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When solving the Isbell problem concerning locally fine and subfine uniform 

spaces, the second author found a method of constructing nice covers of products 

of metric spaces. Using a slight modification of this procedure we are able to use 

the method to get rather a strong result on the existence of certain nice families in 

products of metric spaces (see Theorem). Its strength follows from many applications 

which generalize known results in various directions: 

SEepin’s and Klebanov’s results [9,4,5] when certain subsets are zero sets; Pol’s 

and Morita’s results [S, 61 on dimension of certain subspaces of products; the 

Borsuk-Dugundji theorem [ 1,2] on extension of continuous mappings into Banach 

spaces; Ulmer’s and TkaEenko’s results [ll, lo] concerning C-embedded subspaces. 

One would expect that one of the consequences of our Theorem should also be the 

Gulko result that Zproducts of metric spaces are normal. Unfortunately, we were 

not able to obtain it without imitating the main part of the original proof. 

Suppose that {Xi: i E I} is an infinite family of nonvoid topological spaces. For 

A=niErAicni,,XiweputR(A)={iEI:Ai#Xi}.WesaythatUcn,Xidepends 

on J c I if U = pril(prJ U) where prJ is the projection n,Xi + n,Xi. A basic open 

(regularly open) set in n,Xi is a set of the form fl, Ui where all Ui’s are (regularly) 

open sets and R(n, Ui) is finite. 

If ti and 5% are collections of subsets of X then d A 3 = {An B: A E SB, B E %} 
and ti refines 533 means that each member of s&! is contained in some member of 
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9 and lJ& = U3 (notation d < 93). & is said to be locally finite if for each x E U& 

there is a neighbourhood of x meeting only finitely many members of &. 

A G,-closure of A = X is the set {x E X: for every sequence {G,} of neighbour- 

hoods of x, nG, nAf0). A is said to be G&-dense in X if its G,-closure equals 

to x. 

Regularly closed sets are those which are closures of open sets. Zero sets (some- 

times called functionally closed) are pre-images of closed sets by continuous real- 

valued mappings. 

In the next, let X be a subset of n,Xi and K be an infinate cardinal. Although 

we shall consider products of metric spaces, the next lemma is valid for products 

of arbitrary topological spaces. Also, we shall state and prove it in a more general 

form than it is needed for our purposes. 

A collection d is said to be weakly locally-( <K) in X if there is a r-base in X 

such that each of its elements meets less than K members of ~4 By (K)~,X~ we 

denote the K-modification of the usual (categorical) product &Xi. Hence the basic 

K-neighbourhoods of x E n,Xi in (K)~,X, are the intersections of less than K basic 

open neighbourhoods in n,Xi, i.e. basic G <,-sets, or basic K-Open Sets. If % is a 

collection of K-open sets in X then $53 G = {B: B is a basic K-open set and B n X c U 

for some U E Q}. The closure of Y in (K)~~X~ will be denoted by Y”. If K = w 

then indices K will be omitted. If K is not specified then K = w. If Xi are 1st countable 

spaces, then (Wl)flXi is the w-box product of discrete spaces. 

Lemma. Let w G A S K, +!l be a weakly locally (<K) K-open family in X c (~)fl~X~, 

JE [I]<, and H be a basic K-open set with R(H) c J. If X c (int, _j?)’ then either 

X n H c l?^ for some U E Ou or there is A E [I]<, such that R(B) n A -J # 0 for each 

BE%‘& with pr,BIprJH. 

Proof. We may assume K S 111. Denote 628 = {B E 3%: pr, B 3 pr, H}. We may assume 

that X n H is nonempty and that R(B) c J for no BE 6 (otherwise, clearly, 

X n H c U for some U E “u). Suppose that the second part of our assertion is not 

valid. Then there is a family {B, : a E K} c &I such that R( B,) n R(B,) c J for (Y # p. 

For (Y E K, choose U, E % with U, 2 B, n X and assume at first that all U,‘s are 

different. Since X n H f 0, there is a nonvoid basic open set G in (K)~,X, meeting 

less than K members of 3, such that G c H n x”. The last property entails the 

existence of LYEK such that R(G)nR(B,)cJ, Gn U,=O; since prJGcprJHc 

prJ B and R(G) n R(B,) c J, G n B, must be nonempty, hence also G n B, n X # 0 

(because G c xK), which contradicts G n U, = 0. Consequently, we may suppose 

that CJ, coincide with some U for all (Y E K. Take XE X n H and its basic A- 

neighbourhood V. Again there is a nonempty basic K-open set G = V n H n x“ and 

(YEK with R(G)nR(B,)cJ, hence GnB,fO and VnUfB as above, which 

proves X n H c u’. 0 

Remarks. (1) If A = K then the condition for X in our Lemma means exactly that 

zK is regularly closed in (K)~X,, which occurs e.g. if X is open or dense in nXi 
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(for K = w) or if X is a G,-set in nXi (for K = q) or if X is G,,-set and X is 

u-dense in X. 

(2) If the members of % are regularly A-open in X, then the inclusion X n H c tf?* 
in Lemma is equivalent to X n H c U. The same assertion holds if e.g. H is open 

in nXi and int I?* c U. 

The next simple assertion concerning finite products of metric spaces seems to 

be well-known. Since we were not able to find a reference, we put it here with the 

proof. 

Proposition 1. Let 3 be a family of open sets in a finite product fly=, Xi of metrizable 

spaces Xi. There is a u-discrete in ny Xi locally finite regularly open refinement & of 

CB composed of basic open sets. 

Proof. For i < n, let di s 1 be a metric inducing the topology of Xi; define the metric 

d on ny Xi by d(x, y) = max{di(pr, x, pr,y): is n}. For x E US define hx = sup{r: 

the d-ball in ny Xi with the centre x and radius r is contained in some R E SE). 

Clearly, h : iJ.% + IO, l] is a Lipschitz mapping with the constant 1 (indeed, if hx > hy, 

d(x,y)<hx then hyzhx-d(x,y)). For kEq icn, take a locally finite and (T- 

discrete regularly open cover J=& of Xi such that d,-diameters of members .&: are 

less than 2-k-1. Define d, = {ny A’: A’ E ai, fly A’c R for some R E 3, fly A’c 

h-1(]2-k-‘, 2-k-3[)}, & = lJk_ ~4~. Then d is the requested collection. 

It is clear that & is u-discrete in nXi and that each member of d is a basic 

regularly open set and it is contained in some member of 5%. It remains to prove 

that U& = US and that .z$ is locally finite in US. For x~lJ% there is k E o such 

that hx E ]2-k, 2-kf2[, and for i G n, take any A’ E S& containing pri x. Then n? A’ E 

&& since n y A’ is contained in the ball around x with radius 2-k-1 and by definition 

of hx, it is a part of some R E % and if y E n: A’ then hy 2 hx - d (x, y) 2 2-k -2-k-1 = 

2-k-1, hy<hx+d(x,y)<2-k+2+2-k-1s2-k+3 . There is a neighbourhood of x meet- 

ing members of && for finitely many indices k and each S& is locally finite in 

US%consequently, d is locally finite in UB. 

Remark. If Ind Xi = 0 for each is n one can get stronger results, namely that the 

refinement ti is composed of disjoint basic open sets. The proof is an easy 

modification of the above proof, where one takes disjoint families ~4: such that 

A$+, refines &L, and in d one uses only those nAi not contained in other such sets. 

The next Proposition may be known, too. It is trivial for lst-countable spaces, 

less trivial for their products (in fact, in products one must add a condition on X). 

Proposition 2. Let {Xi: i E I} be a family of lst-countable spaces and X c flXi with 

Xc int,, X. Let p be a family of open sets in X. 

(i) The set M = {x E nXi: 9’ is locally finite at x} is G8-closed in nXi. 

(ii) Zf 9 is weakly locally finite in X and each P E 9 is regularly open in X, then 

the set IJ%, is Gs-closed in nXi. 
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Remark. If one assumes Xc int,, _%“‘I, then the condition on P E B may be 

weakened to int pi01 c P (the operations are in X). 

Proof. For each i E I, let { Ui( a): n E o} be a countable base of open neighbourhoods 

at a in Xi. 

(i) We will prove that &?“I c M. Take x E k”l and suppose that x G M. By 

induction on ke w, we can define sets Ik E [I]“’ (say, Ik = {i:: m E w}) and for each 

n (and a given k) one can find infinitely many basic open sets {Bj( n, k): j E CO} such 

that each Bj(n, k) fl X is contained in some pj(n, k), and Pj(n, k) # Pi(n, k) forj # i, 

U( n, k) fI Bj( n, k) fl X contains a point zj( n, k) E int,, _% (here U( n, k) = 

n{UA(pr,x): iE{ir: m~n}}x~{Xi~i~I-{i~: m S n}}). Thus there is Aj(n, k) E 

[I]‘” such that {x: pr A,(n,k)x = pr,${n,k)Zj( n, k)} C X and we assume that Ik+l 1 1, U 

U{R(B~(~, k)UAj(n, k):jE w, nEw}.ForJ=lJ{Ik: kEW}takeyEMflpr;‘pr,x 

and its basic neighbourhood U meeting only finite many members of 9. There is 

k E w such that Ik 3 R( U) fl J and there is n E w such that pr,, U( n, k) c prIk U. For 

each jE w, zj(n, k)E U(n, k)n Bj(n, k), hence (since Aj(n, k)cJ) Un B,(n, k)n 

% # 0, hence 17 n Pi(n, k) # 0, which is a contradiction. 

(ii) Take x E U%3B”+. If x Ed x then clearly x E lJB3,, so suppose x E _%. We can 

define by induction on (Y E ol, sets 1, E [I]“, B, E S9 such that prra B, 3 pr,= x and 

I,= lJ{I,UR(B,): /3 <a}. We may suppose that {R(B,): a E wl} forms a A-system 

(denote by D its kernel) with D c 1, and that U = n {pr_d prD B,: a E wl} is a 

neighbourh;od of x in nXi. We may also assume that there is P E 9 such that 

B, fl X c P for all (Y E wl. Indeed, there is a basic open set V c U with VII X f 0 

meeting only finitely many members of 9, and because of V fl int,, _% # 0 there is 

an A E [I]‘” and z E V with prA1 prA z c V= x, hence V fl B, fI X # 0 for uncount- 

ably many (Y E w, . Now, if y E U n X and V is a basic neighbourhood of y, then 

again V fl B, fl X # 0 for some (Y, which entails U fl X c p and hence U fl X = P. 

Consequently, x E U c UC?&. q 

The second part of Proposition 2 in the form we need in our Theorem can be 

proved directly (and a little more easily) using the procedure of the proof of our 

Theorem. However, the assertion seem to be interesting to be formulated in a more 

general form as a proposition. 

Theorem. Let {Xi ( i E I} be a family of metric spaces and o S A S K S w, . Let X c nXi 

be such that X c (it& XK)* and % be a locallyjinite open family in X with int 0’ c U 

(relative to X) for each U E %. Then there is a family V composed of basic regularly 

open sets in nXi such that 

(i) ‘V is u-discrete in nXi; 

(ii) Y” is locally jinite; 

(iii) “Ir A (X) < %; 

(iv) UV is G,-closed in nXi (and equals to IJ9&). 
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Proof. For technical reasons, define for i < 0 ‘Vi = (nXj) and for WE ‘I’_, put Vi,W = 

Vi, Ai,w = 0. Now, we shall define by induction for all i E w families Vi, “y;;v and 

sets A,, (also the relation < being the transitive hull of the relation {((i - 

l, w)9 (4 v))l VE yi-l,Wl)* 

Take i E w, WE ‘Y--2, VE vi_,,+, and put in our Lemma J = Ai_l,wp H = V, which 

implies that either there is U E % such that X n Vc U (then we define ‘Vi,, = (V), 

A,, = Ai_,,,) or there is a set A,, E [I]‘” (which we shall regard also as a sequence) 

such that Ai,” 1 A,_,,,, and R(B) fl A,, - Ai-l,w # 0 for all BE 23% with prA,_, w B 2 

Pr&,,w V. Then we define r/l,” = (V) A pr& V for a convenient %e: % is a a-discrete 

(in nA,,,Xi) locally finite family composed of basic regularly open sets in nA,,,Xi 

refining pr,$ v 3% such that diam prjc < 22-r for each C E % and each j from the 

initial segments of A,, of length i - k for every (k, S) < (i, V). 
The existence of %’ for K = o or finite A,, follows directly from our Proposition 

(in that case one may assume R(C) = A,“). For K = w, and infinite Ai,” proceed 

as follows: prA, v , 3% is an open family in the hereditarily paracompact space n,_+ Xj, 

so it has a regularly open locally finite refinement 8; assuming that our Theorem 

was proved for K = w (I = A,,, X = nA, v Xi, %! equals to 8), there is a a-discrete 

(in nA,, Xj) locally finite family 9 composed of basic regularly open sets in nA,,, Xj 

refining 8; for every D E 9 put AD to be the union of R(D) and of all the above 

mentioned initial segments of A k,S and find a a-discrete locally finite (all in nA, Xi) 

basic regularly open refinement vD of pr,+, D with diam prj C <2-‘-l for each 

j E A,-then V = UDEa pri: YD. 

Let V= 93% fl Uitw “Ir,. Clearly, Yf is a a-discrete family composed of basic 

regularly open sets in nXi. To prove (ii) and (iii), take BE .C!&,, x E B and such 

k > 0 that the ball around pri x with diameter 2-k is contained in pri B for each 

i E R(B). There is an n > k and a basic open neighbourhood G of x meeting only 

finitely many members of V”, say Vi for j < 1, and such that diam pri Vi < 2-k-’ 

for each i E R(B) fl A,“:,j =S 1. Take m > n + IR( B)I, a basic open W c G containing 

x and meeting only finitely many of V’s from ‘Zf,,,. Then VE 7’ whenever V E Tn 
and Vfl W # 0 for otherwise R(B) fl Ai+l,v, - Ai,vi_, f 0 for the corresponding inter- 

val of (i, Vi) s (m, V) with i 2 n which entails [R(B)1 > m - n-a contradiction. 

Therefore, U‘V= IJ93, and V is locally finite. Proposition 2(ii)) implies (iv). 0 

Remarks. (1) If Du covers X, then 93 41 contains X U (flXi -x) and, hence, it 

contains also G,-closure of the last set. A special case of the assertion of Theorem 

is thus the following: 

There exists a a-discrete (in nXi) locally finite (in G,-closure of X U (nXi - _%)) 
collection Y composed of basic open sets such that 7~ (X) refines %. 

Therefore, V is locally finite in flXi provided X is G,-dense in X, which occurs 

e.g. if X is closed or contains a _&product of {Xi}. 

(2) If we use Lemma in its full generality, we obtain: 

Every weakly locally finite regularly open cover of X is refined by a locally finite 

regularly open cover of X. 
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Another possibility is to notice that, in some situations, our Lemma is valid for 

point-finite families. Indeed, if all B,‘s in the proof of Lemma lie in X and 

prK X c prK X for all K E [I]“, then X fl nB, # 0 and again one can assume that 

all X fl B, lie in the same U E Ou. Thus we get: 

If X is G,-dense in flXi then every point-finite regularly open cover of X is 

refined by a locally finite regularly open cover of X. 

(3) Our Theorem does not hold for K z w2 even if X = flXi. The power N”I is 

not normal, so that there is a finite open cover Wr of N”‘1 which is not uniformizable, 

i.e. it cannot be refined by a locally finite cozero cover. Since (w~)N~I is discrete, 

for any WC N”1 and any uncountable cardinal T, pr;: W is regularly open in 

( WJ NT. Consequently, % = pr;: YV satisfies the conditions of Theorem for K = w2, 

X = NT, but there is no V having the required properties (otherwise the trace of “Y 

on a canonical embedding of N-1 into N’ would be a locally finite cozero refinement 

of W). 

(4) In the case of strongly O-dimensional spaces (dim Xi = 0) we may take in the 

proof of Theorem the refining families V to be disjoint and the procedure yields 

disjoint V (see Corollary 3). 

In the next corollaries, we assume that {Xi; i E I} is a family of metric spaces. 

Corollary 1 (SEepin [9]). Every regularly closed set in nXi is a zero set. 

We shall prove the following more general result: 

Corollary 2 (Klebanov [5]). Every closure ofa union of G,-sets in nXi is a zero set. 

Proof. Suppose that M is the closure of a union P of G,-sets. In theorem, put 

X=nXi,~=(X-M),h=~=01.ThenindeedintX-_M”lcint(X-P)=X-M, 

and as a result, X-M is a union of a a-discrete family of cozero sets (members 

of V), thus X-M is a cozero set, too. 

In the next corollaries, X is a subset of nXi satisfying X c (int, K”)A for some 

A, K with w =% A s K C w1 (for instance, if X is open or dense in flXi or if X is a 

Gs-set in nXi or X is G,-set and X is G,-dense in X). 

The next result generalizes Pol’s [8] and Morita’s [6] theorem on products of 

zero-dimensional spaces: if X is dense in flXi and dim Xi = 0 for each i, then 

dim X = 0 (Morita for separable spaces). On the other hand, Pol’s result is much 

more general in the sense that it is stated for higher dimensions. 

Corollary 3. If dim Xi = 0 for all i, then dim X = 0. 

Proof follows from the Remark 4 to Theorem and the Remark to Proposition 1. 

Corollary 4. The fine uniformity of X has for its base traces of locally fine (in the 

G,-closure of X), u-discrete (in nXi) collections of regularly open basic sets. 

Proof follows from the facts that every uniformizable cover is refined by a locally 

finite regularly open cover, and that every locally finite cozero cover is uniformizable. 
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Corollary 5. If X is G&osed in X then the fine uniformity of X is the restriction of 

the fine uniformity of nXi. 

Recall that X is G,-closed in X if e.g. X is a Z-product of Xi’s or, more generally, 

if pr, X = nJXi for every J E [I]“. In fact, X is G,-closed in X iff pr, X = prJ X for 

every J E [I]“. 

It is well-known that “the restriction of the fine uniformity on P to its subspace 

Q is fine” is equivalent to “every continuous map on Q into a Banach space can 

be continuously extended onto P” (to prove that, use the Borsuk-Dugundji extension 

of the Tietze theorem). Thus the last two corollaries can be reformulated. 

Corollary 6. Every continuous mapping on X into a Banach space can be continuously 

extended to the G&osure of X U (nXi -x), in particular to nXi provided X is 

G,-dense in X. 

As a special case we get 

Corollary 7. Every closed Gs-set (in particular, every regularly closed set) in nXi is 

C-embedded in nXi. 

In the case that X is regularly closed we can improve Corollary 6 (one could 

take even metrizable linear spaces instead of normed ones): 

Corollary 8. Every continuous mapping on a regularly closed set X into a normed 

linear space can be continuously extended onto nXi. 

Proof. Take f: X + E. Denote metric on E by p. Consider pseudometric f -l(p). It 

can be extended to nXi by Corollary 5 and now use the Borsuk-Dugundji extension 

of the Tietze theorem. q 

From Corollary 4 we get 

Corollary 9. Any continuous map on X into a topologically complete space (i.e. a space 

induced by a complete uniformity) admits a continuous extension to G,-closure of X. 

Recall that topologically complete spaces are e.g. paracompact spaces or real 

compact spaces. 

Remark. Ulmer proved in [ll] that Z-products qf metrizable space Xi (in fact of 

more general spaces) are C-embedded in flXi; TkaEenko in [lo] generalized his 

result to the extent that every G,-dense subset of a product of metrizable spaces Xi 

(in fact of spaces Xi with countable open-tightness) is C-embedded in Xi. Our last 

results generalize those extension theorems for product of metrizable spaces both 

in more general ranges and domains. 
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