but also considered by many other people (Aczel, 1966). Here, we define it through Eqs. 
(11) and (12). 

In perturbative quantum field theory, ricO must satisfy 

f(a) = a +./'1 a2 +f2 a3 + .. . .  (13) 

and fl(a) must satisfy 
fl(00 = fl(210{2 "]- fl(3)a3 "Jr,. . ,  (14) 

in some positive neighbourhood of ct = 0. 
These are asymptotic expansions, so they are not necessarily convergent. What is crucial 

is that, in Eq. (13), the linear term is always present while, in Eq. (14), the lowest power is 
always bigger than one. 

If we substitute these expansions in Eq. (1) we obtain the system of equations 

fl(3) f l + f l (2)(_f  2 +.1"12) = O, 

2#~)f, + 33(~f~ + 3(~)(- 2A + 2A A) = o, 

( k -  2)fl(k)fx + { (k-  4)f2 + (-9(f,)} fl (k- ' ) + . . .  
+ f l ( 2 ) { ( - - k + 2 ) f k _ , + ( 9 ( f k _ 2  . . . . . .  f,)} ~ 0. (15) 

The interesting fact is that this system can always be solved to find the fl(1) coefficients 
when thefls are known or vice versa (Knuth, 1969). When the fl(;) are known the solution 
is determined up to one parameter which is fl  when fl(2)is different from zero andfi  when 
fl(J+l) is the first non-zero r-coefficient. We call 4 this parameter, so that 

{f(~, 0 v ~ e [ -  oo, + oo]} (16) 

represents the set of all solutions. By construction, f(a, 4) is expressed as a (formal) power 
serie in a and 4. We can write it as 

f(~,  ~) = ~ + ~F(a) + Co(~2) �9 (17) 
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The composition law Eq. (10), necessarily satisfied by it, allows us to write 

f ( a , ~ ) = ( f ( a , ~ ) )  oon, (18) 

where 

('3 f a ,  = a +  -~F(a)+O (19) 
n ~ "  

This shows that Eq. (16) forms an abelian group whose generator is F(e). This is fully 
discussed in Caprasse & Hans (1987). 

The substitution of Eq. (19) in Eq. (1) shows that 

F(a) = xfl(a), (20) 

where • is a constant. It is fixed by a suitable normalisation which tells which function of 
the family (16) we associate to ~ = 1. We take 

---- - 1. (21) 

The fact that fl(a) is the generator of the abelian group formed by the solutions will play 
an important  role in the construction of the algorithm described in section 3. Furthermore, 
we are aware that  the conditions (13) and (14) are not the most general which guarantee 
that a solution of Eq. (1) can be constructed. This point will be further discussed in the last 
section. For  the time being we stick to these conditions and proceed to prove two new 
lemmas. 

LEMMA 1. I f  fl(a) is infinitely differentiable in some non-empty open set o f  a, then all solutions 
o f  Eq. (1) can be written 

f(a) o o dj = (e-CP(~)d/d~)a (22) 

i f  Eqs. (13) and (14) are satisfied. 

Indeed, sincef(a, r is an element of an abelian group, it is analytic in ~ and we may write 

_ ~ 4" d"f(a, 4) 
f(a, 4) -- ~ (23) 

.=o n! di"  r 

We express the i-derivatives in terms of the a-derivatives. From Eq. (10), we get 

df(a,di ~ + h) h = 0 = df(Cqdh ~ + h) h = o - df(f(a,dh ~)' h) h = o" (24) 

F rom Eqs. (17), (19), (20) and (21) we know that 

f ( f (a ,  ~), h) = f(a, r  hfl(f(a, Q) + (.9(h=). (25) 
Applying Eq. (1) we find 

d~ = - fl(a) f(a, 4) (26) 

and 

( d). d'f(a, i) - fl(a) f(a, 4). 
din = 

(27) 
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Substitution of Eqs. (26) and (27) into Eq. (23) gives Eq. (22). In particular, if 

fl(~o) = 0 (28)  

for some ~o ~ O, we see that 
f(~) o o ~l~=,o = %, (29) 

for all ~. 

EXAMPLE 

We find 

(30)  fl(~) = ~2, f (~)  = 1 + ~" 

f (~ ,  4) = (e-r --  1 + Cot" (31)  

RE~ARK. The conditions 
necessary. If we take 

and write (22) we get 

(13) and (14) are sufficient for the validity of (22) but not 

fl(~) = fl~ (32)  

f(~) o o ~ = (e-r = cte-~, (33) 

which is indeed the correct solution of Eq. (1). 

LEMMA 2. Iff(~) is a solution of(l) and/fh(c0 has an inverse and admits a derivative in some 
interval ]el, e2[, then the function 

fh(~) = (h- 1 o f o h)(00 

satisfies Eq. (1)Jot 

flk(o~) = [fl(h(oO)] / d ~  ). 

Indeed, we apply the transformation 

c~' = h( . )  
to Eq. (1). Then 

fl((f o h)(e)) = d( )(a) fl(h(ct)) . 

Next, we write 
f o h = h o ( h - l o f o h ) = h o f h  

and apply the properties of the derivative to get 

#,,(fh) = ( ~ )  flh(~) �9 

(34) 

(35) 

(36) 

(37) 

(38) 

(39) 

Apart from the regularity conditions included in the hypothesis, h is an arbitrary function. 
This lemma applies whether conditions (13) and (14) are valid or not. We also see 
immediately that, if 

h o f = f o h, (40) 
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then h obeys the same equation as f ,  i.e. there exists Go such that 

h(a) =f(a)o  o Go. (41) 

This lemma is very important since the knowledge of one set of solutions of Eq. (1) allows 
to deduce directly many others. 

The main conclusion of this section is that, when the conditions (13) and (14) are 
satisfied, we can always solve Eq. (1) and the set of solutions we obtain corresponds to the 
continuous iteration of a formal power serie in a. When this expansion can be summed it 
gives the solution of the Abel equation. This possibility opens the way to compute 
continuous iterations of many functions (algebraic or transcendental) which cannot be 
found from the direct integration of Eq. (1). 

3. The Explicit Calculation of Continuous Iterations 

In this section we want to explain the determination of continuous iterations of 
functions using lemmas 1 and 2 and computer algebra. But, first, it seems worth while to 
illustrate the use of Eq. (2) for cases where Eqs. (13) and (14) are not valid. We shall call 
these solutions "non-perturbative solutions". 

With 

1 (42) 
/~(~) = c o s  2 ~' 

Eq. (2) gives 

With f(a, r = arctg (tg a + ~). (43) 

we find /3(a) = - ( In  2)= In ~, (44) 
f(a, r = e 2. (45) 

Both examples violate Eqs. (13) or (and) (14). 
Second, lemma 2 applies to all solutions of Eq. (1) whether it is perturbative or not. With 

its help we can start from a perturbative solution and generate non-perturbative ones. Let 
us give two illustrations. We start from solution (31) and apply lemma 2 with 

h(a) = a J, (46) 
where J is the fixed integer 

h-  l(a) = al/J; (47) 
we find [see Eq. (35)] 

/~h---- h , = g , ( 4 8 )  

and 

A(a, {) = (f(aJ, {))l/J = ~" (1 + {aJ)llJ (49) 

It is also a perturbative solution and can be written 

fh(a, 4) = (e-r (50) 
from lemma 1, 

We take now 
h(a) = e -1/~. (51) 

This function has an essential singularity in a = 0. But, for all a > 0, it is well defined; it 
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admits a derivative and 

We find 

and 

1 
- - -  ( 5 2 )  h- i (~  ln0t" 

(53) fh = h -~ ~ f~  h = l + o ~ l n ( l + ~ e  -i/~) 

flh = 0~2 e- 1/~. (54) 

Eqs. (53) and (54) clearly violate (13) and (14). In quantum field theory one would call flh a 
"perturbatively invisible" function. 

Finally, we assume the validity of Eqs. (13) and (14) and explain how we systematically 
compute f(c 0 o o ~. 

The starting function f(~) may be transcendental; in that case we first try to expand it 
around ~ = 0. In all cases we verify that it can be written in the form (13). Then, we solve 
the system of equations (15) to find the coefficients if0 in the expansion (14). Finally, 
knowing fl(~), we calculate the ~ iteration off(s) directly from Eq. (22). 

The first step requires (eventually) performing a Taylor expansion; the second step 
requires solving a system of an infinite number of linear equations up to some order in 0q 
the third step requires the repeated application of the derivative operator d/dec All these 
calculations are elementary but long and tedious. We have used the computer algebra 
system REDUCE 3.2 to do them. 

The second step is the most delicate. If we want to maintain efficiency we have to take 
into account that, when some of the coefficients f~ are equal to zero, the system contains 
trivial equations. Therefore, we have constructed a procedure which adapts the way of 
solving the system to the form of the input. It is given in Fig. 1. 

The third step can also be optimised in order not to remake derivatives of a given order 
several times. For illustration we give in Fig. 2 the general expression of the coefficient of 
r in Eq. (22). We insist that this third step relies heavily on Eq. (22). 

EXAMPLES OF PERTURBATIVE SOLUTIONS 

gives f(~) = In (1 § a) (55) 
~(~) 1 . 2  1 . 3  = ~(~ - ~  + ~ . , + ~ . 5  + _ ~ 6  + g~(0~7)), (56) 

and 
o =c t - :~c t  +~(r189 -g~(~ +~;r +(9(c~). (57) ln(1 +~) o~ i 2 1 1 3 1 2 5 1 4 

If we substitute ~ = - 1  in Eq. (57) we obtain the expansion of 

e ~ -  1, (58) 

which is indeed f - i ( c  0. We can also see that the coefficient of - ~  is precisely fl(~) as given 
by Eq. (56). 

An interesting case is the one of a polynomial. Let 

f(~) = ct + B0~ 2 + C0~ 3 - P(00. (59) 

Since Eq. (59) is exact, this is a case where the computation of fl(~) must be made up to any 
order irrespective of the degree of the polynomial. The procedure of Fig. 2 is applied with 
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PROCEDURE BETA(F,X, ORD)S 
BEGIN INTEGER F1,FDEG, N, NN SCALAR BETTA, NF, FF, DERF, DERFBET, R, BR, PA, FTS 

DELPROP !sl~BETS OPERATOR !sl~BETS 
FF: = FS 
NF :=NUM FFS 
FDEG : = LOWDEG (N F,X)$ 
IF FDEG NEQ 1 THEN LISP 
REDERR(LIST("INPUT FUNCTION MUST BE " ,X , "+  F1 "" ,X,"**2+.."))$ 
N:= IF  NOT ORD=O THEN ORD ELSE DEG(NF, X)S 
FF: = FF-XS 
FDEG :=  LOWDEG(NUM FF, X)$N N: = N + FDEGS 
X**NN:=OS 
FT: = - POW(FF, X, FDEG)S 
/aBETTA:=FT*X**FDEG+FOR I : = ( F D E G + I ) : N  SUM !sI~BET(I)*X**I$ 
DERF:=I  +DF(FF, X)S DERFBET:= DERF*!~BETTAS 
B ETTA: = SUB(X= X + FF, !~B ETTA)$ 
BETTA:=BETTA-DERFBET $ FDEG:=LOWDEG(NUM BETTA, X)8 
PA: = FD EG/2-- 1SFDEG : = FDEG - 1,$ 

L: FDEG:=FDEG+lS 
R:= POW(BETTA, X, FDEG)$F1 : -  FDEG - PAS 
BR: = POW(R, ls!eB ET(F1 ), 1 )S 
IF BR NEQ 0 THEN IsleBET(F1):=IsleBET(F1)--R/BRS 
IF NN--FDEG> =0 THEN GO TO L$ 
CLEAR X**NN$ 
WRITE "PREVIOUS TRUNCATION ON "',X," SHOULD BE REDEFINED"S 
RETURN leBETTA ENDS 

ENDS 

Fig. 1. The above REDUCE PROCEDURE solves the system (15) for the ~(o when/Y(c0 satisfies Eq. (14). The 
calculated fl(a) is contained in the variable I~BETTA. The first argument of the procedure isf(c 0, the second one is 
a and the third one if the maximum order up to which the resolution will be done. When ORD=0, then, this 
order is automatically determined from the highest degree of the inputf(a). This procedure depends on three non- 
standard functions: DELPROP, LOWDEG and POW. The first one is a variant of the CLEAR function, the 
second one extracts the lowest degree os a polynomial, the third one extracts the eoe~cient of a given power 
within a polynomial. 

O R D  ~ 0. W e  o b t a i n  

P(cO ~ o 4 = ~a + CBc~ z + ~(4B 2 - B z + C)~ 3 

+ B4(B2~2--~B2 4 + ~ C ~  + ~ B 2 - ~ C ) . *  + (;(.5). (60) 

T h e  p o l y n o m i a l  w h i c h  m u l t i p l i e s  c~ 4 c a n  be  wr i t t en  

(4-- 1)(B2~--]B z +{C), (61) 

as i t  s h o u l d  since P(ct) o o 1 = P(c~). 

In  g e n e r a l ,  if we  wr i t e  o o  

e (c0  o o ~ = ~ + Y, ~P . (r  
n=2 (62) 

we  k n o w  a priori t h a t  t h e  p o l y n o m i a l  P,(~) c a n  be  w r i t t e n  as 

P,(~) = (4 - 1)(4 - 2 ) . . .  (4 - k)pn_k(4), (63) 

w h e n  n i> 3 + k. W h e n  B = 0, i.e. w h e n  

P ( - - ~ )  = - P ( ~ ) ,  (64) 
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AR(7) := - BETA*'8'*DF(BETA, A,8) + BETA**7*(-29"DF(BETA, A,7)* 
DF(BETA, A) 
-- 64" D F(B ETA, A,6)*D F(B ETA, A,2) - 98"D F(B ETA, A,5)* D F(B ETA, A,3) -56*DF 
( B ETA, A,4)**2) + 3*B ETA**6* ( - 96" D F(B ETA, A,6)*D F(B ETA, A)**2-346* D F( 
BETA, A,5)*D F(B ETA, A,2)* D F(B ETA, A) - 448" D F(B ETA, A,4))" D F (BETA, A,3)*D F( 
13 ETA, A) - 256" D F (B ETA, A,4)* D F (B ETA, A,2)" " 2 -  285" D F(B ETA, A,3) **2*D F( 
B ETA, A, 2)) + B ETA"*5* ( - 1206" D F(BETA, A,5)* D F(BETA, A)**3-- 5142" DF( 
B ETA, A,4)* DF(B ETA, A, 2)* D F(B ETA, A)**2-  2829" D F(B ETA, A, 3)*'2" D F(BETA, A) 
* '2 - -  5946" D F(B ETA, A,3)*D F(B ETA, A,2)**2*DF(B ETA, A) -496*DF(BETA, A,2) 
**4) + B ETA**4* D F(B ETA, A)**2* ( -2127" DF(B ETA,A,4)* D F(BETA, A)"*2-  
9204" D F(B ETA, A,3)* D F (BETA, A,2)*D F(B ETA, A) -4288"D F(B ETA, A, 2)*'3) +3" 
B ETA**3* D F(B ETA, A)**4* ( -  463" D F(g ETA, A,3)* DF(B ETA, A) -968* 
D F(BETA, A,2) 
**2) - 247" B ETA**2* D F(B ETA, A,2)* D F(B ETA, A)**6-  B ETA"D F(B ETA, A)**8S 

Fig. 2. The formal expression of the 49 coefficient in Eq. (22) called here AR(7). In this expression, DF is the 
derivative operator, A is ct and BETA is fl(a) given in many cases as a (formal) power series expansion. 

w e  get a very simple form for P - l ( a ) ,  i.e. 

p -  1(~) = ~ _  Co~3 + 3C2aS _ 12C30~7 4- 55C4t~ 9 --[- ~(~11), 
a n d  

= - 

T h i s  is a general proper ty  we can deduce from lemma 2. 
Indeed, when f(a) is odd, if we take 

w e  find from Eq. (39) 

i.e. 

cor responds  to 

( 6 5 )  

(66) 

3(f(cO) - df(~) ~ ( - ~ )  (69) 
d~ - 1 ' 

df(a) n 20, (70) 
t J t  �9 

f(a) = sin ct (71) 

fl(00 = 1(~3 + �89 _[_ 43~0~7 + ~0~9 ..[. ~(~11)), (72) 315 

f (a )  = sh c~. (73) 
Indeed ,  with 

h(a) = i~z, (74) 
E q n  (38) gives 

fh = -- i  sin (ia) ~ sh a (75) 
a n d  Eq. (39) gives 

flh(Sh a) = d sh____~ fl(ia)__ (76) 
da i 

Therefore  
flh(a) = --  ifl(i~). (77) 

w h i c h  is indeed odd in a. 
We can go further with lemma 2 and deduce without  calculation the fl(a) funct ion which 

cor responds  to 

h(ct) = - ~ ,  (67) 

fl( - ctf( - ct)) = d ( -  c t f ( -  ct)) fl(  - ~)  ( 6 8 )  
d~t --  1 ' 
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All above calculations give rise to convergent power series expansions. The last example 
we take is not of that kind. 

f(a) = ~ n! e", (78) 
n = l  

has zero radius of convergence. The corresponding fl and f(e) o o ~ are given by 

fl(a) = - 2(e  2 + e3 + 3e4 + ~c~s +. . . ) ,  (79) 

f(c0 o o ~ = c~ + 2~a 2 + 2~(~ + 1)e 3 + 2{(4{ 2 + 5{ + 3)cd + (9(cd). (80) 

4. Concluding  R e m a r k s  

The main aim of our work has been to propose a very simple algorithm to compute 
formally the set of solutions of Eq. (1) when the conditions (13) and (14) are verified. This 
algorithm, in its last stage, makes use of the fact that  the "generating" function fl(~) is the 
generator of the abelian group formed by the solutions. 

We have also shown that, from a solution of (1), we can generate (thanks to lemma 2) 
almost trivially a whole family of solutions which do not necessarily obey Eqs. (13) and 
(14). 

We have not analysed the mathematical properties of the iterations we obtain. When the 
solution is exactly known as the one given by Eq. (49), it is of course possible to analyse 
the problem. The mentioned example shows that ~ can indeed be made complex and has a 
strong bearing on the extent of the convergence radius of the power serie expansion. This 
is the fact which makes them interesting to use in perturbative quantum field theory (Hans, 
1985), There, every physical quantity is written as an expansion with respect to a coupling 
constant. The choice of this coupling is not uniquely defined but the rate of convergence 
depends on this choice. Suppose that we start from a function F(e) (F is a physical 
quantity, ~ a given coupling constant) which admits a Taylor expansion for I~1 < a, where & 
is the position of the nearest singularity of F. We choose a function /~(e) which obeys 
Eq. (14) and  computef(e,  ~) using temma 1. We write 

~(~) =--f(a, ~) =f(a)  o o 4. (81) 
Therefore 

= ~(~) oo ( - 4 ) .  (82)  

is a redundant parameter in Eq. (82). We next write 

F(a) = F(ct(~)o o (_  4)) =/~(c~(~), 4)- (83) 

We can write the Taylor expansion of F in terms of ~(r (the new coupling constant). It is 
apparent that its convergence radius is different. Indeed, & becomes 

&(~) = f(a)  o o r (84) 

and &(~) is the location of the nearest singularity of a e. Since the parameter ~ is redundant 
we can choose it to maximise the rate of convergence of the expansion of F in ~(~). 

As we already remarked, solutions of Eq. (1) can exist even if Eqs. (13) and (14) are not 
satisfied. We can easily generalise our algorithm. Suppose that 

f(~z) = fo~Z +f l  c~2 + . . . .  (85) 
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I f fo  r for a given integer n is equal  to 1, then we apply our a lgor i thm for the funct ion 

9(a) = f o  ~176 n. (86) 

If such an n does not  exist, we solve the equat ion (SehrSder, 1871) 

and write S(f(oO) =foS(~),  (87) 

s (~ )  (88)  
~(~) = s ' (~) '  

F r o m  Eq. (88) we see that  
/~(~) = ~ + /~21~2 + . . .  ; (89)  

f(cr and fl(a), as given by  Eqs. (85) and  (89), verify Eq. (1). When S 1 exists, it is possible  to 
write 

f (a ,  0 = S -  1(foeS(a)). (90) 

( f(a,  O) = a) and lemma 1 still applies. It can be used to compute  the ~ i teration as before. 
Equat ions  (32) and  (33) are the mos t  trivial il lustration of  this situation. 

The  system (15) is evidently no longer valid but  can be replaced by a new one, ob t a ined  
using Eq. (1) and  Eqs. (85) and  (89). The algori thm of Fig. 1 is to be changed accordingly.  

A last interesting case is when 

f (a)  = C + fo a + f l a  2 + . . . .  (91) 

If  there is a fixed point  a = ao, i.e. if 

f(a0) = ao, (92) 

it is still possible to define the i terat ion (Knuth, 1961). One writes 

~2 
f ( a + a o )  = ao+af ' (a)[  . . . .  + ~ . t f  ( )[~=~o+ . . . .  (93) 

F o r  
g(a) = f ( a + a o ) - a o ,  (94) 

we can write g(a) ~ ~ ~ as in the previous case with 

f0 =/ '(a)l,=~o. (95) 
Then,  from Eq. (93), one gets 

f(a)  o o ~ = [ g ( a _ a o ) ]  o o ~ + ao. (96) 

I t  is, of course, obvious  that  l e m m a  2 applies in all cases. 

We thank Dr M. Hans who collaborated with us during the first stage of this work and Dr 
L. Mah+ for a stimulating discussion. 
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