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A new divide-and-conquer framework for VLSI graph layout is introduced. Universally 
close upper and lower bounds are obtained for important cost functions such as layout area 
and propagation delay. The framework is also effectively used to design regular and 
configurable layouts, to assemble large networks of processors using restructurable chips, and 
to configure networks around faulty processors. It is also shown how good graph partitioning 
heuristics may be used to develop a provably good layout strategy. 

1. INTR~DLJcTI~N 

The tremendous engineering advances made in very large scale integration (VLSI) 
fabrication technology have stimulated considerable theoretical interest in VLSI 
circuit layout problems. Most of this effort has centered on minimizing the layout 
area of a circuit on a chip. This is due, in part, to the fact that layouts which 
consume large amounts of chip area are more expensive to fabricate, less reliable and 
harder to test than layouts which consume smaller amounts of chip area. 

Other layout-related issues that have been studied include: minimizing propagation 
delay (either by decreasing wire lengths or by increasing transistor sizes), minimizing 
the number of wire crossings in a layout, producing regular layouts for gate-arrays, 
designing chips that can later be configured to realize a large number of circuits, 
configuring networks around defective cells on a wafer, and assembling large systems 
of processors from copies of a single basic chip which has few external pin con- 
nections. 

Most theoretical techniques devised thus far are based on the divide-and-conquer 
paradigm and require the use of a separator theorem to recursively partition a given 
circuit. Although separator-based techniques work well for some graphs, they perform 
very poorly for others. 

In this paper we propose an alternative framework for solving VLSI graph layout 
problems. Like previous approaches, the new framework is based on the divide-and- 
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conquer paradigm. Instead of using a separator theorem to recursively partition a 
graph, the new framework requires the use of a bifurcator. The difference between 
bifurcators and separators will, of course, be explained in the paper, but the two 
primary advantages of bifurcators over separators may be stated here. First, unlike 
separators, bifurcators may be efficiently computed using either a good graph 
partitioning heuristic, or from a layout with small area. Second, bifurcators can be 
used to produce layouts that are efficient in a variety of respects, not layout area 
alone. 

For example, using the notion of bifurcators, an area-efficient layout can be 
transformed into a layout which is both area-efficient and also has small propagation 
delay. The same result can also be achieved if, instead of an area-efficient layout, we 
use an efficient graph bisection heuristic. Separator theorems are inherently weaker 
than bifurcators for such purposes, and no other approach is known to enjoy the 
versatility of bifurcators. 

This paper is based on, and unifies the work contained in three extended abstracts 
by Bhatt and Leiserson [3,4] and Leighton [21]. Although the results are self- 
contained, some familiarity with recent results in VLSI layout theory would be 
helpful in reading this paper. A fairly comprehensive list of recent research papers is 
included in the references. In particular, Ullman [43] provides a good introduction to 
issues in VLSI layout theory. 

The paper is divided into nine sections. In Section 2, we review the layout model 
and the separator-based approach to VLSI layout. In Section 3, we formally state 
eight VLSI layout problems and briefly review the progress made on each problem. 
The combinatorial lemmas proved in Section 4 provide the basis of the new 
framework described in Section 5. In Section 6, we describe how the framework can 
be used to efficiently solve the eight layout problems described in Section 3. Section 7 
shows how a good graph bisection heuristic can be used to produce a provably good 
layout strategy. In Section 8, we prove that the upper bounds for area, crossing 
number and minimax edge length found in Section 6 are existentially optimal. The 
paper concludes with some remarks and open questions in Section 9. 

2. BACKGROUND 

Thompson [41, 421 provided the first formal model for VLSI circuit layout. The 
model is simply stated and captures the important aspects of layout problems in a 
realistic manner. A brief description of the model is included in Subsection 2.1. In 
addition, Thompson also proved some elementary upper and lower bounds on the 
area required to lay out an arbitrary graph, which are discussed in Subsection 2.2. 
More general bounds were obtained later by Leiserson [26,27] and Valiant [45], who 
independently developed a divide-and-conquer layout strategy based on separator 
theorems. Subsection 2.3 summarizes their results and highlights a major deficiency 
of any general-purpose layout scheme based on separator theorems. 

57 l/28/2-8 
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2.1. The Layout Model 

In order to cast VLSI layout problems within a mathematical framework, 
Thompson [41,42] developed a formal model for VLSI graph layout. The model is 
based on, and is consistent with, the VLSI design rules established by Mead and 
Conway [3 I]. It is also similar to the widely used Manhattan wiring model. In the 
Thompson grid model, a layout for a graph is characterized as an embedding within a 
two-dimensional grid. A two-dimensional grid is a collection of horizontal and 
vertical tracks spaced apart at unit intervals. A layout for a graph G is specified by 
an embedding which assigns nodes of G to points in the grid where horizontal and 
vertical tracks intersect, together with an (incidence-preserving) assignment of the 
edges of G to paths in the grid. The paths of the layout are restricted to follow along 
grid tracks and are not allowed to overlap for any distance (although a vertical path 
segment may cross a horizontal path segment). In addition, the paths may not cross 
nodes to which they are not adjacent. For obvious reasons, we restrict our attention 
to graphs in which no node has degree greater than four. As an example, Fig. 1 shows 
a layout for the complete graph on four nodes. 

Remark. The results in this paper easily extend to variants of the Thompson grid 
model. For example, graphs with bounded valence greater than four may be laid out 
by mapping each node to a region of the grid, instead of a single grid point. The 
results are also applicable to networks with large processors. Techniques for dealing 
with large processors are described more fully in the discussion of Problem 5 in 
Sections 3 and 6. 

2.2. Elementary Bounds on Layout Area 

Although there are a variety of important engineering considerations in choosing 
one layout for a graph over other possible layouts, the best understood, and perhaps 
the most desirable cost measure to minimize is layout area. The area of a layout is 
most naturally defined as the area of the “bounding-box” around the layout, and 
equals the product of the number of vertical tracks and the number of horizontal 
tracks that contain a node or wire segment of the graph. For example, the layout of 
Fig. 1 has area 15. This is not the minimum possible; there is another layout with 
area 9. 

FIG. 1. A layout with area 15. 
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How much area does an N-node graph require? Clearly, the area cannot be less 
than the number N of nodes. On the other hand, by embedding nodes at equally 
spaced intervals along a line, and using a distinct horizontal track for each edge (as 
shown in Fig. 2), it is clear that the area required for an N-node graph is no greater 
than O(N*). These bounds are independent of the structure of the graph and hold for 
all N-node graphs. In general, however, the minimum area needed to lay out a graph 
depends on the graph. 

Thompson [41,42] identified bisection width as an important property of graphs 
that affects minimum layout area. The bisection width of a graph is the minimum 
number of edges which must be removed from the graph in order to disconnect it into 
two equal-size pieces. (Two graphs are said to be of equal size if the difference in the 
numbers of nodes is no more than one.) Thompson showed that, up to a constant 
factor, the layout area can be no less than the square of the bisection width. 
Therefore, if the bisection width for a graph is known, a lower bound on area can be 
easily computed. By showing that certain computationally powerful graphs such as 
the shuffle-exchange graph have large bisection width, Thompson showed that these 
graphs require large area. In fact, Thompson extended this observation to obtain 
area-time tradeoffs for computing certain functions. 

Leighton [ 19, 201 identified crossing number as another general property that 
affects layout area. The crossing number of a graph is defined as the minimum 
number of edge crossings in any drawing of the graph in the plane. It is easy to see 
that the crossing number of a graph is a lower bound on layout area. Using more 
sophisticated arguments for special graphs, Leighton also directly obtained lower 
bounds on total wire length (the sum of the lengths of the wires in a layout), which of 
course is a lower bound on layout area. These techniques are heavily dependent on 
the recursive structure of the special graphs and will be generalized in Section 8. 

2.3. Layouts Based on Separator Theorems 

Leiserson [26, 271 and Valiant [45] investigated general properties that provide 
effective upper bounds on layout area. They independently developed a divide-and- 
conquer strategy for graph layout and showed, for example, that every N-node tree 
can be laid out in O(N) area and that every N-node planar graph can be laid out in 
O(N log* N) area. Their technique is based on the notion of separator theorems for 
graphs. 

-OfNl- 

FIG. 2. Every N-node graph can be laid out in O(N*) area. 
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DEFINITION. A class of graphs which is closed under the subgraph relation is said 
to have an f (x)-separator theorem if there exist constants a and b where 0 < a < f 
and b > 0 such that every N-node graph in the class can be partitioned (by the 
removal of at most bf(N) edges of the graph) into disjoint subgraphs having a’N and 
(1 - a’) N nodes, where a < a’ < 1 -a. 

Given a class of graphs for which a separator theorem is known (e.g., trees have a 
l-separator theorem [28] and planar graphs have a G-separator theorem [29]), it is 
possible to construct a layout for any N-node graph in the class by using a simple 
divide-and-conquer approach. For example, Leiserson [26, 271 proved the following 
upper bounds on layout area: 

xa-separator theorem layout area 

a<; O(N) 
a=; O(N log* N) 
a>; O(N*“). 

Remark. The complete recursive decomposition of a graph must be provided as 
input before layouts achieving the desired area bounds can be constructed by the 
procedure. There is no polynomial time algorithm known that achieves the area 
bounds if the decomposition is not provided. This severely limits the applicability of 
separator-based layout strategies to classes of graphs (such as trees or planar graphs) 
for which actual decompositions are known. 

How good are the preceding area bounds ? Thompson [41, 421 and Leighton 
[ 19,201 showed that none of the bounds can be improved. More precisely, they 
showed that within each class, there is a graph for which the bound is optimal. But 
this does not mean that the bounds are optimal for every graph within a class. In fact, 
while the bounds are existentially optimal, they are not universally optimal. For 
example, an N-node square grid requires area N, but since the minimum separator 
theorem for the class of square grids is 4, the best bound obtainable by separator- 
based layouts is O(N log’ N), which is off by a factor of @(log* N) from the optimal. 
Of course, since N-node graphs require area at least N, the bounds for graphs with 
x*-separator theorems, where a < f, are asymptotically universally optimal. 

For graphs with larger separator theorems, the discrepancy between the minimum 
layout area and that given in the table can be much worse. Consider, for example, the 
N-node graph S, which consists of N/log N disjoint log N-node expander graphs. We 
define an m-node expander graph to be a graph for which any subset of k nodes is 
linked by O(min(k, m -k)) edges to the m - k nodes outside the subset. The 
bisection width of such a graph is Q(m), and hence the minimum separator theorem 
is O(x). The existence of trivalent graphs that satisfy this definition has been known 
for a long time [ 12, 15, 441. In fact, almost all trivalent graphs satisfy this delinition. 
We caution the reader that the term “expander graph” has two definitions in the 
literature. The other definition is sufficient for our purposes and probably more 
standard but requires graphs with higher node degrees. Since each log N-node 



SOLVING VLSIGRAPHLAYOUTPROBLEMS 305 

expander graph can be trivially laid out in O(log2 N) area, the layout area of S, is no 
greater than O(N log N). However, Leighton [2 1 ] showed that the minimum 
separator theorem for the class of graphs S, exceeds .R(x/log* x), so that the area 
bound from the table above is O(N2/log4 N), which is much worse than the optimal 
bound of O(N log N). 

Remark. The careful reader will notice (as did the referee) that any class of 
graphs closed under the subgraph relation and containing S,, must also contain 
expander graphs. Hence, the minimum separator for the class is O(x). In order to get 
around such technicalities with the definition, the concept of a separator is often just 
applied to a single graph and the subgraphs produced by its recursive decomposition. 
Using the less restrictive (but more useful) definition, it is possible to show that S, 
has an O(N/log N)-separator. The log N-node expander graphs are split in the upper 
levels of the decomposition and never appear intact as subgraphs in the lower levels 
of the decomposition. Leighton proved that even using the most liberal definition, the 
minimum separator for S, is at least R(N/log’ N). Any bound on layout area for S, 
based on the minimum separator can be no less than B(N2/log4 N). 

Thus, while the divide-and-conquer strategy based on separator theorems gives 
existentially optimal bounds, the bounds can be unacceptably poor in a universal 
sense. It was the discovery of such large discrepancies that led to the search for an 
alternative framework for VLSI layout. Within the new framework presented in 
Section 5 we shall see how these large discrepancies are overcome. 

3. EIGHT VLSI GRAPH LAYOUT PROBLEMS 

As mentioned earlier, there are many important considerations in choosing one 
layout over a multitude of other possible layouts. The problems in this section are 
motivated by some of the basic engineering concerns. Although this list is not meant 
to be exhaustive, it covers most of the theoretical issues studied recently. Many of the 
problems are known to be N&complete, so the solutions we later obtain will, of 
course, not be optimal. Rather, the major emphasis of this paper is the development 
of a general framework for handling layout problems efficiently and in a uniform 
manner. Within the framework, solutions to some problems are close to optimal. For 
other problems, good heuristics are developed and/or general bounds are obtained. 

PROBLEM 1. Given a graph G, produce an area-efficient layout for G. 

As mentioned before, minimizing area is a critical concern in VLSI circuit layout. 
In addition to the work on area-efficient layouts described in the previous section, 
Dolev, Leighton, and Trickey [9] have shown that determining the minimum layout 
area of a forest of trees is NP-complete. 

PROBLEM 2. Given a graph G, produce an area-efficient layout for G with 
minimax edge length. 
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Besides area, speed is another critical factor in chip performance. Signals do not 
propagate instantaneously across wires, and the longer the wire, the longer the 
propagation delay. In pipelined or systolic systems, the effect of propagation delays is 
even more dramatic. The maximum delay determines the clockperiod, and hence the 
throughput, of the system. To maximize throughput we need to minimize the 
maximum delay. In short, we must produce layouts so that the longest edge is as 
short as possible. The minimum, over all layouts, of the length of the longest edge is 
called the minimax edge length. 

Paterson, RUZZO, and Snyder [34] studied the problem of minimizing edge lengths 
for complete binary trees. They showed that the minimax edge length of an N-node 
complete binary tree is @(@/log N). Adopting a different strategy based on 
separator theorems, Bhatt and Leiserson [3] subsequently extended the upper bound 
portion of the result to arbitrary trees, and to all graphs with small (i.e., xn, a < i) 
separator theorems. Bhatt and Cosmadakis [2] showed that computing the minimax 
edge length of a tree is W-complete. 

PROBLEM 3. Given a graph, produce an area-efficient layout in which each wire 
has bounded delay in the capacitive model. 

Although it is certainly true that propagation delay across a wire depends on the 
length of the wire, there has been little consensus on how fast propagation delay 
grows as a function of wire length. Thompson [41,42] assumes propagation delay to 
be constant, independent of wire length. This might seem unreasonable given the 
ultimate speed-of-light limitation which indicates that the delay increases linearly 
with length. The speed-of-light limitation, however, greatly exaggerates the impor- 
tance of wire delay in determining the speed of circuits. Mead and Conway [ 3 1 ] take 
into account some of the electrical characteristics of interconnections on MOS 
integrated circuits, and emphasize the role of wire capacitance in determining 
progagation delay. Recent analysis by Bilardi, Pracchi, and Preparata [5] strongly 
supports the belief that capacitive effects play the predominant role in determining the 
speed of MOS circuits. 

In a capacitive model, each wire is assumed to present a purely capacitive load to 
the transistor that drives a signal across the wire. This load is proportional to the 
length of the wire plus the area of the transistor that receives the signal. The delay is 
proportional to this load divided by the area of the driving transistor. By increasing 
the size of the driving transistor, it is therefore possible to bound the propagation 
delay, independent of the length of the wire. A second well-known technique for 
reducing delay across a long wire is to “ramp” the wire with a geometrically 
increasing series of inverters [ 3 11. The number of intermediate drivers, and hence the 
delay, is logarithmic in the length of the wire, but an attractive feature is that this 
process can be carried out without the need to resize the original transistors in the 
circuit. 

Of course, increasing the size of one transistor or introducing new transistors might 
force some wires to be stretched to avoid the enlarged transistor area. In other words, 
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decreasing the delay across one wire might force an increase in delay over other 
wires. Leiserson [24] and Mehlhorn [32] independently posed the question of whether 
or not the transistors in a layout could be resized so that every wire in the layout has 
constant propagation delay. Ramachandran [36] investigated the problem of 
introducing intermediate drivers along long wires to decrease delays, but under the 
constraint that the topology of the layout remain unchanged. With the restriction that 
wires cannot be rerouted, she showed that logarithmic delay can be achieved, but at 
the expense of squaring the layout area in the worst case. We allow the layout 
topology to be changed, and obtain significantly better results. 

PROBLEM 4. Given a graph G, produce a layout for G with few wire crossings. 

An undesirable feature of layouts is the presence of a large number of wire 
crossings. When two wires cross, they must be on different layers. For faster 
operation, and less power dissipation, it is advantageous to maximize the total 
amount of wiring on a layer of low resistance, e.g., the metal layer, while minimizing 
the wiring on a layer of high resistance, e.g., the polysilicon layer. The net wiring on 
one layer may be reduced by laying wires on that layer only just before and after two 
wires cross. If the number of wire crossings is small, the number of contact-cuts 
which connect wire segments on different layers is small so that the area of the layout 
is not blown up by the contact cuts which occupy large area. In addition, long wires 
that are crossed by many other wires are susceptible to cross-talk when all the 
crossing wires simultaneously carry the same signal. 

The crossing number of a graph is defined to be the minimum number of wire 
crossings in any drawing of the graph on the plane. Leighton [ 19, 201 proved upper 
and lower bounds on crossing numbers and then used the results to find bounds on 
layout area. Garey and Johnson [ 141 showed that determining the crossing number of 
bipartite graphs is NP-complete. 6 

PROBLEM 5. Given a graph, produce an area-efficient regular layout for the 
graph. 

Some design methodologies, most notably gate-arrays, require that processors be 
located at fixed positions on a chip. In gate-arrays the processors are placed in a grid 
pattern with uniform spacing between processors adjacent along every row and 
column. Such layouts are said to be regular. An important advantage of this design 
restriction is its flexibility: even if the size of every processor is increased, the wiring 
between processors remains unaffected and the total area remains proportional to the 
sum of the wire area (as computed with unit-size processors) and the processor area. 
This is because only the fl rows and columns containing the N unit-size processors 
need to be expanded to accomodate the non-unit-size processors. In non-regular 
layouts, every row and column might have to be expanded since there might be a 
node in every row and in every column. Increasing the linear dimension of the 
processors by a factor of s could result in an O(s’) increase in layout area. 
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Previous divide-and-conquer layout strategies do not produce regular layouts. 
Hence, they are not useful in laying out circuits with non-unit-size processors. A 
good strategy for producing regular layouts would solve the nagging problem of how 
to cope with variable-size processors. 

PROBLEM 6. Design area-efficient chips that can be configured to realize a large 
number of graphs. 

Because it is expensive to make one chip, but cheap to make many copies, 
manufacturers of custom chips have been encouraged to make configurable designs 
such as gate-arrays, ROMs and PLAs. In such designs, the entire chip is 
prefabricated except for one layer. The customer then specifies a configuration for the 
chip, and the final layer of metalization connects up the circuitry in that particular 
way. Hence, most of the design and fabrication costs can be factored over many 
custom chips. Similarly, the fast emerging laser-restructuring technology [35] 
provides another economical way to customize chips after fabrication is complete. 
Laser restructuring allows connections between wires to be made or broken after the 
chip has been fabricated. In either case, it is desirable to design layouts that can be 
configured from one of a few basic patterns. 

PROBLEM 7. On a wafer which has arbitrarily distributed defective cells, realize a 
given graph on the good cells. 

In any fabrication process, it is expected that some of the processing cells will be 
defective. In a two-dimensional array of cells on a wafer in which defective cells are 
arbitrarily distributed, it may still be possible to use the wafer by configuring wires 
around the defective cells. This may, for example, be performed by laser restructuring 
techniques [35]. Given this ability to isolate defective cells, it is important to 
consider how a graph may be realized on the remaining good cells. This problem has 
received considerable attention recently [ 17, 22, 381. The problem is similar to the 
general graph layout problem in the Thompson model but with the important 
restriction that nodes of the circuit can only be mapped to a restricted set of nodes in 
the grid. 

PROBLEM 8. Given a graph G, assemble G using the minimum number of copies 
of a single chip having few external pin connections. 

A number of very large networks have been proposed in recent years for 
implementing priority queues [25], for searching [ 11, for direct execution of 
applicative programming languages [30], and for recognizing regular expressions 
[ 111. Some of these networks are too large to fit on a single chip. For example, the 
tree-structured network of [30] is envisioned to contain as many as one million 
processing elements. Clearly, such networks must be partitioned over many intercon- 
nected chips, so that each chip realizes a small portion of the network. 

The technology for packaging chips severely limits the number of external pin 
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connections on a chip. While chips with over a million components are forseeable in 
the near future, no one predicts a chip with over two hundred external pin 
connections. This poses a pressing problem in assembling large networks of 
processors. 

Even if a network could be partitioned so that each portion has only a few external 
connections, it would.be economically infeasible to design each chip individually. For 
instance, it would be prohibitively expensive to design one thousand different chips, 
each containing a thousand processing elements, to assemble a network of one 
million processors. For this reason, it is necessary to assemble large systems using 
copies of a few configurable or restructurable chips. One solution to the problem of 
assembling large tree structures using copies of a single, area-efficient, restructurable 
chip with few external pin connection was given by Bhatt and Leiserson [4]. 

Within the new framework, efficient solutions are provided for each of these 
problems. In fact, a single layout simultaneously solves many of these problems 
efficiently. The framework provides a two-step strategy for solving these problems. 
First, the graph to be laid out is embedded within a very special network called the 
tree of meshes. For the tree of meshes it is possible to solve all these problems 
efficiently. In the second step therefore, a good layout for the tree of meshes also 
solves these problems for the embedded graph. 

4. COMBINATORIAL LEMMAS 

This section contains three combinatorial lemmas which provide the foundation for 
the framework presented in the next section. 

LEMMA 1. Consider any two-ended string of n colored pearls of k dtzerent colors, 
and let ni be the number of pearls which are color i for 1 < i Q k. For any integer 
r > 2, the pearls can be partitioned into two sets by cutting the string in no more than 
9rk places such that the total number of pearls in each set is [n/2] or [n/21, the 
number of pearls of color 1 in each set is [n,/2] or [n,/21, and such that the number 
ofpearls of color i > 1 in each set lies between I(; - (1/2r)) nil and [(f + (1/2r)) niJ . 

Proof Let i be a number between 1 and k and let T(i) denote the number of cuts 
necessary to divide the set of all pearls into two sets that satisfy the constraints of the 
theorem for colors 1, 2,..., i. Other than requiring that the total number of pearls be 
split in half by the cuts, we have made no constraints on the distribution of pearls 
with colors greater than i. We wish to find a good bound on Z’(i) in the worst case, 
i.e., over all choices of n, k 2 i, and all possible colorings. In what follows, we will 
show that T(1) = 2 and that 

T(i)<rT(i- 1)+4r+7 

for i > 1. As a consequence, we can solve the recurrence to conclude that 7’(i) < 
9r’ - 15 for r > 2. Thus for i = k, at most 9rk cuts are required, as claimed. 
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For i = 1, it is easy to show that two cuts are sufficient. Consider a “window” of 
size [n/2] positioned at the left end of the string. Without loss of generality, assume 
that the window covers less than in,/21 of the pearls colored 1. Move the window to 
the right, one pearl at a time until the window covers [n,/2J pearls of color 1. Since 
the right half of the string contains more than one-half of all pearls of color 1, there 
must, by continuity, exist a placement when the window covers exactly one-half of all 
pearls of color 1. By cutting the string at the endpoints of the window, the portion of 
the string under the window will contain half of the total number of pearls and half of 
the pearls colored 1. Hence T(1) = 2, as claimed. 

For a given i > 1, break the string into r segments Sj, 1 <j ( r (making r - 1 cuts) 
so that each segment contains at least LnJr] pearls of color i. Next split each Sj into 
two subsets Sj, and Sj, (making a total of rT(i - 1) cuts) so that each split satisfies 
the theorem locally for colors 1,2,..., i - 1. 

Without loss of generality, assume that Sj, contains no fewer pearls of color i than 
Sj,. At this stage, we divide the set C of all pearls into two subsets C, and C, as 
follows. Initially, let C, = lJ SjO. If C, contains more than [(f + (1/2r)) niJ pearls of 
color i, remove S,, from C, and add S,, . Repeat this procedure, successively 
switching S,, with S2,, S,, with S,, , and so on until the first time C, has at most 
[(i + (1/2r)) niJ pearls of color i. Such a stage must occur since the number of pearls 
of color i in C, will eventually fall below [nil21 if C, and C, are completely 
interchanged. The number of pearls of color i in C, after the final switch cannot be 
less than [(f - (1/2r)) nil - 2 since every Sj contains no more than [ni/rl pearls of 
color i. If the number of pearls of color i in C, is I(+ - (1/2r)) nil - 1 or 
I(4 - (1/2r)) nil - 2, then move either one or two pearls of color i from C, to C,, 
making no more than four cuts. 

We also have to ensure that the total set of pearls and the pearls of the fi;rst i - 1 
colors are divided as required. The pearls with colors between 2 and i - 1 are divided 
correctly because they were divided correctly at the recursive step. The counts of 
pearls of color 1 in C, and C, may differ in size by r, however. To balance the 
number of pearls with color 1 in each set, we need only remove up to [r-/21 pearls 
colored 1 from the excess set (making at most r cuts) and put them in the deficient 
set. To balance the difference in the overall sizes of the sets (which now might be as 
large as 2r + 4), we need only extract up to r + 2 pearls from the larger set (making 
no more than 2r + 4 cuts) and put them in the smaller set. Of course, these pearls 
must be chosen carefully so that each set retains the required minimum number of 
pearls of each color. Since pearls are extracted only from the larger set, it is clear that 
this requirement may be easily satisfied. The total number of cuts made by the 
procedure is rT(i - 1) + 4r + 7, as claimed. 1 

Using an elegant topological argument, Goldberg and West [ 16 J recently proved 
that k cuts suffice to divide the pearls of each color exactly in half. In contrast to 
Lemma 1, this is a dramatic reduction in the number of cuts. We state their result in 
Lemma 2, although we cannot include the proof here. We will use the stronger result 
in the paper since it facilitates the proofs and results in far smaller constants. It is 
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very important to note, however, that all of our layout results may be proved with the 
weaker Lemma 1. (In fact, we have done so using r = 3, but will not go through the 
details in this paper.) Since the Goldberg-West result has not yet appeared, we have 
included Lemma 1 both for completeness and so that our results will not depend on 
as-yet unpublished work. Both results are implementable in polynomial time when the 
number of colors is fixed, as is the case throughout this paper. 

LEMMA 2. Consider any two-ended string of n pearls, ni of which are colored i, 
1 < i < k. By cutting the string in k places it is possible to divide the pearls into two 
sets so that each set has a total of [n/2] or in/21 pearls, and [ni/2j or [ni/21 pearls 
of color i for all i, 1 < i < k. 

The following lemma recasts Lemma 2 in terms of complete binary trees. This 
form is particularly useful since the recursive decomposition of a graph may be 
viewed as a tree. In the following we define the height of a tree to be the length of the 
longest path from the root to a leaf. The height of a forest is defined to be the 
maximum height of a tree in the forest. Finally, the level of a node in the forest is 
defined to be the height of the forest minus the length of the longest path from the 
node to a leaf. (Note that the top level is level zero.) 

LEMMA 3. Consider a forest of complete binary trees whose n leaves are colored 
arbitrarily with k colors. Let ni be the number of leaves colored i for 1 < i < k. By 
removing no more than k nodes (as well as all incident edges) from each internal 
level of the forest, it is possible to produce a new forest of complete binary trees, some 
subset of which contains [n/2] or [n/21 leaves, and [q/2] or [q/2] nodes of color i 
for each i, 1 < i < k. 

Proof Draw the trees in the canonical manner and place them side-by-side, in 
any order, so that the leaves of all trees are placed along a line. By applying 
Lemma 2 to the induced left-to-right ordering on the leaves of the forest, it is possible 
to break the ordering in no more than k places such that the union of the leaves 
contained in every other segment contains the desired total number of leaves and the 
desired number of leaves of each color. 

For each break, remove the nodes (and incident edges) which are simultaneously 
ancestors of the leaf immediately to the left of the break and the leaf immediately to 
the right of the break. It is easily seen that at most one node is removed from each 
internal level of the forest for each break. Therefore, no more than k total nodes are 
removed from each internal level. In addition, the removal of the common ancestors 
of the leaves neighboring a break divides the associated tree into two or more 
complete binary trees, at least one on each side of the break. Thus the removal of all 
such nodes produces a forest of complete binary trees, subsets of which correspond 
precisely to the sets of leaves between pairs of adjacent break points. Thus the union 
of the subsets of trees corresponding to every other segment of leaves contains the 
desired number of leaves of each color. m 



312 BHATT AND LEIGHTON 

FIG. 3. An illustration of the procedure described in Lemma 3. 

Figure 3 illustrates the proof of Lemma 3 with a simple example. Initially, the 
forest consists of four complete binary trees with seven leaves colored 1, four 
colored 2, and four colored 3. Figure 3a shows a leveled drawing of the forest along 
with three breaks (denoted by dashed vertical lines) in the line of leaves. The union of 
leaves in the first and third intervals contains three leaves colored 1, two of color 2, 
and two of color 3. In Fig. 3b the internal nodes to be removed are marked X. 
Figure 3c shows the new forest produced by the removal of the marked internal 
nodes. 

5. THE NEW FRAMEWORK 

In this section, we describe the new framework for solving VLSI graph layout 
problems. We start by defining the notions of decomposition trees and bifurcators for 
graphs. Using the combinatorial lemmas from Section 4, we devise procedures for 
balancing decomposition trees and bifurcators. In Subsection 5.3, balanced decom- 
position trees are used to embed graphs within the tree of meshes. Subsection 5.4 
provides efficient layouts for the tree of meshes. Taken together, the embedding of a 
graph in the tree of meshes and the layout for the tree of meshes induce a layout for 
the original graph. 

5.1. Decomposition Trees and Bifurcators 

The recursive decomposition of a graph into smaller and smaller subgraphs may be 
viewed as a decomposition tree. In particular, we say that a graph G has an 
tFo, F, ,..., F,)-decomposition tree if G can be decomposed into two subgraphs G, and 
G, by removing no more than F, edges from G, and, in turn, both G, and G, can be 
decomposed into smaller subgraphs by removing no more than F, edges from each, 
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and so on until each subgraph is either empty or an isolated node. Figure 4 illustrates 
this recursive decomposition. 

As one might expect, the decomposition of a graph by separator theorems may be 
viewed as a decomposition tree. It follows by definition that if a class of graphs has 
an f(x)-separator theorem, then there are constants GI and /I such that each graph in 
the class has a decomposition tree of the form @j(N), Pf(aN), jjf(a*N),...,@(l)). 
The converse is not necessarily true. Subgraphs generated at each step of a decom- 
position by a separator theorem are constrained to be proportional in size, whereas 
decomposition trees need not satisfy this constraint. Of course, if the decomposition 
tree has precisely log N levels, then subgraphs at each level must be equal in size. 

We shall be particularly interested in a special class of decomposition trees, 
namely bifurcators, that is distinct from the class of separators. 

DEFINITION. An N-node graph has an a-bifurcator of size F (more simply, an 
(F, a)-bifurcator) if it has an (F, F/a, F/a*,..., 1)-decomposition tree. 

Of particular interest is the class of fl-bifurcators. By the definition, we know 
that an N-node graph has a fl-bifurcator of size F if and only if it has an (F, F/g, 
F/2,..., 1)-decomposition tree. The depth of this tree is no greater than 2 log F. In 
order to completely decompose an N-node graph into individual nodes, the height of 
any decomposition tree cannot be less than the log N. Thus, F must always be at least 
fl. On the other hand, F is always less than 2N since every N-node graph with 
maximum node degree four has at most 2N edges. 

If a class of graphs has an xn-separator theorem, where a < f, and the 
corresponding decomposition is balanced in that every graph is always decomposed 
into equal-size subgraphs, then it is straightforward to show that every N-node graph 
in the class has a \/Z-bifurcator of size O(n). Similarly, if a class of graphs has a 
balanced separator theorem of size x” with a > f, then every N-node graph in the 
class has a fl-bifurcator of size O(Na). 

empty graph or 
isolated node G/JG 

L I-IO ’ 1-11 
‘5 

FIG. 4. An (FO, F, ,..., F,)-decomposition tree. 
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The converse is not true even if we consider only bifurcators whose corresponding 
decomposition trees are balanced so that every graph is decomposed into equal-size 
subgraphs. For example, the N-node graph S, defined in Subsection 2.3 has a 
balanced \/2-bifurcator of size O(dm) but the smallest separator for this class 
of graphs is R(x/log2 x). 

When translated into bounds on layout area, this seemingly minor difference 
between bifurcators and separators is greatly magnified. Graphs with small layout 
area always have small fl-bifurcators, but do not always have small separators. 
This is formalized in Lemma 4. Later on we will prove the converse : graphs with 
small fl-bifurcators always have small layout area. 

LEMMA 4. Z=f a graph G can be laid out in area A, then G has a (@, dT)- 
bifurcator. 

Proof: Consider a vertical cut of length \/;I through the center of the layout. 
Next, cut each of the sublayouts horizontally through the center. Continuing this 
sequence of alternating vertical and horizontal cuts, it is easy to see that at the ith 
step no more than fl/2i’2 edges are cut from each subgraph. This sequence of cuts 
yields a (@, \/Z)-bifurcator for G. fl 

5.1.1. Special Cases 

Many graphs have decomposition trees in which the number of cuts decreases very 
slowly as we go lower down the tree. In such cases, the number of cuts at higher 
levels of the tree may be very small. On the other hand, in decomposition trees 
corresponding to bifurcators, the number of cuts permitted decreases smoothly as we 
go down the tree. It is conceivable then, that the bifurcator permits far more cuts at 
higher levels than are necessary. For example, N-node binary trees have decom- 
position trees of height O(log N) in which no more than 1 cut is required at every 
level. Since the minimum bifurcator is at least fl, the decomposition tree 
corresponding to the bifurcator allows far more cuts at the top levels than needed. 

Similarly, some graphs have decomposition trees in which many cuts are required 
at the top levels, but this number decreases very quickly as we go down the decom- 
position tree. In such cases, the minimum bifurcator is large so that decomposition 
trees corresponding to the bifurcator do not underestimate the number of cuts 
required at the top level. However, they do greatly overestimate the number of cuts at 
lower levels. 

It is useful to separate such extreme cases from a general discussion. Of course, 
general upper bounds are valid for graphs with extreme decompositions, but they may 
overestimate the true bound. A particularly important reason for separating these 
classes is that many computationally useful graphs such as binary trees fall into the 
first category while cube-connected-cycles and multidimensional meshes fall into the 
second category. 

An N-node graph is defined to have a type A fi-bifurcator if it has an (0( @), 
fl)-bifurcator such that no more than O((N/2’)“) cuts, a < f, are required for each 
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partition at the ith level of the associated decomposition tree. Observe that at the 
higher levels of the tree, i 6 log N, the number of cuts is far less than the 0( @/2i’2) 
cuts allowed by the usual bifurcator. 

Similarly, an N-node graph is defined to have a type B @-bifurcator if it has an 
(O(N”), \/Z)-b’f 1 urcator, (r > f, such that only O((N/2i)“) edges are cut in any 
partition at the ith level. Observe that for the lower levels of the tree, i + 1, this 
quantity is far smaller than the O(N*/2”‘) cuts allowed by the usual bifurcator. 

For simplicity, we will prove results only for general \/2-bifurcators in this paper. 
However, whenever there is a significant difference, results for the special cases are 
stated separately. The proofs for these special cases are easily worked out, and 
closely follow the proofs for the general cases. We leave such details to the interested 
reader. 

5.2. Balanced Decomposition Trees 

Of particular importance to the layout results reported in this paper are decom- 
position trees where at each step of the decomposition, the two subgraphs are nearly 
equal in size. This section considers such balanced decompositions and gives an 
effective procedure for transforming an arbitrary decomposition tree into one that is 
balanced. 

Formally, a decomposition tree for a graph G is balanced if each subgraph G, in 
the tree is the father of two subgraphs G,, and G,, such that the number of nodes in 
the subgraphs differ by at most 1. In addition, we say that a decomposition tree is 
fully balanced if it is balanced, and if for every subgraph G, in the tree, the set of 
edges connecting G - G, to G, is divided into two subsets of nearly equal size by the 
partition of G, into G,, and G,, . (Here we allow the number of edge connections in 
the two subgraphs to differ by a small constant, say 5. For the purposes of simplicity, 
however, we shall often ignore such small differences and assume that the nodes and 
connections are split evenly between the two subgraphs.) 

Somewhat surprisingly, any decomposition tree may be transformed into a fully 
balanced one at little or no cost. We prove this in Theorem 5 which generalizes 
earlier results in [4, 19-2 11. 

THEOREM 5. Let G be any N-node graph with an (F,,, F, ,..., F,)-decomposition 
tree T. Then G has a fully balanced (FA, Fi ,..., F&,)-decomposition tree, such that 
for O<i<logN, 

F;=6 2 F,. 
s=i 

ProoJ Let r be a forest of complete binary trees consisting initially of the decom- 
position tree T. Color the leaves of T with two colors according to whether or not the 
subgraph of G associated with the leaf is empty. Apply Lemma 3 (k = 2) to r, 
removing the indicated nodes and edges of T. Each node of T corresponds naturally 
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to a set of edges of G, namely the edges whose removal splits the associated subgraph 
in two. Removing a node of T corresponds to removing this cutset of edges from G. 
Since no more than 2 nodes are removed from each level of r, the number of edges 
removed from G in applying Lemma 3 does not exceed 2 xi=0 FS, which is less than 
F;b. 

Further note that G is divided into two disjoint subgraphs of nearly equal size by 
the removal of these edges. Each subgraph, in turn, corresponds in a natural way to a 
subforest of complete binary trees in r. Consider one such subgraph G, and color the 
leaves of the associated forest of complete binary trees r, using six colors as follows: 

If the leaf corresponds to an empty subgraph, color the leaf with color 1. 
Otherwise, if the single node corresponding to the leaf is incident to 
exactly j edges of G removed earlier, 0 <j < 4, then color the leaf with 
color j + 2. 

By applying Lemma 3 (k = 6) to r,, it is clear that G, can be decomposed into 
two disjoint subgraphs G,, and G,, of nearly equal size such that the number of 
edges from G - G, to G,, is nearly equal to the number of edges from G - G, to G,, . 
Since at most 6 nodes were removed from each level of r, and since r, does not 
contain the root of T, we can conclude that no more than 6 xi= I F, = Fi edges were 
removed from G,. 

By applying the above argument recursively, the desired fully balanced decom- 
position tree is easily obtained. The only point to observe is that with each 
application of Lemma 3, the biggest tree in any forest corresponding to a subgraph 
decreases in height by at least one. This is because the total number of leaves in each 
forest is cut in half at each step. A total of log N + 1 levels are sufficient for the 
decomposition since the number of nodes in each subgraph is also split in half at 
each step. I 

THEOREM 6. Every graph with a @-bifurcator of size F has a fully balanced 
fi-bifurcator of size 6(2 + \/2) F. 

Proof. The result follows immediately from Theorem 5, with the observation that 
xi>0 2-i’2 < 2 + fi* g 

Remark. The procedure described in Theorems 5 and 6 can be implemented in 
polynomial time. 

5.3. Embeddings in the Tree of Meshes 

Leighton [ 19,201 introduced the tree of meshes as an example of a planar graph 
that cannot be laid out in linear area. He also showed that every N-node planar graph 
can be embedded in an O(N log N)-node tree of meshes. In this section, we define the 
tree of meshes and describe a general strategy for embedding a graph in the tree of 
meshes. 
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The tree of meshes is formed by replacing each node of a complete binary tree with 
a mesh and each edge by several edges which connect meshes at consecutive levels. 
More precisely, the root of the complete binary tree is replaced by an n X n mesh (it 
is assumed that n is a power of 2), the nodes at the second level are replaced by 
n x n/2 meshes, those at the third level by n/2 X n/2 meshes, and so on until the 
leaves of the tree are replaced by 1 x 1 meshes. As shown in Fig. 5, each edge of the 
tree is replaced with edges connecting nodes on one side of the higher level mesh to 
the top row of the mesh at the lower level. The resulting graph is called the n x n tree 
of meshes T,,. It is not difficult to see that T,, has N = 2n2 log n + n2 nodes. 

For some applications, we need to consider only the top levels of the tree of 
meshes. We call the subgraph consisting of levels 0, l,...,p of T, a truncated tree of 
meshes T,, ,*. Note that p < 2 log N. 

THEOREM 7. There is a constant c such that every N-node graph G with an 
(F,fi)-bifurcator can be embedded in TCF,2,0gN,F. Moreover, the embedding is 
regular in the sense that F2/N nodes of G are embedded in a regular fashion in each 
of the N2/F2 bottom-level meshes of TCF,2,0gN,F. 

Proof: We first use Theorem 6 to construct a fully-balanced $-bifurcator of 
size 6(2 +\/2) F for G. We then use the internal meshes of TCF,2,0gN,F to route the 
edges that were removed in the upper 2 log N/F levels of the fully balanced decom- 
position tree for G. The subgraphs in the (2 log N/F) th level of the decomposition 
tree (each of which has [F’/N] or [F2/N1 nodes) are then embedded in the meshes on 
the bottom level of the truncated tree of meshes. 

The internal meshes are used in the same manner that complete crossbar switches 
are used in switching networks. For example, in Fig. 6, six wires enter the mesh 
through the top, of which four exit from the left side and two from the right. In 
addition, four wires enter and exit from the sides. No matter what the ordering of the 
wires, they can easily be routed through the mesh as shown, In general, if the number 
of wires routed through a mesh does not exceed any side-length of the mesh, a routing 
may always be found. Similarly, a graph with M nodes can always be embedded in a 
4M x 4M mesh with nodes placed in a regular fashion. 

Consider only the top 2 log(N/F) + 1 levels of a fully balanced decomposition tree 
for G. Each of the subgraphs at level 2 log N/F of the decomposition tree has 
N(W) ‘logN” = F2/N nodes. (For simplicity we shall assume that F2/N is an integer.) 
Furthermore, if Ei is the maximum number of edges between G - Gi and Gi, where 

FIG. 5. The 4 x 4 tree of meshes r,,. 

51 l/28/2-9 
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16 

FIG. 6. Using a mesh in the tree of meshes as a crossbar switch. 

Gi is a subgraph in the decomposition tree at level i, then it is easy to see that E, = 0 
and by Theorem 6, that 

for 1 < i < 2 log N/F. Solving the above recurrence, we obtain 

Ei G 6(2 + fi) & 2 (fi/2)‘3 S>O 
and thus 

Ei < 6(2 + G>’ &. 

We now embed G in TcF,z,og,,,,F. First, embed each of the (2 log N/F)-level 
subgraps of the decomposition tree in the bottom level meshes. This can be done if 
the side of each mesh at level 2 log N/F exceeds 4F*/N. This is true provided 

@Ifi 2’ogN’F > 4F2/N. 

For c > 4, this inequality is easily satisfied. 
Next embed the additional edges through the upper-level meshes in the natural 

way. No more than 2Ei+l edges pass through any.ith level mesh. Thus the routing 
can be performed if the smaller side of the ith level meshes exceeds 2Ei+, . In other 
words, we must have 

cF/~~“~$ 12(2 + \/2)2F/2i’2. 

A simple calculation shows that the inequality is satisfied for sufficiently large c. fl 

Remark. Throughout the paper, we express bounds using the term log N/F. For 
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all practical purposes, F is much smaller than N and this term is greater than one. 
Should the value of F be larger, however, we shall still define log N/F to be at least 
one. Similar interpretations are assumed for log log N/F and for log log log N/F. The 
conventions avoid the annoying (and trivial) cases when F is very large without 
complicating the analysis further. 

In the preceding embedding, all the nodes of G were mapped to meshes at the 
bottom level of the truncated tree of meshes. Thus, edges between nodes in different 
meshes might have to be routed through as many as 4 log N/F meshes. Such long 
edges are undesirable for a variety of reasons. It is natural to ask whether an 
embedding can be found in which each edge can be routed through fewer intermediate 
meshes. This is answered in the following theorem. 

THEOREM 8. There are constants c and k such that every N-node graph G with 
an (F, fl)-bifurcator can be embedded in TCF,2,0gN,F and such that no edge is routed 
through more than k intermediate meshes. 

Proof We adopt a slight variant of the strategy used in Theorems 5-7. The 
balancing and embedding are done simultaneously and in the same manner as before, 
except at levels 0, k, 2k, 3k ,..., (where k is a constant specified later). At these levels, 
we embed the nodes that are incident to edges previously cut, and we cut the 
previously uncut edges incident to these nodes. Of course, this could triple the 
number of cut edges every k levels but if k is sufficiently large, this happens infre- 
quently and is not harmful. At all other levels the procedure is the same as before, 
using 6 colors and Lemma 3 to partition the decomposition tree. The process 
terminates after 2 log N/F levels. 

As before, the embedding is accomplished by using meshes as switching boxes for 
routing edges. We must ensure that the number of edges routed through any mesh 
does not exceed the side lengths of the mesh. The calculation is the same as before 
except that the number of cut edges is tripled at every kth level. Thus the recurrence 
for Ei is 

Here, we have (without loss of generality) increased number of cut edges by a factor 
of 3 initially and by a factor of 3 Ilk at each level instead of increasing the number of 
cuts by a factor of 3 at every kth level. Solving the recurrence, we find 

El< 18(2+JjJ)& C ($31’k)s* 
S>O 

For k > 4, the sum converges to a constant. The remaining analysis is the same as in 
Theorems 5-7, except that the constants are larger. 1 

Remark. It is worthwhile to point out here that Theorems 7 and 8 could also 
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have been proved using Lemma 1 as instead of Lemma 2. The nodes of G would still 
be balanced in the decomposition tree but the cut edges could only be split f-f at 
each decomposition. While this increases the value of the sum, it still converges to a 
constant. (This is because for sufficiently large k, (2\/2/3) 31’k < 1.) Hence, k and c 
would be larger but the statements of the theorems remain the same. 

5.4. Layouts for the Tree of Meshes 

Thus far we have considered only the problem of embedding,graphs in the tree of 
meshes. How do we lay out the tree of meshes efficiently? Clearly, any layout for the 
tree of meshes also gives a layout for every graph that can be embedded within the 
tree of meshes. In this section we develop two different layouts for the tree of meshes. 

The first layout is a straightforward modification of the “H-tree” layout for 
complete binary trees [ 3 11. The modified layout is obtained by expanding each node 
of the complete binary tree into a mesh of the appropriate size. Figure 7 shows this 
layout. It is easy to see that if S(F) denotes the sides of the layout for TF, then 
S(1) = 1, and 

which gives S(F) = O(F log F). This means that the area of the layout for T, is 
bounded by O(F* 1og’F). As shown in [ 19,201, this bound is optimal. 

For truncated trees of meshes, such as considered in Theorems 7 and 8, a similar 
result holds. 

THEOREM 9. The truncated tree of meshes TF,Z,ogN,F has a layout of area 
O(F’ log* N/F). 

Proof The obvious restriction of the H-layout to the top levels suffices. 1 

Although the mesh edges in the layout shown in Fig. 7 have length 1, the edges 

between meshes can be quite long (nearly half the side of the layout). By pulling in 
meshes closer towards the top level, we can reduce the length of the longest edge 

FIG. 7. The H-tree layout of the tree of meshes. 
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considerably. This technique was introduced in [3] to produce minimax edge length 
layouts for trees, and generalized to graphs with known separators. In the following 
theorem we lay out the truncated tree of meshes with shorter edges, using a simplified 
version of the argument introduced in [3]. This layout will later be used to find 
layouts with short edges for graphs embedded within the truncated tree of meshes. 

THEOREM 10. The truncated tree of meshes TF,2,,,gNIF can be laid out in area 
O(F2 log2 N/F) so that mesh edges have length 1 and edges between meshes have 
length at most O(F log N/F/log log N/F). 

ProoJ Consider the H-tree layout of a complete binary tree of height 
2 log log log N/F, and having (log log N/F)= leaves. Expand each linear dimension by 
a factor p = O(F log N/F/log log N/F), so that each edge of the H-tree layout 
becomes a channel of width /I and each node becomes a /I x /I square. The resulting 
area is O(@ log log N/F)=) = O(F* log2 N/F). 

Since the channels are much wider than the side of any mesh, we can stack many 
meshes within one channel. In particular, as seen in Fig. 8, we embed the top level 
mesh at the center of the layout with the second-level meshes on either side. In the 
first stage of the layout, the meshes in the top levels are placed together in a breadth- 
first manner. Meshes at successive levels are equally spaced at distance 
O(F log N/F/log log N/F) apart. 

We need to ensure that every channel is wide enough to accomodate the meshes 
stacked within it. To this end, let us suppose that all meshes embedded in the first 
stage are stacked together in the same channel. Of course, this is a gross 
overestimate, but suffices for our argument. Since the path from the root to a leaf in 
the original (log log N/F)=-leaf H-layout originally has wire length @(log log N/F), a 
total of c log log N/F levels of TF,2,0gN,F are embedded in the first stage. The value of 
the constant c depends on the values of the other constants in the O-terms and can be 
made as small as necessary. 

The total number of meshes embedded in the first stage is no more than 

FIG. 8. An improved layout for the tree of meshes. 
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21+c’0g’0gN’F. Each mesh has side length no greater than 
meshes within one channel of side p, it suffices to have 

F2l+CbgkXN/F < 0 Flog N/F 

i log log N/F ’ 

F, so to stack all these 

which is easily satisfied when c < 5. Hence every channel has sufficient width to 
stack all the ith level meshes across the channel for any i < c log log N/F. 

In the second stage, we embed the remaining meshes in the p x p squares. A total 
of (log N/F)‘/(log log N/F)* copies of an G(log N/F)-level (F/(log N/F)“*) X 
(F/(log N/F)“*) truncated tree of meshes must be embedded in each of the 
(log log N/F)* ,f3 x p regions to accomplish this. Using the layout described in 
Theorem 9 for each copy, the total area required in each region is 

@ 
(log N/F)’ F2 

(log log N/F)* (log N/F)’ log2 N’F 

This is precisely the amount of area available in each p x p region. Hence the 
embedding is possible. 

It remains to verify that the edges between meshes have length O(F log N/F/ 
log log N/F). This is easily done since meshes in adjacent levels were spaced distance 
O(F log N/F/log log N/F) apart in the first stage, and since meshes in adjacent levels 
were located in the same p x p region in the second stage. I 

6. SOLUTIONS TO THE EIGHT PROBLEMS 

Using the fi’amework described in Section 5, we are now ready to present general 
solutions to the eight problems posed in Section 3. Not surprisingly, the methods of 
the previous section apply almost directly to these diverse problems. This supports 
the belief that the divide-and-conquer strategy based on bifurcators is an efficient 
paradigm for VLSI graph layout, and that the tree of meshes is a versatile network 
for solving layout problems. The solutions presented in this section are evaluated by 
comparing them with lower bounds. Some of the lower bounds are new; to maintain 
continuity, their proofs are deferred to Section 8. 

The first two problems, concerning area-efficient layouts and minimax edge length 
layouts, were already addressed directly in the previous section. 

PROBLEM 1. Given a graph G, produce an area-efficient layout for G. 

By Theorem 7 in Subsection 5.3, every N-node graph with an (F, \/2)-bifurcator 
can be embedded in the truncated tree of meshes TOCF),2,0gN,F. Next, by Theorem 9 in 
Subsection 5.4, the truncated tree of meshes can be laid out in O(F* log* N/F) area. 
Therefore, every N-node graph with an (F, @)-bifurcator can be laid out in 
O(F2 log’ N/F) area. 
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As a simple consequence of Lemma 4, every N-node graph whose smallest @- 
bifurcator is F, must occupy at least F2 area. For otherwise the graph would have a 
fl-bifurcator strictly smaller than F. Therefore, for every graph the upper bound is 
at most a factor of O(log* N/F) worse than optimal. As we shall see in Section 8, the 
upper bound is also existentially optimal in that there are N-node graphs with 
(F,\/i)-bifurcators for all N and F with minimum area R(F* log* N/F). 

Special Cases. Graphs with (F, @)-bifurcators with either of the special forms 
described in Subsection 5.1.1 have O(F*)-area layouts. 

PROBLEM 2. Given a graph G, produce an area-efficient layout for G with 
minimax edge length. 

From Theorem 8 we know that every N-node graph with an (F, fl)-bifurcator can 
be embedded in the truncated tree of meshes TO(F),2,0gN,F so that no edge passes 
through more than a constant number of intermediate meshes. Furthermore, the 
layout for the truncated tree of meshes given in Theorem 10 guarantees that every 
edge between meshes has length bounded by O(F log N/F/log log N/F), and that 
every edge within a mesh has length one. Combining these two theorems, we see that 
every N-node graph with an (F, fi)-bifurcator has an O(F* log* N/F)-area layout 
with maximum edge length bounded by O(F log N/F/log log N/F). 

This bound is also existentially optimal, as will be seen in Section 8. However, the 
bounds are not guaranteed to be universally close. The only general lower bound on 
minimax edge length for N-node graphs whose minimum fl-bifurcator is F, is 
Q(F*/N). (This lower bound is also existentially optimal, as will be shown in 
Section 8.) 

The problem of minimizing maximum edge length appears to quite difficult. 
Although the preceding bounds are disappointingly weak, they are the best known. 
Bhatt and Cosmadakis [2] show that even determining if a tree can be laid out with 
minimax edge length one, is NP-complete. 

Special Cases. The minimax edge length bounds for graphs with special (F, $)- 
bifurcators are O(fl/log N) for type A fl-bifurcators and O(F) for type B \/2- 

bifurcators. 

PROBLEM 3. Given a graph, produce an area-efficient layout in which each wire 
has bounded delay in the capacitive model. 

First we formalize some details of the model. As usual, a graph describes a 
connection of processors, with an edge corresponding to a bidirectional link between 
two processors. Each node is a processing element which contains one driver and one 
receiver for each incident edge. Every transistor in a processing element has the same 
size. Thus, in our layouts, a node may be represented by a long and skinny box of 
constant thickness, with length equal to the area of an internal transistor. Since each 
node has bounded degree, a box will be just big enough to contain all the transistors 
in the corresponding processor. Note that different nodes in the layout will have 
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different lengths, but the same thickness. We assume that the grid spacing is adjusted 
so that nodes and edges have unit thickness and may be laid along grid lines. 
Although wires are allowed to cross, we will not allow nodes to cross; this 
corresponds to transistors not overlapping. Similarly, wires and nodes may not cross. 
The propagation delay over a wire of length I driven by a transistor of area D with 
capacitive load A is proportional to (E t A)/D. The capacitive load presented to a 
transistor equals the sum of incident wire lengths and areas of adjacent transistors. 

THEOREM 11. Every N-node graph G with an (I;, fl)-bifurcator has a bounded- 
delay layout of area O(F2 log’ N/F). 

Proof: As in Theorem 8 of Section 5.4, embed G in a tree of meshes so that 
adjacent nodes are mapped to meshes no more than a constant number of levels 
apart. Since the dimensions of meshes at successive levels, as well as the lengths of 
edges connecting adjacent meshes in the layout of Theorem 9, decrease at the same 
geometric rate, we know that the length of an edge of G is proportional to the side 
lengths of the meshes that contain the corresponding nodes. Assign to each node an 
area that is proportional to the side lengths of the mesh in which it is embedded. 
Thus, the capacitive load on any node, which equals the sum of the areas of all the 
incident edges and adjacent nodes, is proportional to the area of the node. In other 
words, every wire in the layout has bounded delay. 

We need to ensure that each enlarged node can be accomodated in its assigned 
mesh without blowing up the area of the layout by more than a constant factor. This 
can be done by increasing the dimensions of each mesh by a constant factor, and 
laying out the nodes and incident edges as shown in Fig. 9. Notice that the nodes do 
not overlap other nodes or wires. The area of each node remains proportional to the 
side lengths of the mesh containing it, and thus the delay across every wire is 
bounded. I 

Special Cases. Similarly, graphs with special (F, fl)-bifurcators have O(F’)- 
area bounded-delay layouts. 

Theorem 11 means that the area bounds for bounded-delay layouts are no worse 
than the best known general area bounds described for Problem 1. However, it is not 
known whether or not there exists a graph for which any bounded-delay layout 
requires asymptotically greater area than the minimum area layout. In Corollary 12 
we show that the required increase in area is not very large. 

“I “2”3 “4 
C(Fij ‘(m 

I- 
t I I 

FIG. 9. Laying out expanded nodes in a mesh. 
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COROLLARY 12. Any layout of area A for an N-node graph can be transformed 
into a bounded-delay layout of area O(A log* G/N). 

Proof. By Lemma 4 of Subsection 5.1, every graph with a layout of area A has a 
(fi,fl)-bifurcator which can be quickly found. Then by Theorem 11, we can 
construct a bounded-delay layout with area O(d log* fl/N). I 

Remark. Unlike the previous area bounds which can be obtained only when the 
bifurcator for a graph is already known, Corollary 12, for transforming a layout into 
a bounded-delay layout, can be efficiently implemented. 

PROBLEM 4. Given a graph G, produce a layout for G with few wire crossings. 

The layouts for the truncated tree of meshes in Theorems 9 and 10 do not have any 
edge crossings. Since every N-node graph G with an (F, fl)-bifurcator can be 
embedded within the truncated tree of meshes TO(Fj,2,0gN,F, this means that the 
number of crossings in the layout for G cannot exceed the number of nodes in 
T O(F),ZlogN/F’ In other words, the number of crossings in the layout for G is bounded 
by O(F* log N/F). 

In Section 8 we will see that this bound is existentially optimal. We will also show 
that for every N-node graph with a minimum \/2-bifurcator of size F, the number of 
crossings plus the number of nodes is at least Q(F*). Thus, if F is asymptotically 
greater than fl, the number of crossings in the layout for G is no worse than a 
factor O(log N/F) times optimal. 

Special Cases. Graphs with special (F, fi)-bifurcators can be laid out with 
O(F*) crossings. 

PROBLEM 5. Given a graph, produce an area-efficient regular layout for the 
graph. 

In Theorem 7, we showed how to embed any N-node graph G with an (F, fi)- 
bifurcator in TCF,2,0pN,F for some constant c. Moreover, the nodes of G were divided 
evenly among the N*/F* bottom-level meshes of TcF,2,0gN,F and in each bottom-level 
mesh, the nodes of G were embedded in a regular fashion. Thus to produce an 
O(F* log* N/F)-area layout for G that is regular, we need only produce a layout for 
T cF,2,0gN,F for which the nodes at the (2 log N/F)th level are located in a regular 
fashion. In fact, we can do much better, as we show in the following theorem. 

THEOREM 13. The truncated tree of meshes To(Fj,2,0gN,F can be laid out in 
O(F* log* N/F) area so that, for every level i, all nodes within ith level meshes are 
placed in a regular fashion. 

Proof: The first step is to construct a @(log N/F)-layer three-dimensional layout 
[23] of the truncated tree of meshes. Fold the connections between the root of the tree 
of meshes and each of its two sons so that the sons fit naturally on a second layer 
over the root mesh. Fold the connections to each of the meshes at the next lower level 
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so they fit, on the third layer, directly over the meshes on the second layer, and so 
forth. This generates a @(log N/F)-layer three-dimensional layout, with each layer 
occupying linear area. By projecting the three-dimensional layout onto the plane in 
the manner of Thompson [42, pp. 36-381, the result follows. (The same layout can be 
constructed by interleaving the meshes at each level.) 1 

Special Cases. The O(F’)-area layouts for graphs with special Ji-bifurcators are 
also regular. 

PROBLEM 6. Design area-efficient chips that can be configured to realize a large 
number of graphs. 

In Subsection 5.3 we showed that every N-node graph with an (F, $)-bifurcator 
can be embedded in a truncated tree of meshes such that the nodes of the graph are 
embedded in a regular fashion in the bottom-level meshes of TcF,2,0gN,F. In fact, the 
nodes can be mapped to fixed positions within the meshes. Therefore, if we lay out 
the truncated tree of meshes on a chip with processors at these fixed positions, we 
have a configurable chip for all graphs with the corresponding bifurcator. This yields 
the following result. Observe that the area bounds for configurable layouts are the 
same as for unrestricted layouts. 

THEOREM 14. Every N-node graph with an (F, \/Z)-bifurcator has a configurable 
layout of area O(F2 log* N/F). 

ProoJ Simply make the connections in the meshes after the rest of the chip has 
been fabricated. Recall that we used the meshes as crossbar’ switches in 
Theorem 7. 1 

Special Cases. Similarly, graphs with special bifurcators have O(F’)-area 
configurable layouts. 

PROBLEM 7. On a wafer which has arbitrarily distributed defective cells, realize a 
given graph on the good cells. 

In Subsection 5.3 (Theorem 7), we showed how to embed any N-node graph G with 
an (F, fl)-bifurcator in the truncated tree of meshes TOCF),2,0gN,F. The embedding 
had the property that nodes of the graph could be mapped to fixed positions within 
the meshes at the bottom level. Accordingly, we fixed processors at each of these 
positions. 

Faulty processors on a wafer therefore correspond to faulty processors in the trun- 
cated tree of meshes, the correspondence being induced via the layout for the tree of 
meshes. It is clearly no longer possible to realize G in the faulty tree of meshes. 
However it is possible to realize a smaller graph with a similar structure using only 
the functioning processors. 
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More formally, consider a class of graphs for which any N-node graph in the class 
has a @-bifurcator of size O(f(N)) h w ere the function f is such that f(x)/+ is 
nondecreasing for increasing x. For example, f(x) = fi for the class of square 
meshes (as well as for the class of trees or the class of planar graphs). In what 
follows, we will show how to embed any M-node graph from the class in any 
T cf(N),2,0gN,f(Nj that has M functioning processors where N > M and c is a sufficiently 
large constant. In particular, we will show how to embed Tf(M~,2,,,gM,f(M~ in the 
structure. By the results in Subsection 5.3, this will be sufficient to prove the claim. 
Thus the layout strategy developed in Section 5 is impervious to the existence of 
faulty processors. This result substantially generalizes and simplifies a similar result 
proved by Leighton and Leiserson for embedding meshes around faults in [ 221. 

THEOREM 15. Given the preceding constraints on N, M, c, and f, a completely 
functioning truncated tree of meshes Tff,,,,,ogM,f(M~ with M processors can be 
embedded in any partially functioning truncated tree of meshes Tcf(N,,Z,ogN,f(N, with N 
processors (M of which are functioning) so that the processors of the former are 
mapped onto the functioning processors of the latter. 

Proof: Label the functioning processors in each tree of meshes from 1 to M by 
counting from left to right across the bottom level of each graph. (Recall that the 
processors are evenly distributed on the bottom level.) Map the kth processor of 
T fo,~,2,0gM,f(M~ onto the kth functioning processor of Tcf(N~,Z,ogN,f(N~. Route the edges 
of the former graph through the meshes of the latter in the usual way, at the same 
time embedding meshes of the former in blocks within the meshes of the latter. 

It remains to show that the capacity of each mesh in Tc/(N~,Z,ogN,~~N~ is sufficient for 
the embedding. Consider a mesh X on the ith level of Tcf(N~,Z,ogN,f(N~. This mesh has 
side lengths cf (N)/2”* and at most N/2’ functioning processors below it in the 
bottom level of the graph. The only meshes and edges of Tf(Mj,2,0gM,f(,,,j that are 
embedded in X are those that correspond to roots of the forest of complete binary 
trees formed by removing the corresponding interval of (at most N/2’) processors in 
T fmf),*logM/fb+f)’ These roots are identified by splitting Tf(M~,2,0gM,f(M~ (as in Lemma 3) 
at the two endpoints of the interval. There are at most two roots at each level in the 
resulting forest and the sum of their side lengths (a geometrically decreasing sum) is 
proportional to f (M)/2j”, where j is such that iVf/2j <N/2’. (Remember that there 
are at most N/2’ processors in the leaves of the forest so that the height of the largest 
complete binary tree in the forest is j, where M/2] < N/2’.) Thus the sum of the side 
lengths of the meshes embedded in X is O((f (M)/2”*) m) which, for sufficiently 
large c, is less than cf (N)/2”* (this is the side length of X), since N > M and 
f (x)/G is a nondecreasing function. Hence X is large enough and the embedding is 
possible. 1 

Special Cases. A similar argument works for graphs with special bifurcators. 

PROBLEM 8. Given a graph G, assemble G using the minimum number of copies of 
a single chip having few external pin connections. 
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Suppose that we wish to assembleN-node graphs with (F, @)-bifurcators but that 
each chip contains only m nodes, where m < N. Consider a chip consisting of a trun- 
cated tree of meshes To,fiF,fi,, o(logfilF) 9 with the m processors divided equally 
among the bottom-level meshes, and external pin connections to the top of the top 
level mesh. Two copies of this chip may be wired together to form a truncated tree of 
meshes with 2m processors. Thus, graphs with twice as many processors can be 
assembled with two chips than can be assembled on a single chip. More generally, we 
have the following result. 

THEOREM 16. There is a universal restructurable chip with m processors and 
O(,/& F/e) external pins, occupying area O((F’m/N) log’ m/F), such that 
every N-node graph with an (F, $)-btjiircator can be assembled using multiple 
copies of the universal chip. Furthermore, the number of chips used in the assembly is 
as small as possible. 

ProoJ: Consider the top log N - log m levels of a fully balanced decomposition 
tree of G. Each of the subgraphs at level log N - log m has N/2’ogN-‘ogm = m 
nodes, and has a @-bifurcator of size O(fiF/fl). By Theorem 7, each 
of these subgraphs can be realized with a single universal chip consisting of a 
truncated tree of meshes TO(&FI~Nj,O(~og mN~Fj whose area is bounded by 
O((F2m/N) log’ w/F), and which has 0( mF/fl) external pin connections. To F 
complete the assembly, the chips are wired up by making connections between pins 
on different chips as given by the decomposition tree. 1 

A noteworthy consequence of this result is that when F = O(fi), the restruc- 
turable chip has O(G) pins, which is independent of the size of the network to be 
assembled. This is the best possible. To realize networks with larger bifurcators, the 
parameters of the restructurable chip depend on the size of the network assembled. 

Special Cases. For graphs with special bifurcators, the same is true except that 
only O(F’) area is used on each chip. For type A fl-bifurcators, the number of pins 
needed is much lower. For example, N-node trees require only O(log m) pins per chip 
[4]. (As is the case for all planar graphs, the number of pins does not depend on the 
number of nodes. This is because N-node planar graphs have fi-bifurcators of size 
O(n).) Recently, we improved this result to 6 pins for trees by using slightly 
different techniques (but by giving up the use of a small portion of the processors on 
some chips). Hence, pin count constraints place no limit at all on the size of trees 
that can be fabricated with a single configurable chip, no matter how many 
processors are placed on each chip. 

7. LAYOUT ALGORITHMS BASED ON GRAPH BISECTION HEURISTICS 

In the previous section we saw how a variety of layout problems could be 
efficiently solved once the decomposition tree of a graph was known. All the results 
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were of the flavor: “If G has an (F, \/Z)-bifurcator, then...” But, given a graph, how 
do we find a small fl-bifurcator or a suitable decomposition tree for the graph? 

Some graphs are easy to decompose, so that a small bifurcator can be found 
relatively easily. Such graphs include trees, cube-connected cycles, and, more 
generally, graphs that are constructed recursively. It is also easy to find a small bifur- 
cator if a small-area layout is known. (From Lemma 4, recall that graphs with layout 
area A have a (fi, fl)-bifurcator.) 

In general however, it is extremely difficult to find small bifurcators for graphs. 
The reason is that the process of graph decomposition involves the problem of graph 
partitioning, or graph bisection. The graph bisection problem, also known as the 
“min-cut” problem, requires a graph to be partitioned into two components of equal 
size, removing the minimum possible number of edges. This problem is known to be 
NP-complete [ 131. 

There are, however, a large number of heuristics for bisecting graphs which appear 
to perform well in practice [6, 7, 10, 18, 37, 401. Many automated layout systems 
use these and other partitioning heuristics. Is there any theoretical justification for 
this? In what follows, we answer afftrmatively by showing that a provably good 
algorithm for graph bisection can be tailored into a provably good layout algorithm. 

The key idea is to convert a bisecton width heuristic into a heuristic for drawing 
graphs with few crossings. (Determining crossing number is also NP-complete [ 141.) 
Like small-area layouts, such drawings can be used to find small $-bifurcators. The 
following theorem shows that with a provably good bisection heuristic, the number of 
crossings is provably small (i.e., within guaranteed bounds from optimal). 

THEOREM 17. Suppose there is an algorithm which, for every N-node graph with 
bisection width B, finds a bisection of size at most y(N) B in polynomial time. (y(N) is 
some nondecreasing functional measure of error.) Then there is a polynomial time 
algorithm which, for every N-node graph with crossing number C, produces a drawing 
with at most O((C + N) y’(N) log’ N) crossings. 

Proof Use the bisection width algorithm to produce a decomposition tree for G 
by recursively bisecting each subgraph in the tree. As in Fig. 4, define G,, and G,, to 
be the left and right sons of G, in the decomposition tree. Further define B, to be the 
bisection width of G,, C, to be the crossing number of G, and N, to be the number 
of nodes in G,. Clearly, N, = N/2 Iw’ A simple application of the planar separator . 
theorem shows that C + N > R(B2) for any graph and thus C, + N, > O(Bk) for 
every w [ 19,201. Since G, contains G,,, for every w’, we also know that C, > C,,, 
and thus that C, + N, > Q(Bi,,) for every w’. 

The algorithm for drawing G is recursive. At each step, we will use drawings of 
G,, and G,, to construct a drawing of G,. In addition, we will store a path from 
each node to the exterior face of the drawing which has a small number of crossings. 
These paths are used when inserting edges at each recursive step, but are otherwise 
only remembered and updated (i.e., they do not count in the crossing totals). Let CL 
be the number of crossings in the constructed drawing of G, and let P, be the 
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maximum number of edges that would have to be crossed to draw an edge from any 
node in the constructed drawing of G, to the exterior of the drawing. Using a 
straightforward divide-and-conquer analysis similar to that used to prove 
Theorem 7-8 of [ 191, we can see that 

C:, < CL, + C:, + y’(N) B; + y(N) B,P, 

and 

for every W. Solving the latter recurrence, we find that 

and thus that 

c: < CL, + c:, + O(y2(N)(C, + NJ log N,). 

It is now a straightforward matter to prove by induction on 1 WI (starting with 
] w J = log N and decreasing) that 

c:, < 0(Y*(w(c, + NJ 14 NJ, 

thus proving the theorem. 1 

As a consequence of Theorem 17, we can prove the following result on finding @- 
bifurcators. 

THEOREM 18. If there exists a polynomial time algorithm which finds a y(N) B- 
bisection of any N-node graph with bisection width B, then there is a polynomial time 
algorithm for finding a (p(N) F, \/Z)-bifurcator for any graph G, where F is the size 
of the minimum fl-bifurcator for G and p(N) = O(y(N) log3’* N). 

Proof. First use Theorem 17 to construct a drawing for G with C’ = 
W*(N) log* N(C + N)) crossings, where C is the minimal crossing number of G. In 
what follows, we show how this drawing can be used to construct a fl-bifurcator for 
G of size O@(N) log Ndm). 

Consider the graph G’ formed by replacing the C’ edge crossings in the drawing of 
G with artl3cial nodes. This graph is planar and has M = N + C’ nodes. By the 
Lipton-Tarjan planar separator theorem [29], we can conclude that G’ has a fi- 
bifurcator of size O(m) = 0(,/m). Thus G has a \/2-bifurcator of size 
O(@??) = O(y(N) log Ndm). 

By the optimality of C and the solution to Problem 4 in Section 6, we know that 
C + N < O(F* log N/F), where F is the size of the minimal @-bifurcator of G. 
Hence, we have constructed a @-bifurcator for G of size O(y(N)(log N) 
Fdv) = p(N) F, where p(N) = 0(?(N) log3’* N). 1 
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Although Theorem 18 can be easily applied to the layout area problem, better 
bisection-width-based bounds can be derived directly from Theorem 17. These bounds 
are stated in the following theorem. 

THEOREM 19. If there exists a polynomial time algorithm that finds a y(N) B- 
bisection for any N-node graph with bisection width B, then there exists a polynomial 
time algorithm that produces a layout for any N-node graph G with area at most 
v(N) A, where A is the minimum layout area of G and w(N) = 0($(N) log4 N). 

Proof. First use the algorithm described in Theorem 17 to find a drawing for G 
with at most #(N)(C + N) crossings, where C is the crossing number of G and 4(N) = 
O(y*(N) log* N). Convert the drawing into a planar graph by replacing each crossing 
with an artificial node as in Theorem 18. Using the algorithm developed by 
Leiserson [26] and Valiant [45], this graph can be laid out using at most 
O(#(N)(C + N) log* N) area. The construction is completed by replacing the artificial 
nodes with their original edge crossings. Since A > C + N, it is clear that the layout 
has area at most w(N) A, where v(N) = O(y*(N) log4 N). 1 

8. AREA,~ROSSING NUMBER, AND EDGE LENGTH BOUNDS 

In Section 6, we argued that the new framework is universally good in the sense 
that no graph with an (F, fi)-bifurcator has a much better layout than that provided 
by the framework. In this section, we show that the framework is existentially optimal 
inasmuch as there exist graphs with (F, fl)-bifurcators that are laid out optimally 
by the framework. 

8.1. Universal Bounds 

In Theorem 20, we characterize the layout area, crossing number and minimax 
edge length of a graph in terms of its minimal fl-bifurcator. Most of the bounds 
have already been proved but we state them together again for convenience. 

THEOREM 20. Let F be the minimum fl-bifurcator of an N-node graph G, which 
has minimum layout area A, minimax edge length L, and crossing number C. The 

following inequalities hold, and the upper bounds can all be realized simultaneously. 

F* <A < 0 (F* log* N/F), 

R(F*) Q C + N < 0 (F* log N/F), 

and 

R(F*/N) <L < 0 
i 
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Proof. The upper bounds were proved in the solutions to Problems 1, 2, and 4 in 
Section 6. Note that the bounds are all realized for the same layout. 

The area lower bound is from Lemma 4. The crossing number lower bound follows 
from the analysis in Theorem 18. In particular, any N-node graph with crossing 
number C has a @--bifurcator of size O(dm). The edge length lower bound 
follows from the crossing number lower bound. Since C + N > R(F*), the wire area 
of the layout is at least that large and thus at least one of the O(N) wires in the 
network must have length Q(F*/N). (In fact, the average edge length is Q(E;*/N).) I 

As we have noted throughout the paper, it is possible to improve the upper bounds 
in Theorem 20 for special classes of graphs. As we show in the next section however, 
such improvements are not always possible. 

8.2. Existential Bounds 

We next show that the universal upper and lower bounds given in Theorem 20 are 
everywhere existentially tight. We first define the expander-connected mesh and show 
that it achieves (simultaneously) the universal lower bounds on area, crossing number 
and edge length for any N and F. Then we define the expander-connected mesh of 
trees and show that it attains the corresponding universal upper bounds. 

An expander-connected mesh P,,,, with N = mn* nodes is formed by superim- 
posing n* copies of an m-node expander graph on m copies of an n x n mesh. More 
precisely, define P,,, to be the graph consisting of m disjoint n-by-n meshes which 
are interlinked with additional edges so that for each i and j (1 < i, j < n), the 
subgraph induced on the m nodes which are in the (i,j) position of some mesh is an 
expander graph. For example, P,,, is shown in Fig. 10. The dotted lines represent 
edges in the expander graphs while the solid lines represent edges in the meshes. 

Remark. Strictly speaking, the expander-connected mesh has node degree 7 and 
does not lit into our layout model. This problem can be dealt with in a variety of 
ways but the simplest is to replace each degree 7 node with a 7-leaf binary tree. The 

2- node expander graph 

FIG. 10. The expander-connected mesh P,., 
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area, crossing number, and minimax edge length bounds for the resulting degree 3 
graph differ by at most a constant factor from those derived below for the unaltered 
graph. A similar fact is also true for the expander-connected mesh of trees. 

In the following we show that the size of the smallest fl-bifurcator of P,,, is at 
least J2(mn). This is accomplished using the lower bound techniques developed in 
[ 19,201 to prove that the bisection width of P,,, is at least Q(mn). This means that 
the smallest \/2-bifurcator for P,,, has size f2(mn). 

LEMMA 21. The bisection width of P,,, is at least L?(mn). 

Proof. Let (i,j, k) denote the (i,j) node of the kth mesh of P,,,. In addition, let 
P;,, denote the graph formed by extending each expander graph of P,,, to a 
complete graph (i.e., to the graph formed by inserting edges between nodes (i,j, k) 
and (i,j, k’) for every 1 < i,j < n and 1 < k, k’ < m). In what follows, we will use the 
methods of [ 19,201 to find a lower bound on the bisection width of Ph,n. This, in 
turn, will be used to find a lower bound on the bisection width of P,,,. 

Consider the embedding of the complete graph on mn* nodes (Kmn2) in Ph,, which 
links node (i,j, k) to node (i’,j’, k’) via the path 

(i,j, k) + (i 5 l,j, k) -+ (i f 2,j, k) + -.a + (i’,j, k) 

+ (i’,j k 1, k) + (i’,j f 2, k) + s-e -+ (i’,j’, k) 

+ (i’, j’, k’). 

(Note that the notion of an embedding used here is different than that defined in 
Section 2, where edges were mapped to edge-disjoint paths in the grid.) 

A simple counting argument reveals that each mesh edge of Ph,, is utilized at most 
O(mn3) times by the embedding of K,,, while each complete graph edge is used at 
most O(n’) times. Since at least m2n4/4 edges of K,,,, must cross any bisection of 
K m,n2, we can thus conclude that any bisection of Pk,, must cut at least Ll(mn) mesh 
edges or at least R(m*n*) complete graph edges. Clearly, any bisection of Ph,, which 
cuts Ll(mn) mesh edges must also cut Q(mn) mesh edges of P,,,. In what follows, we 
will show that any bisection of Ph,, which cuts s complete graph edges must cut at 
least fJ(s/m) expander edges of P,,, . This will imply that any bisection of P&,n which 
cuts R(m*n*) complete graph edges must cut O(mn*) expander graph edges of P,,,, 
thus completing the proof. 

Consider a bisection of Ph,, which cuts s complete graph edges. Let si,j denote the 
number of edges cut in the (i, j) complete graph of PL,, for 1 < i, j < n. Clearly, 
s = Cr,j=, s~,~. As each node in an m-node complete graph is incident to at most 
m - 1 edges, we know that the bisection of Ph,, divides the (i,j) complete graph into 
two subgraphs which contain at least siJ/m nodes each. Thus at least 12(sij/m) edges 
of the (i,j) expander graph of P,,, are cut by the bisection. Summing, we find that 
the bisection cuts at least G(s/m) expander edges of P,,, in total. 1 

We can construct an expander-connected mesh with N nodes and minimum fi- 

571/28/2-IO 
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bifurcator F for any N and F such that G(fl) < F < O(N), by setting n = @(N/F) 
and m = O(F*/N). We now show how to construct a layout for P,,, which achieves 
(up to a constant) the universal lower bounds for area, crossing number and minimax 
edge length of Theorem 20. 

THEOREM 22. There is a layout for P,,, which has area and crossing number at 
most O(m2n2) = O(F2) and maximum edge length at most O(m) = O(F’/N). 

ProoJ Lay out each expander graph in an O(m)-by-O(m) grid so that the node in 
the kth mesh is in the (k, k) position of the grid. Arrange these sublayouts in a mesh- 
like pattern so as to be consistent with the mesh structure of P,,,. Next insert the 
mesh edges in the natural way. The resulting layout should look like Figure 10. It is 
easily verified that the area of this layout (and hence its crossing number) is at most 
O(n’) X O(m’) = O(m2n2), and that every edge has length at most O(m). [ 

Before defining the expander-connected mesh of trees, it is useful to review the 
definition of a mesh of trees as proposed by Leighton in [ 19,201. (An equivalent 
structure, the orthogonal trees network, has been studied by Nath, Maheshwari, and 
Bhatt in [33]. Cappello and Stieglitz have also studied this graph, which they call the 
orthogonal forests, in [ 81.) The 2-dimensional mesh of trees M,,, (where n is assumed 
to be a power of 2) is defined as follows. Starting with an n x n matrix of nodes and 
adding nodes wherever necessary, construct a complete binary tree in every row and 
column of the matrix. The trees should be constructed so that 

(i) the leaves in each tree are precisely the nodes in the corresponding row or 
column of the original matrix, and 

(ii) the subgraph induced on the nodes in each quadrant is M2,n,2. 

For example, we have drawn M,,, in Fig. 11. The nodes in the original 4 x 4 
matrix are represented by dots. The nodes which were added in order to form row 
trees are drawn as small triangles while those added to form column trees are shown 
as small squares. Solid lines indicate row tree edges while dashed lines indicate 
column tree edges. 

FIG. 11. The 4 x 4 tree of meshes M,,, . 
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The expander-connected mesh of trees is similar to the expander-connected mesh 
P m,n except that the meshes are replaced by meshes of trees. More precisely, the 
expander-connected mesh of trees (denoted by Q,,,) is defined to be the graph 
consisting of m disjoint n x n meshes of trees which are interlinked with additional 
edges so that for each i and j (1 < i, j < n), the subgraph induced on those leaves in 
the (i, j) position of some mesh of trees is an expander graph. For example, we have 
drawn Q2,* in Fig. 12. The dotted lines represent edges in the expander graphs while 
the dashed and solid lines represent edges in the meshes of trees. 

It is not difficult to check that Q,,, has N= @(mn’) nodes and a \/Z-bifurcator of 
size F = mn. In the following theorem, we will show that Q,,, has layout area at least 
,f2(m2n2 log* n) = R(F* log* N/F), crossing number at least fJ(m*n* log n) = 
LJ(F* log N/F) and minimax edge length at least B(mn log n/log log n) = 
L?(F log N/F/log log N/F). Thus the universal upper bounds proved in Theorem 20 
are existentially tight for every N and F. 

THEOREM 23. The expander-connected mesh of trees Q,,, has layout area 
O(m*n* log* n), crossing number O(m*n* log n) and minimax edge length 
O(mn log n/log log n). 

Proof: The upper bounds follow trivially from Theorem 20 and the fact that Q,,, 
has a \/Z-bifurcator of size O(mn). The lower bounds are substantially more difficult. 
In fact, we suggest that the reader be familiar with the lower bound techniques 
described in [ 19, 201 for the case when m = 1 before wading through the following 
proof for general m. We commence with the area lower bound. 

8.2.1. Area Bound 

Let W,(n) denote the minimum wire area of Q,,,. We will show that for a 
sufficiently small (but positive) constant Q, 

W,(n) > am*n* log* n 

for all m and n. This will, of course, imply the desired lower bound for layout area. 
The proof is by induction of n. Since Q,,, contains n* disjoint m-node expander 

FIG. 12. The expander-connected mesh of trees Q2,2. 
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graphs, the hypothesis is clearly true for n < 16 provided that a is a sufficiently small 
constant. In what follows, we will assume that the hypothesis is true for all values 
less than n in order to prove it for n. 

Consider any layout for Q,,, which uses IV,(n) wire. Partition the layout into 
three vertical strips V,, V,, and V2 so that center strip contains 7mn*/8 leaves and 
each outer strip contains mn*/16 leaves. Similarly partition the layout into three 
horizontal strips H,, Hi, and H, so that the middle strip contains 7mn2/8 leaves and 
each outer strip contains mn*/16 leaves. For example, see Fig. 13. 

Let d denote the length of the longest side of the center block formed by the inter- 
section of V, and H,. Without loss of generality, we assume that the longest side is 
horizontal. In what follows, we will show that d > & fimn log n. 

Since each of the regions V, n H, and V, n H, can contain at most mn*/l6 
leaves, it is clear that I’, n H, contains at least 3mn2/4 leaves. Consider the n3’* 
subgraphs of Q,,, produced by eliminating the top j log n levels of the row and 
column trees of Q,,,. Each of these subgraphs is isomorphic to Qm,n,,4. By the 
pigeonhole principle, at least a of these subgraphs have at least f of their leaves inside 
V,nH,. If d < & &mn log n (otherwise, we are done), then at most 
4d < f fimn log n edges can cross the boundary of I’, n H,. Thus, at most 
;codan log n of the subgraphs which have most of their leaves in V, n H, can have 
m or more nodes or parts of edges outside of V, n H,. (This is because every 
partition of Q,,,,,4 for n > 16 into two subsets, each of which contains m or more 
nodes, requires the removal of at least m/c, edges where c, is a constant.) 

This means that V, n H, contains at least an3’* - $c, &n log n nearly complete 
copies of Qm,nlla. Since (by induction), Wm(n1’4) > &am*n”* log* n, and since each 
nearly complete copy of Q,,,,,4 is missing at most m nodes and edges, it is not 
difficult to show that the wire area of each nearly complete copy of Q,,,,,4 is at least 
&am n * ‘I* log* n. Thus I’, n H, contains at least 

(an312 - $,&in log n) X &am*n”* log* n 

wire area. For constant a sufficiently small, this is at least &am%* log’ n. Hence 
d > &-&mn log n, as claimed. 

We next use the layout for Q,,, to construct a drawing for the complete graph on 

-1-y 
n&l6 I 7 mn2/8 mn2/16 

FIG. 13. Partitioning a layout. 
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mn2 nodes (namely, the mn2 leaves of Q,.,). In particular, the edge from leaf (i,j, k) 
to leaf (i’, j’, k’) is drawn from (i,j, k) to (i/J’, k) along the path from (i,j, k) to 
(i’,j, k) in the jth row tree of the kth tree of meshes and from (i’,j, k) to (i’,j’, k) in 
the i’th row tree of the kth tree of meshes. The edge to (i/J’, k’) is completed by 
drawing a line from (i/J’, k) to (i’,j’, k’) directly. (Notice that we have traced over 
the mesh of trees edges but not the expander edges.) No matter how the edges are 
drawn in the plane, however, (e.g., they may cross or overlap) it is clear from Fig. 13 
that the sum of the lengths of the edges (as measured in Euclidean space) is at least 
(mn2/16)’ d> 2-12,,/- am3n5 log n. This is due to the fact that (mn2/16)2 edges pass 
from region V, to region V, and that these regions are separated by a distance d. 

Let Li denote the sum of the lengths of the edges in the ith levels of the binary 
trees in the layout of Q,,,. In addition, let R denote the sum Czj= i Ri,j, where Ri,j is 
the sum over 1 < k, k’ < m of the distance between (i,j, k) and (i,j, k’). Each level i 
edge is traced over at most mn32-’ times in the drawing of the complete graph. In 
addition, the straight-line path between (i,j, k) and (i,j, k’) is traced over at most n2 
times for any i,j, k and k’. Thus, 

log n 

Rn2 + x Lin3m2-’ > 2-“&m3ns log n. 
i=l 

This means that one of the following inequalities must be true: 

R>2-13fim3n310gn 
or 

log n 
,JTl Li2-’ > 2-13 fim2n2 log n. 

In the first case, we observe that there is a constant c, such that R’ > c, R/m, 
where R’ = CyJ=, Rj,j and R;,j is the sum of the lengths of the edges in the (i,j) 
expander graph of Q,,,,. This observation follows from the fact that Rf,j > c,Ri,dm 
for every i and j. (This fact can be proved by integrating the values of Ri,j and R;,j 
over all vertical and horizontal cuts of the layout. Each cut will contain r(m - r) 
pieces of edges of Ri,j and (c,/m) r(m - r) pieces of edges of R1,, where r and m - r 
are the number of nodes on opposite sides of the cut.) Since W,(n) > R’ and since 
R’ 2 2-“c,@m2n3 log n, we can conclude that (for a sufficiently small constant a) 
W,,,(n) 2 am2n2 log n, thus proving the inductive hypothesis. 

In the second case, we can show by a simple contradiction argument (just plug the 
claimed value back into the sum) that there exists an i such that 

L, > 2-13fim2n2 log n2’ 
I/ pi’ ’ 

where /I is the constant CyY I l/i*. Using the straightforward relation 

W,(n) > 22iWm(n2-i) + Li, 
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we can conclude that 

W,(n) > 22’amZ(n2-i)2 (log n - i)’ + 
2-13 &irn*n* log n2’ 

~am2n210g2~~2ia~2~210gn+ 2-13~~~~210gn2i 

which is at least am*n* log’ n for a sufficiently small constant a. This completes the 
proof of the area lower bound. We next prove the minimax wire length lower bound. 

8.2.2. Wire Length Bound 

From the proof of the wire area lower bound, we know that one of the following 
inequalities must hold: 

R > 2-13fim3n3 log n, 

or 
log n 
JJ Li2-’ > 2-13fim2n2 log n. 
i=l 

When the first inequality holds, we showed that W,,,(n) > R(m*n’ log n). Since 
Q,,, has O(mn*) edges, this means that at least one of the edges in the layout must 
have length LI(mn log n) > O(mn log n/log log n). When the second inequality holds, 
a simple contradiction argument (as before, just plug the values back into the sum) 
can be used to show that either 

(1) there is an i < 6 log log n such that Li > R(m*n* log n2’/log log n), or 
(2) there is an i > 6 log log n such that Li > Q(m*n* log n2’/i*). 

Since there are mn2 ‘+I level i edges in Q,,, , the first condition insures that the 
layout contains a wire of length f2(mn log n/log log n). The analysis of the second 
case is somewhat more difficult. 

Consider a layout for Q,,, which achieves the minimax edge length and (among 
layouts which satisfy this constraint) has minimum area. Since W,(n) > Li for all i, 
the second inequality implies that 

W,(n) > fl(m*n* log’ n/log log* n) 

2 Q(m*n* log6 n) 

for this layout. Thus (without loss of generality) the horizontal length of the layout is 
at least O(mn log3 n). 

Partition the layout into three equal-area vertical strips. By the minimality of the 
layout area, we can conclude that each of the outer strips contains Q(mn log3 n) 
nodes. (Otherwise, a smaller layout with identical minimax edge length could be 
constructed.) 
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Since each mesh of trees has diameter O(log n), each mesh of trees must be entirely 
contained in an O(mn log’ n) by O(mn log’ n) rectangle. (Otherwise, there would be 
an edge of length Sd(mn log n) and we would be done.) Thus nodes in the same mesh 
of trees must be grouped together in the layout. Since each mesh of trees contains 
@(n’) nodes, the outer strips must contain fJ(m log3 n/n) complete meshes of trees. 
Thus at least a(m log3 n/n) > a(m/n) nodes of each expander graph are contained in 
the left and right outer strips of the layout. Since any two sets of rl and r2 nodes are 
linked by a path of length O(log(m/r,) + log(m/r,)) in an m-node expander graph, 
this means that there is a path of length O(log n) connecting the left outer strip to the 
right outer strip. As the strips are separated by a distance R(mn log3 n), we can 
conclude that the layout contains an edge of length O(mn log* n). This completes the 
proof of the minimax wire length lower bound. We next prove the crossing number 
lower bound. 

8.2.3. Crossing Number Bound 

Let C,(n) denote the minimum crossing number of Q,,,. As was the case with the 
wire area lower bound, we will show by induction on n that 

C,(n) > cfm*n* log n 

for a sufficiently small (but positive) constant a. The basis of the induction follows 
from the fact that C > Q(B*) for any N-node graph with bisection width B s f2( @). 
This fact immediately implies that the crossing number of an m-node expander graph 
is n(m’). In what follows, we will assume that the hypothesis is true for all values 
less than n in order to prove it for II. 

Consider a drawing of Q,,, in the plane which has C,(n) crossings. By the 
optimality of C,(n), we can assume that no pair of edges cross more than once and 
that pairs of edges incident to the same node do not cross at all. Using the drawing 
for Q,,,, construct a drawing for a graph with R(m2n4) edges and mn* nodes as 
follows: 

(1) Draw an edge between every pair of nodes in the same expander graph 
which are incident to crossing expander graph edges. 

(2) Draw an edge between pairs of leaves in the same mesh of trees. 
(3) Draw an edge between pairs of leaves separated by a path of length 1 or 2 

in the graph formed by steps (1) and (2). 
(4) Eliminate multiple edges. 

Each edge in the new graph should be drawn along the edges of Q,,, in the natural 
way (e.g., the edges introduced in step (1) are drawn along the corresponding 
crossing edges of Q,,,). It is not difficult to check that each expander edge is traced 
over at most m times during step (1) and that each level i mesh of trees edge is traced 
over at most n32-’ times in step 2. These values are multiplied by a factor of O(n’) 
for expander edges and O(m) for mesh of trees edges by step 3. 
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Since every drawing of an m-node expander graph has G(m’) crossings, it is not 
diflicult to see that the resulting graph (even after step 4) has E = ~(m’n”) edges and 
N = mn’ nodes. In Theorem 7-6 of [ 191, Leighton shows that any drawing of such a 
graph must have f2(E3/N2) = D(m4n8) crossings. Thus 

logn logn 

sm2n4 + C rim2n52-’ + 2 tiJm2n62-‘-j > Q(m”n”), 
i=I i,j=l 

where ti,j is the number of crossings in the drawing of Q,,, involving a level i edge 
and a level j edge, ri is the number of crossings involving a level i edge and an 
expander edge, and s is the number of crossings involving two expander edges. This 
means that one of the following inequalities must be true: 

s > Q(m2n4), 
logn 
1 ri2-’ > 12(m2n3), 
i=l 

or 

ti,j2-i-j > R(m%*). 
i,j= 1 

If the first inequality holds, then we can conclude that 

C,(n) > s > R(m2n4) > am2n2 log n 

for sufficiently small a. If the second inequality holds, then 

logn logn 

C,(n) > x ri 2 2 ri2-i > D(m2n3) > am*n* log n 
i=l i=i 

for sufticiently small a. The analysis for the third case is somewhat more difficult. 
Let ti = Cp:/’ ti,j be the number of crossings involving a level i edge and a level j 

edge, where j> i. When the third inequality holds, it is clear that x:2,” ti2-2i > 
B(m*n*). Thus there is an i such that ti > 12(m2n22’). Using the inductive hypothesis, 
we can thus conclude that 

C,(n) > 2*‘C,(n2-‘) t ti 

> 22iam2(n2-i)2 (log n - i) t ti 

= am*n* log n - iam*n* + Q(m*n*2’) 

which is at least am2n2 log n for a suffkiently small constant a. This concludes the 
proof of the crossing number lower bound and of the theorem. 1 
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9. REMARKS 

The divide-and-conquer strategy based on bifurcators has also been successfully 
applied to the study of three-dimensional VLSI layouts [23]. In addition, the 
techniques and results are applicable to graph and data-structure embeddings, and 
also provide bounds on one- and two-dimensional bandwidth minimization. 

There are a number of problems left unresolved in this paper. Some of the more 
important ones are mentioned below. 

(1) How much area is needed to lay out an N-node planar graph? The best 
universal upper bound is O(N log* N) [26,45] while the best existential lower bound 
(for the tree of meshes) is R(N log N) [ 19,201. 

(2) Is there a polynomial time algorithm for laying out trees with edges not 
much longer than the minimax edge length? The best tree layout algorithm known 
produces layouts with edges of length @(@/log N)[3]. Although this is optimal for 
some trees, it is way off for others. On the other hand, it is N&complete to determine 
if a tree can be laid out with all edges of length one [2]. 

(3) Is there a better way to realize a network in an environment that contains 
defective processors? Theorem 15 guarantees that any graph can be realized using the 
good processors provided the “channels” have width R((F/@) log N/F) in a regular 
layout. This bound is clearly optimal for some networks (such as expander-connected 
meshes of trees) but is not known to be optimal for simpler networks. In particular, it 
is not known whether or not a constant number of tracks per channel suffices to 
configure a mesh from the good processors. Since F = fl for an N-node mesh, the 
best known upper bound on channel width is O(log N). 

(4) Is there a provably good, polynomial time algorithm for the bisection 
width problem? Although the bisection width problem is known to be NP-complete 
[13], there are many heuristics which do quite well in practice [6, 7, 10, 18, 37, 401. 
Analyzing these or developing new heuristics along similar lines may help solve the 
layout problem. 

(5) Is there a provably good, polynomial time algorithm for the crossing 
number problem? This problem was recently shown to be N&complete [ 141, but the 
possibility of approximation algorithms is not ruled out. The arguments of Section 7 
suggest that graph bisection algorithms might be effective for this problem. 
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