
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 28, 300-343 (1984)

A Framework for Solving VLSI Graph Layout Problems*

SANDEEP N. BHATT AND FRANK THOMSON LEIGHTON

Laboratory for Computer Science and Department of Mathematics,
Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139

Received September 3, 1982; revised February 9, 1983

A new divide-and-conquer framework for VLSI graph layout is introduced. Universally
close upper and lower bounds are obtained for important cost functions such as layout area
and propagation delay. The framework is also effectively used to design regular and
configurable layouts, to assemble large networks of processors using restructurable chips, and
to configure networks around faulty processors. It is also shown how good graph partitioning
heuristics may be used to develop a provably good layout strategy.

1. INTR~DLJcTI~N

The tremendous engineering advances made in very large scale integration (VLSI)
fabrication technology have stimulated considerable theoretical interest in VLSI
circuit layout problems. Most of this effort has centered on minimizing the layout
area of a circuit on a chip. This is due, in part, to the fact that layouts which
consume large amounts of chip area are more expensive to fabricate, less reliable and
harder to test than layouts which consume smaller amounts of chip area.

Other layout-related issues that have been studied include: minimizing propagation
delay (either by decreasing wire lengths or by increasing transistor sizes), minimizing
the number of wire crossings in a layout, producing regular layouts for gate-arrays,
designing chips that can later be configured to realize a large number of circuits,
configuring networks around defective cells on a wafer, and assembling large systems
of processors from copies of a single basic chip which has few external pin con-
nections.

Most theoretical techniques devised thus far are based on the divide-and-conquer
paradigm and require the use of a separator theorem to recursively partition a given
circuit. Although separator-based techniques work well for some graphs, they perform
very poorly for others.

In this paper we propose an alternative framework for solving VLSI graph layout
problems. Like previous approaches, the new framework is based on the divide-and-

* This research was supported by Air Force Contract AFOSR-82-0326 and DARPA Contract
N00014-80X4622. Tom Leighton was also supported in part by a Bantrell Fellowship.

300
0022-0000/84 $3.00
Copyright 0 1984 by Academic Press, Inc.
All rights of reproduction in any form reserved.

SOLVING VLSIGRAPHLAYOUTPROBLEMS 301

conquer paradigm. Instead of using a separator theorem to recursively partition a
graph, the new framework requires the use of a bifurcator. The difference between
bifurcators and separators will, of course, be explained in the paper, but the two
primary advantages of bifurcators over separators may be stated here. First, unlike
separators, bifurcators may be efficiently computed using either a good graph
partitioning heuristic, or from a layout with small area. Second, bifurcators can be
used to produce layouts that are efficient in a variety of respects, not layout area
alone.

For example, using the notion of bifurcators, an area-efficient layout can be
transformed into a layout which is both area-efficient and also has small propagation
delay. The same result can also be achieved if, instead of an area-efficient layout, we
use an efficient graph bisection heuristic. Separator theorems are inherently weaker
than bifurcators for such purposes, and no other approach is known to enjoy the
versatility of bifurcators.

This paper is based on, and unifies the work contained in three extended abstracts
by Bhatt and Leiserson [3,4] and Leighton [21]. Although the results are self-
contained, some familiarity with recent results in VLSI layout theory would be
helpful in reading this paper. A fairly comprehensive list of recent research papers is
included in the references. In particular, Ullman [43] provides a good introduction to
issues in VLSI layout theory.

The paper is divided into nine sections. In Section 2, we review the layout model
and the separator-based approach to VLSI layout. In Section 3, we formally state
eight VLSI layout problems and briefly review the progress made on each problem.
The combinatorial lemmas proved in Section 4 provide the basis of the new
framework described in Section 5. In Section 6, we describe how the framework can
be used to efficiently solve the eight layout problems described in Section 3. Section 7
shows how a good graph bisection heuristic can be used to produce a provably good
layout strategy. In Section 8, we prove that the upper bounds for area, crossing
number and minimax edge length found in Section 6 are existentially optimal. The
paper concludes with some remarks and open questions in Section 9.

2. BACKGROUND

Thompson [41, 421 provided the first formal model for VLSI circuit layout. The
model is simply stated and captures the important aspects of layout problems in a
realistic manner. A brief description of the model is included in Subsection 2.1. In
addition, Thompson also proved some elementary upper and lower bounds on the
area required to lay out an arbitrary graph, which are discussed in Subsection 2.2.
More general bounds were obtained later by Leiserson [26,27] and Valiant [45], who
independently developed a divide-and-conquer layout strategy based on separator
theorems. Subsection 2.3 summarizes their results and highlights a major deficiency
of any general-purpose layout scheme based on separator theorems.

57 l/28/2-8

302 BHATT AND LEIGHTON

2.1. The Layout Model

In order to cast VLSI layout problems within a mathematical framework,
Thompson [41,42] developed a formal model for VLSI graph layout. The model is
based on, and is consistent with, the VLSI design rules established by Mead and
Conway [3 I]. It is also similar to the widely used Manhattan wiring model. In the
Thompson grid model, a layout for a graph is characterized as an embedding within a
two-dimensional grid. A two-dimensional grid is a collection of horizontal and
vertical tracks spaced apart at unit intervals. A layout for a graph G is specified by
an embedding which assigns nodes of G to points in the grid where horizontal and
vertical tracks intersect, together with an (incidence-preserving) assignment of the
edges of G to paths in the grid. The paths of the layout are restricted to follow along
grid tracks and are not allowed to overlap for any distance (although a vertical path
segment may cross a horizontal path segment). In addition, the paths may not cross
nodes to which they are not adjacent. For obvious reasons, we restrict our attention
to graphs in which no node has degree greater than four. As an example, Fig. 1 shows
a layout for the complete graph on four nodes.

Remark. The results in this paper easily extend to variants of the Thompson grid
model. For example, graphs with bounded valence greater than four may be laid out
by mapping each node to a region of the grid, instead of a single grid point. The
results are also applicable to networks with large processors. Techniques for dealing
with large processors are described more fully in the discussion of Problem 5 in
Sections 3 and 6.

2.2. Elementary Bounds on Layout Area

Although there are a variety of important engineering considerations in choosing
one layout for a graph over other possible layouts, the best understood, and perhaps
the most desirable cost measure to minimize is layout area. The area of a layout is
most naturally defined as the area of the “bounding-box” around the layout, and
equals the product of the number of vertical tracks and the number of horizontal
tracks that contain a node or wire segment of the graph. For example, the layout of
Fig. 1 has area 15. This is not the minimum possible; there is another layout with
area 9.

FIG. 1. A layout with area 15.

SOLVING VLSI GRAPH LAYOUT PROBLEMS 303

How much area does an N-node graph require? Clearly, the area cannot be less
than the number N of nodes. On the other hand, by embedding nodes at equally
spaced intervals along a line, and using a distinct horizontal track for each edge (as
shown in Fig. 2), it is clear that the area required for an N-node graph is no greater
than O(N*). These bounds are independent of the structure of the graph and hold for
all N-node graphs. In general, however, the minimum area needed to lay out a graph
depends on the graph.

Thompson [41,42] identified bisection width as an important property of graphs
that affects minimum layout area. The bisection width of a graph is the minimum
number of edges which must be removed from the graph in order to disconnect it into
two equal-size pieces. (Two graphs are said to be of equal size if the difference in the
numbers of nodes is no more than one.) Thompson showed that, up to a constant
factor, the layout area can be no less than the square of the bisection width.
Therefore, if the bisection width for a graph is known, a lower bound on area can be
easily computed. By showing that certain computationally powerful graphs such as
the shuffle-exchange graph have large bisection width, Thompson showed that these
graphs require large area. In fact, Thompson extended this observation to obtain
area-time tradeoffs for computing certain functions.

Leighton [19, 201 identified crossing number as another general property that
affects layout area. The crossing number of a graph is defined as the minimum
number of edge crossings in any drawing of the graph in the plane. It is easy to see
that the crossing number of a graph is a lower bound on layout area. Using more
sophisticated arguments for special graphs, Leighton also directly obtained lower
bounds on total wire length (the sum of the lengths of the wires in a layout), which of
course is a lower bound on layout area. These techniques are heavily dependent on
the recursive structure of the special graphs and will be generalized in Section 8.

2.3. Layouts Based on Separator Theorems

Leiserson [26, 271 and Valiant [45] investigated general properties that provide
effective upper bounds on layout area. They independently developed a divide-and-
conquer strategy for graph layout and showed, for example, that every N-node tree
can be laid out in O(N) area and that every N-node planar graph can be laid out in
O(N log* N) area. Their technique is based on the notion of separator theorems for
graphs.

-OfNl-

FIG. 2. Every N-node graph can be laid out in O(N*) area.

304 BHATT AND LEIGHTON

DEFINITION. A class of graphs which is closed under the subgraph relation is said
to have an f (x)-separator theorem if there exist constants a and b where 0 < a < f
and b > 0 such that every N-node graph in the class can be partitioned (by the
removal of at most bf(N) edges of the graph) into disjoint subgraphs having a’N and
(1 - a’) N nodes, where a < a’ < 1 -a.

Given a class of graphs for which a separator theorem is known (e.g., trees have a
l-separator theorem [28] and planar graphs have a G-separator theorem [29]), it is
possible to construct a layout for any N-node graph in the class by using a simple
divide-and-conquer approach. For example, Leiserson [26, 271 proved the following
upper bounds on layout area:

xa-separator theorem layout area

a<; O(N)
a=; O(N log* N)
a>; O(N*“).

Remark. The complete recursive decomposition of a graph must be provided as
input before layouts achieving the desired area bounds can be constructed by the
procedure. There is no polynomial time algorithm known that achieves the area
bounds if the decomposition is not provided. This severely limits the applicability of
separator-based layout strategies to classes of graphs (such as trees or planar graphs)
for which actual decompositions are known.

How good are the preceding area bounds ? Thompson [41, 421 and Leighton
[19,201 showed that none of the bounds can be improved. More precisely, they
showed that within each class, there is a graph for which the bound is optimal. But
this does not mean that the bounds are optimal for every graph within a class. In fact,
while the bounds are existentially optimal, they are not universally optimal. For
example, an N-node square grid requires area N, but since the minimum separator
theorem for the class of square grids is 4, the best bound obtainable by separator-
based layouts is O(N log’ N), which is off by a factor of @(log* N) from the optimal.
Of course, since N-node graphs require area at least N, the bounds for graphs with
x*-separator theorems, where a < f, are asymptotically universally optimal.

For graphs with larger separator theorems, the discrepancy between the minimum
layout area and that given in the table can be much worse. Consider, for example, the
N-node graph S, which consists of N/log N disjoint log N-node expander graphs. We
define an m-node expander graph to be a graph for which any subset of k nodes is
linked by O(min(k, m -k)) edges to the m - k nodes outside the subset. The
bisection width of such a graph is Q(m), and hence the minimum separator theorem
is O(x). The existence of trivalent graphs that satisfy this definition has been known
for a long time [12, 15, 441. In fact, almost all trivalent graphs satisfy this delinition.
We caution the reader that the term “expander graph” has two definitions in the
literature. The other definition is sufficient for our purposes and probably more
standard but requires graphs with higher node degrees. Since each log N-node

SOLVING VLSIGRAPHLAYOUTPROBLEMS 305

expander graph can be trivially laid out in O(log2 N) area, the layout area of S, is no
greater than O(N log N). However, Leighton [2 1] showed that the minimum
separator theorem for the class of graphs S, exceeds .R(x/log* x), so that the area
bound from the table above is O(N2/log4 N), which is much worse than the optimal
bound of O(N log N).

Remark. The careful reader will notice (as did the referee) that any class of
graphs closed under the subgraph relation and containing S,, must also contain
expander graphs. Hence, the minimum separator for the class is O(x). In order to get
around such technicalities with the definition, the concept of a separator is often just
applied to a single graph and the subgraphs produced by its recursive decomposition.
Using the less restrictive (but more useful) definition, it is possible to show that S,
has an O(N/log N)-separator. The log N-node expander graphs are split in the upper
levels of the decomposition and never appear intact as subgraphs in the lower levels
of the decomposition. Leighton proved that even using the most liberal definition, the
minimum separator for S, is at least R(N/log’ N). Any bound on layout area for S,
based on the minimum separator can be no less than B(N2/log4 N).

Thus, while the divide-and-conquer strategy based on separator theorems gives
existentially optimal bounds, the bounds can be unacceptably poor in a universal
sense. It was the discovery of such large discrepancies that led to the search for an
alternative framework for VLSI layout. Within the new framework presented in
Section 5 we shall see how these large discrepancies are overcome.

3. EIGHT VLSI GRAPH LAYOUT PROBLEMS

As mentioned earlier, there are many important considerations in choosing one
layout over a multitude of other possible layouts. The problems in this section are
motivated by some of the basic engineering concerns. Although this list is not meant
to be exhaustive, it covers most of the theoretical issues studied recently. Many of the
problems are known to be N&complete, so the solutions we later obtain will, of
course, not be optimal. Rather, the major emphasis of this paper is the development
of a general framework for handling layout problems efficiently and in a uniform
manner. Within the framework, solutions to some problems are close to optimal. For
other problems, good heuristics are developed and/or general bounds are obtained.

PROBLEM 1. Given a graph G, produce an area-efficient layout for G.

As mentioned before, minimizing area is a critical concern in VLSI circuit layout.
In addition to the work on area-efficient layouts described in the previous section,
Dolev, Leighton, and Trickey [9] have shown that determining the minimum layout
area of a forest of trees is NP-complete.

PROBLEM 2. Given a graph G, produce an area-efficient layout for G with
minimax edge length.

306 BHATTANDLEIGHTON

Besides area, speed is another critical factor in chip performance. Signals do not
propagate instantaneously across wires, and the longer the wire, the longer the
propagation delay. In pipelined or systolic systems, the effect of propagation delays is
even more dramatic. The maximum delay determines the clockperiod, and hence the
throughput, of the system. To maximize throughput we need to minimize the
maximum delay. In short, we must produce layouts so that the longest edge is as
short as possible. The minimum, over all layouts, of the length of the longest edge is
called the minimax edge length.

Paterson, RUZZO, and Snyder [34] studied the problem of minimizing edge lengths
for complete binary trees. They showed that the minimax edge length of an N-node
complete binary tree is @(@/log N). Adopting a different strategy based on
separator theorems, Bhatt and Leiserson [3] subsequently extended the upper bound
portion of the result to arbitrary trees, and to all graphs with small (i.e., xn, a < i)
separator theorems. Bhatt and Cosmadakis [2] showed that computing the minimax
edge length of a tree is W-complete.

PROBLEM 3. Given a graph, produce an area-efficient layout in which each wire
has bounded delay in the capacitive model.

Although it is certainly true that propagation delay across a wire depends on the
length of the wire, there has been little consensus on how fast propagation delay
grows as a function of wire length. Thompson [41,42] assumes propagation delay to
be constant, independent of wire length. This might seem unreasonable given the
ultimate speed-of-light limitation which indicates that the delay increases linearly
with length. The speed-of-light limitation, however, greatly exaggerates the impor-
tance of wire delay in determining the speed of circuits. Mead and Conway [3 1] take
into account some of the electrical characteristics of interconnections on MOS
integrated circuits, and emphasize the role of wire capacitance in determining
progagation delay. Recent analysis by Bilardi, Pracchi, and Preparata [5] strongly
supports the belief that capacitive effects play the predominant role in determining the
speed of MOS circuits.

In a capacitive model, each wire is assumed to present a purely capacitive load to
the transistor that drives a signal across the wire. This load is proportional to the
length of the wire plus the area of the transistor that receives the signal. The delay is
proportional to this load divided by the area of the driving transistor. By increasing
the size of the driving transistor, it is therefore possible to bound the propagation
delay, independent of the length of the wire. A second well-known technique for
reducing delay across a long wire is to “ramp” the wire with a geometrically
increasing series of inverters [3 11. The number of intermediate drivers, and hence the
delay, is logarithmic in the length of the wire, but an attractive feature is that this
process can be carried out without the need to resize the original transistors in the
circuit.

Of course, increasing the size of one transistor or introducing new transistors might
force some wires to be stretched to avoid the enlarged transistor area. In other words,

SOLVING VLSIGRAPHLAYOUTPROBLEMS 307

decreasing the delay across one wire might force an increase in delay over other
wires. Leiserson [24] and Mehlhorn [32] independently posed the question of whether
or not the transistors in a layout could be resized so that every wire in the layout has
constant propagation delay. Ramachandran [36] investigated the problem of
introducing intermediate drivers along long wires to decrease delays, but under the
constraint that the topology of the layout remain unchanged. With the restriction that
wires cannot be rerouted, she showed that logarithmic delay can be achieved, but at
the expense of squaring the layout area in the worst case. We allow the layout
topology to be changed, and obtain significantly better results.

PROBLEM 4. Given a graph G, produce a layout for G with few wire crossings.

An undesirable feature of layouts is the presence of a large number of wire
crossings. When two wires cross, they must be on different layers. For faster
operation, and less power dissipation, it is advantageous to maximize the total
amount of wiring on a layer of low resistance, e.g., the metal layer, while minimizing
the wiring on a layer of high resistance, e.g., the polysilicon layer. The net wiring on
one layer may be reduced by laying wires on that layer only just before and after two
wires cross. If the number of wire crossings is small, the number of contact-cuts
which connect wire segments on different layers is small so that the area of the layout
is not blown up by the contact cuts which occupy large area. In addition, long wires
that are crossed by many other wires are susceptible to cross-talk when all the
crossing wires simultaneously carry the same signal.

The crossing number of a graph is defined to be the minimum number of wire
crossings in any drawing of the graph on the plane. Leighton [19, 201 proved upper
and lower bounds on crossing numbers and then used the results to find bounds on
layout area. Garey and Johnson [141 showed that determining the crossing number of
bipartite graphs is NP-complete. 6

PROBLEM 5. Given a graph, produce an area-efficient regular layout for the
graph.

Some design methodologies, most notably gate-arrays, require that processors be
located at fixed positions on a chip. In gate-arrays the processors are placed in a grid
pattern with uniform spacing between processors adjacent along every row and
column. Such layouts are said to be regular. An important advantage of this design
restriction is its flexibility: even if the size of every processor is increased, the wiring
between processors remains unaffected and the total area remains proportional to the
sum of the wire area (as computed with unit-size processors) and the processor area.
This is because only the fl rows and columns containing the N unit-size processors
need to be expanded to accomodate the non-unit-size processors. In non-regular
layouts, every row and column might have to be expanded since there might be a
node in every row and in every column. Increasing the linear dimension of the
processors by a factor of s could result in an O(s’) increase in layout area.

308 BHATTANDLEIGHTON

Previous divide-and-conquer layout strategies do not produce regular layouts.
Hence, they are not useful in laying out circuits with non-unit-size processors. A
good strategy for producing regular layouts would solve the nagging problem of how
to cope with variable-size processors.

PROBLEM 6. Design area-efficient chips that can be configured to realize a large
number of graphs.

Because it is expensive to make one chip, but cheap to make many copies,
manufacturers of custom chips have been encouraged to make configurable designs
such as gate-arrays, ROMs and PLAs. In such designs, the entire chip is
prefabricated except for one layer. The customer then specifies a configuration for the
chip, and the final layer of metalization connects up the circuitry in that particular
way. Hence, most of the design and fabrication costs can be factored over many
custom chips. Similarly, the fast emerging laser-restructuring technology [35]
provides another economical way to customize chips after fabrication is complete.
Laser restructuring allows connections between wires to be made or broken after the
chip has been fabricated. In either case, it is desirable to design layouts that can be
configured from one of a few basic patterns.

PROBLEM 7. On a wafer which has arbitrarily distributed defective cells, realize a
given graph on the good cells.

In any fabrication process, it is expected that some of the processing cells will be
defective. In a two-dimensional array of cells on a wafer in which defective cells are
arbitrarily distributed, it may still be possible to use the wafer by configuring wires
around the defective cells. This may, for example, be performed by laser restructuring
techniques [35]. Given this ability to isolate defective cells, it is important to
consider how a graph may be realized on the remaining good cells. This problem has
received considerable attention recently [17, 22, 381. The problem is similar to the
general graph layout problem in the Thompson model but with the important
restriction that nodes of the circuit can only be mapped to a restricted set of nodes in
the grid.

PROBLEM 8. Given a graph G, assemble G using the minimum number of copies
of a single chip having few external pin connections.

A number of very large networks have been proposed in recent years for
implementing priority queues [25], for searching [11, for direct execution of
applicative programming languages [30], and for recognizing regular expressions
[111. Some of these networks are too large to fit on a single chip. For example, the
tree-structured network of [30] is envisioned to contain as many as one million
processing elements. Clearly, such networks must be partitioned over many intercon-
nected chips, so that each chip realizes a small portion of the network.

The technology for packaging chips severely limits the number of external pin

SOLVING VLSI GRAPHLAYOUTPROBLEMS 309

connections on a chip. While chips with over a million components are forseeable in
the near future, no one predicts a chip with over two hundred external pin
connections. This poses a pressing problem in assembling large networks of
processors.

Even if a network could be partitioned so that each portion has only a few external
connections, it would.be economically infeasible to design each chip individually. For
instance, it would be prohibitively expensive to design one thousand different chips,
each containing a thousand processing elements, to assemble a network of one
million processors. For this reason, it is necessary to assemble large systems using
copies of a few configurable or restructurable chips. One solution to the problem of
assembling large tree structures using copies of a single, area-efficient, restructurable
chip with few external pin connection was given by Bhatt and Leiserson [4].

Within the new framework, efficient solutions are provided for each of these
problems. In fact, a single layout simultaneously solves many of these problems
efficiently. The framework provides a two-step strategy for solving these problems.
First, the graph to be laid out is embedded within a very special network called the
tree of meshes. For the tree of meshes it is possible to solve all these problems
efficiently. In the second step therefore, a good layout for the tree of meshes also
solves these problems for the embedded graph.

4. COMBINATORIAL LEMMAS

This section contains three combinatorial lemmas which provide the foundation for
the framework presented in the next section.

LEMMA 1. Consider any two-ended string of n colored pearls of k dtzerent colors,
and let ni be the number of pearls which are color i for 1 < i Q k. For any integer
r > 2, the pearls can be partitioned into two sets by cutting the string in no more than
9rk places such that the total number of pearls in each set is [n/2] or [n/21, the
number of pearls of color 1 in each set is [n,/2] or [n,/21, and such that the number
ofpearls of color i > 1 in each set lies between I(; - (1/2r)) nil and [(f + (1/2r)) niJ .

Proof Let i be a number between 1 and k and let T(i) denote the number of cuts
necessary to divide the set of all pearls into two sets that satisfy the constraints of the
theorem for colors 1, 2,..., i. Other than requiring that the total number of pearls be
split in half by the cuts, we have made no constraints on the distribution of pearls
with colors greater than i. We wish to find a good bound on Z’(i) in the worst case,
i.e., over all choices of n, k 2 i, and all possible colorings. In what follows, we will
show that T(1) = 2 and that

T(i)<rT(i- 1)+4r+7

for i > 1. As a consequence, we can solve the recurrence to conclude that 7’(i) <
9r’ - 15 for r > 2. Thus for i = k, at most 9rk cuts are required, as claimed.

310 BHATT AND LEIGHTON

For i = 1, it is easy to show that two cuts are sufficient. Consider a “window” of
size [n/2] positioned at the left end of the string. Without loss of generality, assume
that the window covers less than in,/21 of the pearls colored 1. Move the window to
the right, one pearl at a time until the window covers [n,/2J pearls of color 1. Since
the right half of the string contains more than one-half of all pearls of color 1, there
must, by continuity, exist a placement when the window covers exactly one-half of all
pearls of color 1. By cutting the string at the endpoints of the window, the portion of
the string under the window will contain half of the total number of pearls and half of
the pearls colored 1. Hence T(1) = 2, as claimed.

For a given i > 1, break the string into r segments Sj, 1 <j (r (making r - 1 cuts)
so that each segment contains at least LnJr] pearls of color i. Next split each Sj into
two subsets Sj, and Sj, (making a total of rT(i - 1) cuts) so that each split satisfies
the theorem locally for colors 1,2,..., i - 1.

Without loss of generality, assume that Sj, contains no fewer pearls of color i than
Sj,. At this stage, we divide the set C of all pearls into two subsets C, and C, as
follows. Initially, let C, = lJ SjO. If C, contains more than [(f + (1/2r)) niJ pearls of
color i, remove S,, from C, and add S,, . Repeat this procedure, successively
switching S,, with S2,, S,, with S,, , and so on until the first time C, has at most
[(i + (1/2r)) niJ pearls of color i. Such a stage must occur since the number of pearls
of color i in C, will eventually fall below [nil21 if C, and C, are completely
interchanged. The number of pearls of color i in C, after the final switch cannot be
less than [(f - (1/2r)) nil - 2 since every Sj contains no more than [ni/rl pearls of
color i. If the number of pearls of color i in C, is I(+ - (1/2r)) nil - 1 or
I(4 - (1/2r)) nil - 2, then move either one or two pearls of color i from C, to C,,
making no more than four cuts.

We also have to ensure that the total set of pearls and the pearls of the fi;rst i - 1
colors are divided as required. The pearls with colors between 2 and i - 1 are divided
correctly because they were divided correctly at the recursive step. The counts of
pearls of color 1 in C, and C, may differ in size by r, however. To balance the
number of pearls with color 1 in each set, we need only remove up to [r-/21 pearls
colored 1 from the excess set (making at most r cuts) and put them in the deficient
set. To balance the difference in the overall sizes of the sets (which now might be as
large as 2r + 4), we need only extract up to r + 2 pearls from the larger set (making
no more than 2r + 4 cuts) and put them in the smaller set. Of course, these pearls
must be chosen carefully so that each set retains the required minimum number of
pearls of each color. Since pearls are extracted only from the larger set, it is clear that
this requirement may be easily satisfied. The total number of cuts made by the
procedure is rT(i - 1) + 4r + 7, as claimed. 1

Using an elegant topological argument, Goldberg and West [16 J recently proved
that k cuts suffice to divide the pearls of each color exactly in half. In contrast to
Lemma 1, this is a dramatic reduction in the number of cuts. We state their result in
Lemma 2, although we cannot include the proof here. We will use the stronger result
in the paper since it facilitates the proofs and results in far smaller constants. It is

SOLVING VLSIGRAPHLAYOUTPROBLEMS 311

very important to note, however, that all of our layout results may be proved with the
weaker Lemma 1. (In fact, we have done so using r = 3, but will not go through the
details in this paper.) Since the Goldberg-West result has not yet appeared, we have
included Lemma 1 both for completeness and so that our results will not depend on
as-yet unpublished work. Both results are implementable in polynomial time when the
number of colors is fixed, as is the case throughout this paper.

LEMMA 2. Consider any two-ended string of n pearls, ni of which are colored i,
1 < i < k. By cutting the string in k places it is possible to divide the pearls into two
sets so that each set has a total of [n/2] or in/21 pearls, and [ni/2j or [ni/21 pearls
of color i for all i, 1 < i < k.

The following lemma recasts Lemma 2 in terms of complete binary trees. This
form is particularly useful since the recursive decomposition of a graph may be
viewed as a tree. In the following we define the height of a tree to be the length of the
longest path from the root to a leaf. The height of a forest is defined to be the
maximum height of a tree in the forest. Finally, the level of a node in the forest is
defined to be the height of the forest minus the length of the longest path from the
node to a leaf. (Note that the top level is level zero.)

LEMMA 3. Consider a forest of complete binary trees whose n leaves are colored
arbitrarily with k colors. Let ni be the number of leaves colored i for 1 < i < k. By
removing no more than k nodes (as well as all incident edges) from each internal
level of the forest, it is possible to produce a new forest of complete binary trees, some
subset of which contains [n/2] or [n/21 leaves, and [q/2] or [q/2] nodes of color i
for each i, 1 < i < k.

Proof Draw the trees in the canonical manner and place them side-by-side, in
any order, so that the leaves of all trees are placed along a line. By applying
Lemma 2 to the induced left-to-right ordering on the leaves of the forest, it is possible
to break the ordering in no more than k places such that the union of the leaves
contained in every other segment contains the desired total number of leaves and the
desired number of leaves of each color.

For each break, remove the nodes (and incident edges) which are simultaneously
ancestors of the leaf immediately to the left of the break and the leaf immediately to
the right of the break. It is easily seen that at most one node is removed from each
internal level of the forest for each break. Therefore, no more than k total nodes are
removed from each internal level. In addition, the removal of the common ancestors
of the leaves neighboring a break divides the associated tree into two or more
complete binary trees, at least one on each side of the break. Thus the removal of all
such nodes produces a forest of complete binary trees, subsets of which correspond
precisely to the sets of leaves between pairs of adjacent break points. Thus the union
of the subsets of trees corresponding to every other segment of leaves contains the
desired number of leaves of each color. m

312 BHATT AND LEIGHTON

FIG. 3. An illustration of the procedure described in Lemma 3.

Figure 3 illustrates the proof of Lemma 3 with a simple example. Initially, the
forest consists of four complete binary trees with seven leaves colored 1, four
colored 2, and four colored 3. Figure 3a shows a leveled drawing of the forest along
with three breaks (denoted by dashed vertical lines) in the line of leaves. The union of
leaves in the first and third intervals contains three leaves colored 1, two of color 2,
and two of color 3. In Fig. 3b the internal nodes to be removed are marked X.
Figure 3c shows the new forest produced by the removal of the marked internal
nodes.

5. THE NEW FRAMEWORK

In this section, we describe the new framework for solving VLSI graph layout
problems. We start by defining the notions of decomposition trees and bifurcators for
graphs. Using the combinatorial lemmas from Section 4, we devise procedures for
balancing decomposition trees and bifurcators. In Subsection 5.3, balanced decom-
position trees are used to embed graphs within the tree of meshes. Subsection 5.4
provides efficient layouts for the tree of meshes. Taken together, the embedding of a
graph in the tree of meshes and the layout for the tree of meshes induce a layout for
the original graph.

5.1. Decomposition Trees and Bifurcators

The recursive decomposition of a graph into smaller and smaller subgraphs may be
viewed as a decomposition tree. In particular, we say that a graph G has an
tFo, F, ,..., F,)-decomposition tree if G can be decomposed into two subgraphs G, and
G, by removing no more than F, edges from G, and, in turn, both G, and G, can be
decomposed into smaller subgraphs by removing no more than F, edges from each,

SOLVING VLSI GRAPH LAYOUT PROBLEMS 313

and so on until each subgraph is either empty or an isolated node. Figure 4 illustrates
this recursive decomposition.

As one might expect, the decomposition of a graph by separator theorems may be
viewed as a decomposition tree. It follows by definition that if a class of graphs has
an f(x)-separator theorem, then there are constants GI and /I such that each graph in
the class has a decomposition tree of the form @j(N), Pf(aN), jjf(a*N),...,@(l)).
The converse is not necessarily true. Subgraphs generated at each step of a decom-
position by a separator theorem are constrained to be proportional in size, whereas
decomposition trees need not satisfy this constraint. Of course, if the decomposition
tree has precisely log N levels, then subgraphs at each level must be equal in size.

We shall be particularly interested in a special class of decomposition trees,
namely bifurcators, that is distinct from the class of separators.

DEFINITION. An N-node graph has an a-bifurcator of size F (more simply, an
(F, a)-bifurcator) if it has an (F, F/a, F/a*,..., 1)-decomposition tree.

Of particular interest is the class of fl-bifurcators. By the definition, we know
that an N-node graph has a fl-bifurcator of size F if and only if it has an (F, F/g,
F/2,..., 1)-decomposition tree. The depth of this tree is no greater than 2 log F. In
order to completely decompose an N-node graph into individual nodes, the height of
any decomposition tree cannot be less than the log N. Thus, F must always be at least
fl. On the other hand, F is always less than 2N since every N-node graph with
maximum node degree four has at most 2N edges.

If a class of graphs has an xn-separator theorem, where a < f, and the
corresponding decomposition is balanced in that every graph is always decomposed
into equal-size subgraphs, then it is straightforward to show that every N-node graph
in the class has a \/Z-bifurcator of size O(n). Similarly, if a class of graphs has a
balanced separator theorem of size x” with a > f, then every N-node graph in the
class has a fl-bifurcator of size O(Na).

empty graph or
isolated node G/JG

L I-IO ’ 1-11
‘5

FIG. 4. An (FO, F, ,..., F,)-decomposition tree.

314 BHATT AND LEIGHTON

The converse is not true even if we consider only bifurcators whose corresponding
decomposition trees are balanced so that every graph is decomposed into equal-size
subgraphs. For example, the N-node graph S, defined in Subsection 2.3 has a
balanced \/2-bifurcator of size O(dm) but the smallest separator for this class
of graphs is R(x/log2 x).

When translated into bounds on layout area, this seemingly minor difference
between bifurcators and separators is greatly magnified. Graphs with small layout
area always have small fl-bifurcators, but do not always have small separators.
This is formalized in Lemma 4. Later on we will prove the converse : graphs with
small fl-bifurcators always have small layout area.

LEMMA 4. Z=f a graph G can be laid out in area A, then G has a (@, dT)-
bifurcator.

Proof: Consider a vertical cut of length \/;I through the center of the layout.
Next, cut each of the sublayouts horizontally through the center. Continuing this
sequence of alternating vertical and horizontal cuts, it is easy to see that at the ith
step no more than fl/2i’2 edges are cut from each subgraph. This sequence of cuts
yields a (@, \/Z)-bifurcator for G. fl

5.1.1. Special Cases

Many graphs have decomposition trees in which the number of cuts decreases very
slowly as we go lower down the tree. In such cases, the number of cuts at higher
levels of the tree may be very small. On the other hand, in decomposition trees
corresponding to bifurcators, the number of cuts permitted decreases smoothly as we
go down the tree. It is conceivable then, that the bifurcator permits far more cuts at
higher levels than are necessary. For example, N-node binary trees have decom-
position trees of height O(log N) in which no more than 1 cut is required at every
level. Since the minimum bifurcator is at least fl, the decomposition tree
corresponding to the bifurcator allows far more cuts at the top levels than needed.

Similarly, some graphs have decomposition trees in which many cuts are required
at the top levels, but this number decreases very quickly as we go down the decom-
position tree. In such cases, the minimum bifurcator is large so that decomposition
trees corresponding to the bifurcator do not underestimate the number of cuts
required at the top level. However, they do greatly overestimate the number of cuts at
lower levels.

It is useful to separate such extreme cases from a general discussion. Of course,
general upper bounds are valid for graphs with extreme decompositions, but they may
overestimate the true bound. A particularly important reason for separating these
classes is that many computationally useful graphs such as binary trees fall into the
first category while cube-connected-cycles and multidimensional meshes fall into the
second category.

An N-node graph is defined to have a type A fi-bifurcator if it has an (0(@),
fl)-bifurcator such that no more than O((N/2’)“) cuts, a < f, are required for each

SOLVING VLSI GRAPH LAYOUT PROBLEMS 315

partition at the ith level of the associated decomposition tree. Observe that at the
higher levels of the tree, i 6 log N, the number of cuts is far less than the 0(@/2i’2)
cuts allowed by the usual bifurcator.

Similarly, an N-node graph is defined to have a type B @-bifurcator if it has an
(O(N”), \/Z)-b’f 1 urcator, (r > f, such that only O((N/2i)“) edges are cut in any
partition at the ith level. Observe that for the lower levels of the tree, i + 1, this
quantity is far smaller than the O(N*/2”‘) cuts allowed by the usual bifurcator.

For simplicity, we will prove results only for general \/2-bifurcators in this paper.
However, whenever there is a significant difference, results for the special cases are
stated separately. The proofs for these special cases are easily worked out, and
closely follow the proofs for the general cases. We leave such details to the interested
reader.

5.2. Balanced Decomposition Trees

Of particular importance to the layout results reported in this paper are decom-
position trees where at each step of the decomposition, the two subgraphs are nearly
equal in size. This section considers such balanced decompositions and gives an
effective procedure for transforming an arbitrary decomposition tree into one that is
balanced.

Formally, a decomposition tree for a graph G is balanced if each subgraph G, in
the tree is the father of two subgraphs G,, and G,, such that the number of nodes in
the subgraphs differ by at most 1. In addition, we say that a decomposition tree is
fully balanced if it is balanced, and if for every subgraph G, in the tree, the set of
edges connecting G - G, to G, is divided into two subsets of nearly equal size by the
partition of G, into G,, and G,, . (Here we allow the number of edge connections in
the two subgraphs to differ by a small constant, say 5. For the purposes of simplicity,
however, we shall often ignore such small differences and assume that the nodes and
connections are split evenly between the two subgraphs.)

Somewhat surprisingly, any decomposition tree may be transformed into a fully
balanced one at little or no cost. We prove this in Theorem 5 which generalizes
earlier results in [4, 19-2 11.

THEOREM 5. Let G be any N-node graph with an (F,,, F, ,..., F,)-decomposition
tree T. Then G has a fully balanced (FA, Fi ,..., F&,)-decomposition tree, such that
for O<i<logN,

F;=6 2 F,.
s=i

ProoJ Let r be a forest of complete binary trees consisting initially of the decom-
position tree T. Color the leaves of T with two colors according to whether or not the
subgraph of G associated with the leaf is empty. Apply Lemma 3 (k = 2) to r,
removing the indicated nodes and edges of T. Each node of T corresponds naturally

316 BHATT AND LEIGHTON

to a set of edges of G, namely the edges whose removal splits the associated subgraph
in two. Removing a node of T corresponds to removing this cutset of edges from G.
Since no more than 2 nodes are removed from each level of r, the number of edges
removed from G in applying Lemma 3 does not exceed 2 xi=0 FS, which is less than
F;b.

Further note that G is divided into two disjoint subgraphs of nearly equal size by
the removal of these edges. Each subgraph, in turn, corresponds in a natural way to a
subforest of complete binary trees in r. Consider one such subgraph G, and color the
leaves of the associated forest of complete binary trees r, using six colors as follows:

If the leaf corresponds to an empty subgraph, color the leaf with color 1.
Otherwise, if the single node corresponding to the leaf is incident to
exactly j edges of G removed earlier, 0 <j < 4, then color the leaf with
color j + 2.

By applying Lemma 3 (k = 6) to r,, it is clear that G, can be decomposed into
two disjoint subgraphs G,, and G,, of nearly equal size such that the number of
edges from G - G, to G,, is nearly equal to the number of edges from G - G, to G,, .
Since at most 6 nodes were removed from each level of r, and since r, does not
contain the root of T, we can conclude that no more than 6 xi= I F, = Fi edges were
removed from G,.

By applying the above argument recursively, the desired fully balanced decom-
position tree is easily obtained. The only point to observe is that with each
application of Lemma 3, the biggest tree in any forest corresponding to a subgraph
decreases in height by at least one. This is because the total number of leaves in each
forest is cut in half at each step. A total of log N + 1 levels are sufficient for the
decomposition since the number of nodes in each subgraph is also split in half at
each step. I

THEOREM 6. Every graph with a @-bifurcator of size F has a fully balanced
fi-bifurcator of size 6(2 + \/2) F.

Proof. The result follows immediately from Theorem 5, with the observation that
xi>0 2-i’2 < 2 + fi* g

Remark. The procedure described in Theorems 5 and 6 can be implemented in
polynomial time.

5.3. Embeddings in the Tree of Meshes

Leighton [19,201 introduced the tree of meshes as an example of a planar graph
that cannot be laid out in linear area. He also showed that every N-node planar graph
can be embedded in an O(N log N)-node tree of meshes. In this section, we define the
tree of meshes and describe a general strategy for embedding a graph in the tree of
meshes.

SOLVING VLSI GRAPH LAYOUT PROBLEMS 317

The tree of meshes is formed by replacing each node of a complete binary tree with
a mesh and each edge by several edges which connect meshes at consecutive levels.
More precisely, the root of the complete binary tree is replaced by an n X n mesh (it
is assumed that n is a power of 2), the nodes at the second level are replaced by
n x n/2 meshes, those at the third level by n/2 X n/2 meshes, and so on until the
leaves of the tree are replaced by 1 x 1 meshes. As shown in Fig. 5, each edge of the
tree is replaced with edges connecting nodes on one side of the higher level mesh to
the top row of the mesh at the lower level. The resulting graph is called the n x n tree
of meshes T,,. It is not difficult to see that T,, has N = 2n2 log n + n2 nodes.

For some applications, we need to consider only the top levels of the tree of
meshes. We call the subgraph consisting of levels 0, l,...,p of T, a truncated tree of
meshes T,, ,*. Note that p < 2 log N.

THEOREM 7. There is a constant c such that every N-node graph G with an
(F,fi)-bifurcator can be embedded in TCF,2,0gN,F. Moreover, the embedding is
regular in the sense that F2/N nodes of G are embedded in a regular fashion in each
of the N2/F2 bottom-level meshes of TCF,2,0gN,F.

Proof: We first use Theorem 6 to construct a fully-balanced $-bifurcator of
size 6(2 +\/2) F for G. We then use the internal meshes of TCF,2,0gN,F to route the
edges that were removed in the upper 2 log N/F levels of the fully balanced decom-
position tree for G. The subgraphs in the (2 log N/F) th level of the decomposition
tree (each of which has [F’/N] or [F2/N1 nodes) are then embedded in the meshes on
the bottom level of the truncated tree of meshes.

The internal meshes are used in the same manner that complete crossbar switches
are used in switching networks. For example, in Fig. 6, six wires enter the mesh
through the top, of which four exit from the left side and two from the right. In
addition, four wires enter and exit from the sides. No matter what the ordering of the
wires, they can easily be routed through the mesh as shown, In general, if the number
of wires routed through a mesh does not exceed any side-length of the mesh, a routing
may always be found. Similarly, a graph with M nodes can always be embedded in a
4M x 4M mesh with nodes placed in a regular fashion.

Consider only the top 2 log(N/F) + 1 levels of a fully balanced decomposition tree
for G. Each of the subgraphs at level 2 log N/F of the decomposition tree has
N(W) ‘logN” = F2/N nodes. (For simplicity we shall assume that F2/N is an integer.)
Furthermore, if Ei is the maximum number of edges between G - Gi and Gi, where

FIG. 5. The 4 x 4 tree of meshes r,,.

51 l/28/2-9

318 BHATT AND LEIGHTON

16

FIG. 6. Using a mesh in the tree of meshes as a crossbar switch.

Gi is a subgraph in the decomposition tree at level i, then it is easy to see that E, = 0
and by Theorem 6, that

for 1 < i < 2 log N/F. Solving the above recurrence, we obtain

Ei G 6(2 + fi) & 2 (fi/2)‘3 S>O
and thus

Ei < 6(2 + G>’ &.

We now embed G in TcF,z,og,,,,F. First, embed each of the (2 log N/F)-level
subgraps of the decomposition tree in the bottom level meshes. This can be done if
the side of each mesh at level 2 log N/F exceeds 4F*/N. This is true provided

@Ifi 2’ogN’F > 4F2/N.

For c > 4, this inequality is easily satisfied.
Next embed the additional edges through the upper-level meshes in the natural

way. No more than 2Ei+l edges pass through any.ith level mesh. Thus the routing
can be performed if the smaller side of the ith level meshes exceeds 2Ei+, . In other
words, we must have

cF/~~“~$ 12(2 + \/2)2F/2i’2.

A simple calculation shows that the inequality is satisfied for sufficiently large c. fl

Remark. Throughout the paper, we express bounds using the term log N/F. For

SOLVING VLSIGRAPHLAYOUTPROBLEMS 319

all practical purposes, F is much smaller than N and this term is greater than one.
Should the value of F be larger, however, we shall still define log N/F to be at least
one. Similar interpretations are assumed for log log N/F and for log log log N/F. The
conventions avoid the annoying (and trivial) cases when F is very large without
complicating the analysis further.

In the preceding embedding, all the nodes of G were mapped to meshes at the
bottom level of the truncated tree of meshes. Thus, edges between nodes in different
meshes might have to be routed through as many as 4 log N/F meshes. Such long
edges are undesirable for a variety of reasons. It is natural to ask whether an
embedding can be found in which each edge can be routed through fewer intermediate
meshes. This is answered in the following theorem.

THEOREM 8. There are constants c and k such that every N-node graph G with
an (F, fl)-bifurcator can be embedded in TCF,2,0gN,F and such that no edge is routed
through more than k intermediate meshes.

Proof We adopt a slight variant of the strategy used in Theorems 5-7. The
balancing and embedding are done simultaneously and in the same manner as before,
except at levels 0, k, 2k, 3k ,..., (where k is a constant specified later). At these levels,
we embed the nodes that are incident to edges previously cut, and we cut the
previously uncut edges incident to these nodes. Of course, this could triple the
number of cut edges every k levels but if k is sufficiently large, this happens infre-
quently and is not harmful. At all other levels the procedure is the same as before,
using 6 colors and Lemma 3 to partition the decomposition tree. The process
terminates after 2 log N/F levels.

As before, the embedding is accomplished by using meshes as switching boxes for
routing edges. We must ensure that the number of edges routed through any mesh
does not exceed the side lengths of the mesh. The calculation is the same as before
except that the number of cut edges is tripled at every kth level. Thus the recurrence
for Ei is

Here, we have (without loss of generality) increased number of cut edges by a factor
of 3 initially and by a factor of 3 Ilk at each level instead of increasing the number of
cuts by a factor of 3 at every kth level. Solving the recurrence, we find

El< 18(2+JjJ)& C ($31’k)s*
S>O

For k > 4, the sum converges to a constant. The remaining analysis is the same as in
Theorems 5-7, except that the constants are larger. 1

Remark. It is worthwhile to point out here that Theorems 7 and 8 could also

320 BHATT AND LEIGHTON

have been proved using Lemma 1 as instead of Lemma 2. The nodes of G would still
be balanced in the decomposition tree but the cut edges could only be split f-f at
each decomposition. While this increases the value of the sum, it still converges to a
constant. (This is because for sufficiently large k, (2\/2/3) 31’k < 1.) Hence, k and c
would be larger but the statements of the theorems remain the same.

5.4. Layouts for the Tree of Meshes

Thus far we have considered only the problem of embedding,graphs in the tree of
meshes. How do we lay out the tree of meshes efficiently? Clearly, any layout for the
tree of meshes also gives a layout for every graph that can be embedded within the
tree of meshes. In this section we develop two different layouts for the tree of meshes.

The first layout is a straightforward modification of the “H-tree” layout for
complete binary trees [3 11. The modified layout is obtained by expanding each node
of the complete binary tree into a mesh of the appropriate size. Figure 7 shows this
layout. It is easy to see that if S(F) denotes the sides of the layout for TF, then
S(1) = 1, and

which gives S(F) = O(F log F). This means that the area of the layout for T, is
bounded by O(F* 1og’F). As shown in [19,201, this bound is optimal.

For truncated trees of meshes, such as considered in Theorems 7 and 8, a similar
result holds.

THEOREM 9. The truncated tree of meshes TF,Z,ogN,F has a layout of area
O(F’ log* N/F).

Proof The obvious restriction of the H-layout to the top levels suffices. 1

Although the mesh edges in the layout shown in Fig. 7 have length 1, the edges

between meshes can be quite long (nearly half the side of the layout). By pulling in
meshes closer towards the top level, we can reduce the length of the longest edge

FIG. 7. The H-tree layout of the tree of meshes.

SOLVING VLSI GRAPH LAYOUT PROBLEMS 321

considerably. This technique was introduced in [3] to produce minimax edge length
layouts for trees, and generalized to graphs with known separators. In the following
theorem we lay out the truncated tree of meshes with shorter edges, using a simplified
version of the argument introduced in [3]. This layout will later be used to find
layouts with short edges for graphs embedded within the truncated tree of meshes.

THEOREM 10. The truncated tree of meshes TF,2,,,gNIF can be laid out in area
O(F2 log2 N/F) so that mesh edges have length 1 and edges between meshes have
length at most O(F log N/F/log log N/F).

ProoJ Consider the H-tree layout of a complete binary tree of height
2 log log log N/F, and having (log log N/F)= leaves. Expand each linear dimension by
a factor p = O(F log N/F/log log N/F), so that each edge of the H-tree layout
becomes a channel of width /I and each node becomes a /I x /I square. The resulting
area is O(@ log log N/F)=) = O(F* log2 N/F).

Since the channels are much wider than the side of any mesh, we can stack many
meshes within one channel. In particular, as seen in Fig. 8, we embed the top level
mesh at the center of the layout with the second-level meshes on either side. In the
first stage of the layout, the meshes in the top levels are placed together in a breadth-
first manner. Meshes at successive levels are equally spaced at distance
O(F log N/F/log log N/F) apart.

We need to ensure that every channel is wide enough to accomodate the meshes
stacked within it. To this end, let us suppose that all meshes embedded in the first
stage are stacked together in the same channel. Of course, this is a gross
overestimate, but suffices for our argument. Since the path from the root to a leaf in
the original (log log N/F)=-leaf H-layout originally has wire length @(log log N/F), a
total of c log log N/F levels of TF,2,0gN,F are embedded in the first stage. The value of
the constant c depends on the values of the other constants in the O-terms and can be
made as small as necessary.

The total number of meshes embedded in the first stage is no more than

FIG. 8. An improved layout for the tree of meshes.

322 BHATTAND LEIGHTON

21+c’0g’0gN’F. Each mesh has side length no greater than
meshes within one channel of side p, it suffices to have

F2l+CbgkXN/F < 0 Flog N/F

i log log N/F ’

F, so to stack all these

which is easily satisfied when c < 5. Hence every channel has sufficient width to
stack all the ith level meshes across the channel for any i < c log log N/F.

In the second stage, we embed the remaining meshes in the p x p squares. A total
of (log N/F)‘/(log log N/F)* copies of an G(log N/F)-level (F/(log N/F)“*) X
(F/(log N/F)“*) truncated tree of meshes must be embedded in each of the
(log log N/F)* ,f3 x p regions to accomplish this. Using the layout described in
Theorem 9 for each copy, the total area required in each region is

@
(log N/F)’ F2

(log log N/F)* (log N/F)’ log2 N’F

This is precisely the amount of area available in each p x p region. Hence the
embedding is possible.

It remains to verify that the edges between meshes have length O(F log N/F/
log log N/F). This is easily done since meshes in adjacent levels were spaced distance
O(F log N/F/log log N/F) apart in the first stage, and since meshes in adjacent levels
were located in the same p x p region in the second stage. I

6. SOLUTIONS TO THE EIGHT PROBLEMS

Using the fi’amework described in Section 5, we are now ready to present general
solutions to the eight problems posed in Section 3. Not surprisingly, the methods of
the previous section apply almost directly to these diverse problems. This supports
the belief that the divide-and-conquer strategy based on bifurcators is an efficient
paradigm for VLSI graph layout, and that the tree of meshes is a versatile network
for solving layout problems. The solutions presented in this section are evaluated by
comparing them with lower bounds. Some of the lower bounds are new; to maintain
continuity, their proofs are deferred to Section 8.

The first two problems, concerning area-efficient layouts and minimax edge length
layouts, were already addressed directly in the previous section.

PROBLEM 1. Given a graph G, produce an area-efficient layout for G.

By Theorem 7 in Subsection 5.3, every N-node graph with an (F, \/2)-bifurcator
can be embedded in the truncated tree of meshes TOCF),2,0gN,F. Next, by Theorem 9 in
Subsection 5.4, the truncated tree of meshes can be laid out in O(F* log* N/F) area.
Therefore, every N-node graph with an (F, @)-bifurcator can be laid out in
O(F2 log’ N/F) area.

SOLVING VLSI GRAPH LAYOUTPROBLEMS 323

As a simple consequence of Lemma 4, every N-node graph whose smallest @-
bifurcator is F, must occupy at least F2 area. For otherwise the graph would have a
fl-bifurcator strictly smaller than F. Therefore, for every graph the upper bound is
at most a factor of O(log* N/F) worse than optimal. As we shall see in Section 8, the
upper bound is also existentially optimal in that there are N-node graphs with
(F,\/i)-bifurcators for all N and F with minimum area R(F* log* N/F).

Special Cases. Graphs with (F, @)-bifurcators with either of the special forms
described in Subsection 5.1.1 have O(F*)-area layouts.

PROBLEM 2. Given a graph G, produce an area-efficient layout for G with
minimax edge length.

From Theorem 8 we know that every N-node graph with an (F, fl)-bifurcator can
be embedded in the truncated tree of meshes TO(F),2,0gN,F so that no edge passes
through more than a constant number of intermediate meshes. Furthermore, the
layout for the truncated tree of meshes given in Theorem 10 guarantees that every
edge between meshes has length bounded by O(F log N/F/log log N/F), and that
every edge within a mesh has length one. Combining these two theorems, we see that
every N-node graph with an (F, fi)-bifurcator has an O(F* log* N/F)-area layout
with maximum edge length bounded by O(F log N/F/log log N/F).

This bound is also existentially optimal, as will be seen in Section 8. However, the
bounds are not guaranteed to be universally close. The only general lower bound on
minimax edge length for N-node graphs whose minimum fl-bifurcator is F, is
Q(F*/N). (This lower bound is also existentially optimal, as will be shown in
Section 8.)

The problem of minimizing maximum edge length appears to quite difficult.
Although the preceding bounds are disappointingly weak, they are the best known.
Bhatt and Cosmadakis [2] show that even determining if a tree can be laid out with
minimax edge length one, is NP-complete.

Special Cases. The minimax edge length bounds for graphs with special (F, $)-
bifurcators are O(fl/log N) for type A fl-bifurcators and O(F) for type B \/2-

bifurcators.

PROBLEM 3. Given a graph, produce an area-efficient layout in which each wire
has bounded delay in the capacitive model.

First we formalize some details of the model. As usual, a graph describes a
connection of processors, with an edge corresponding to a bidirectional link between
two processors. Each node is a processing element which contains one driver and one
receiver for each incident edge. Every transistor in a processing element has the same
size. Thus, in our layouts, a node may be represented by a long and skinny box of
constant thickness, with length equal to the area of an internal transistor. Since each
node has bounded degree, a box will be just big enough to contain all the transistors
in the corresponding processor. Note that different nodes in the layout will have

324 BHATT AND LEIGHTON

different lengths, but the same thickness. We assume that the grid spacing is adjusted
so that nodes and edges have unit thickness and may be laid along grid lines.
Although wires are allowed to cross, we will not allow nodes to cross; this
corresponds to transistors not overlapping. Similarly, wires and nodes may not cross.
The propagation delay over a wire of length I driven by a transistor of area D with
capacitive load A is proportional to (E t A)/D. The capacitive load presented to a
transistor equals the sum of incident wire lengths and areas of adjacent transistors.

THEOREM 11. Every N-node graph G with an (I;, fl)-bifurcator has a bounded-
delay layout of area O(F2 log’ N/F).

Proof: As in Theorem 8 of Section 5.4, embed G in a tree of meshes so that
adjacent nodes are mapped to meshes no more than a constant number of levels
apart. Since the dimensions of meshes at successive levels, as well as the lengths of
edges connecting adjacent meshes in the layout of Theorem 9, decrease at the same
geometric rate, we know that the length of an edge of G is proportional to the side
lengths of the meshes that contain the corresponding nodes. Assign to each node an
area that is proportional to the side lengths of the mesh in which it is embedded.
Thus, the capacitive load on any node, which equals the sum of the areas of all the
incident edges and adjacent nodes, is proportional to the area of the node. In other
words, every wire in the layout has bounded delay.

We need to ensure that each enlarged node can be accomodated in its assigned
mesh without blowing up the area of the layout by more than a constant factor. This
can be done by increasing the dimensions of each mesh by a constant factor, and
laying out the nodes and incident edges as shown in Fig. 9. Notice that the nodes do
not overlap other nodes or wires. The area of each node remains proportional to the
side lengths of the mesh containing it, and thus the delay across every wire is
bounded. I

Special Cases. Similarly, graphs with special (F, fl)-bifurcators have O(F’)-
area bounded-delay layouts.

Theorem 11 means that the area bounds for bounded-delay layouts are no worse
than the best known general area bounds described for Problem 1. However, it is not
known whether or not there exists a graph for which any bounded-delay layout
requires asymptotically greater area than the minimum area layout. In Corollary 12
we show that the required increase in area is not very large.

“I “2”3 “4
C(Fij ‘(m

I-
t I I

FIG. 9. Laying out expanded nodes in a mesh.

SOLVING VLSIGRAPHLAYOUTPROBLEMS 325

COROLLARY 12. Any layout of area A for an N-node graph can be transformed
into a bounded-delay layout of area O(A log* G/N).

Proof. By Lemma 4 of Subsection 5.1, every graph with a layout of area A has a
(fi,fl)-bifurcator which can be quickly found. Then by Theorem 11, we can
construct a bounded-delay layout with area O(d log* fl/N). I

Remark. Unlike the previous area bounds which can be obtained only when the
bifurcator for a graph is already known, Corollary 12, for transforming a layout into
a bounded-delay layout, can be efficiently implemented.

PROBLEM 4. Given a graph G, produce a layout for G with few wire crossings.

The layouts for the truncated tree of meshes in Theorems 9 and 10 do not have any
edge crossings. Since every N-node graph G with an (F, fl)-bifurcator can be
embedded within the truncated tree of meshes TO(Fj,2,0gN,F, this means that the
number of crossings in the layout for G cannot exceed the number of nodes in
T O(F),ZlogN/F’ In other words, the number of crossings in the layout for G is bounded
by O(F* log N/F).

In Section 8 we will see that this bound is existentially optimal. We will also show
that for every N-node graph with a minimum \/2-bifurcator of size F, the number of
crossings plus the number of nodes is at least Q(F*). Thus, if F is asymptotically
greater than fl, the number of crossings in the layout for G is no worse than a
factor O(log N/F) times optimal.

Special Cases. Graphs with special (F, fi)-bifurcators can be laid out with
O(F*) crossings.

PROBLEM 5. Given a graph, produce an area-efficient regular layout for the
graph.

In Theorem 7, we showed how to embed any N-node graph G with an (F, fi)-
bifurcator in TCF,2,0pN,F for some constant c. Moreover, the nodes of G were divided
evenly among the N*/F* bottom-level meshes of TcF,2,0gN,F and in each bottom-level
mesh, the nodes of G were embedded in a regular fashion. Thus to produce an
O(F* log* N/F)-area layout for G that is regular, we need only produce a layout for
T cF,2,0gN,F for which the nodes at the (2 log N/F)th level are located in a regular
fashion. In fact, we can do much better, as we show in the following theorem.

THEOREM 13. The truncated tree of meshes To(Fj,2,0gN,F can be laid out in
O(F* log* N/F) area so that, for every level i, all nodes within ith level meshes are
placed in a regular fashion.

Proof: The first step is to construct a @(log N/F)-layer three-dimensional layout
[23] of the truncated tree of meshes. Fold the connections between the root of the tree
of meshes and each of its two sons so that the sons fit naturally on a second layer
over the root mesh. Fold the connections to each of the meshes at the next lower level

326 BHATTAND LEIGHTON

so they fit, on the third layer, directly over the meshes on the second layer, and so
forth. This generates a @(log N/F)-layer three-dimensional layout, with each layer
occupying linear area. By projecting the three-dimensional layout onto the plane in
the manner of Thompson [42, pp. 36-381, the result follows. (The same layout can be
constructed by interleaving the meshes at each level.) 1

Special Cases. The O(F’)-area layouts for graphs with special Ji-bifurcators are
also regular.

PROBLEM 6. Design area-efficient chips that can be configured to realize a large
number of graphs.

In Subsection 5.3 we showed that every N-node graph with an (F, $)-bifurcator
can be embedded in a truncated tree of meshes such that the nodes of the graph are
embedded in a regular fashion in the bottom-level meshes of TcF,2,0gN,F. In fact, the
nodes can be mapped to fixed positions within the meshes. Therefore, if we lay out
the truncated tree of meshes on a chip with processors at these fixed positions, we
have a configurable chip for all graphs with the corresponding bifurcator. This yields
the following result. Observe that the area bounds for configurable layouts are the
same as for unrestricted layouts.

THEOREM 14. Every N-node graph with an (F, \/Z)-bifurcator has a configurable
layout of area O(F2 log* N/F).

ProoJ Simply make the connections in the meshes after the rest of the chip has
been fabricated. Recall that we used the meshes as crossbar’ switches in
Theorem 7. 1

Special Cases. Similarly, graphs with special bifurcators have O(F’)-area
configurable layouts.

PROBLEM 7. On a wafer which has arbitrarily distributed defective cells, realize a
given graph on the good cells.

In Subsection 5.3 (Theorem 7), we showed how to embed any N-node graph G with
an (F, fl)-bifurcator in the truncated tree of meshes TOCF),2,0gN,F. The embedding
had the property that nodes of the graph could be mapped to fixed positions within
the meshes at the bottom level. Accordingly, we fixed processors at each of these
positions.

Faulty processors on a wafer therefore correspond to faulty processors in the trun-
cated tree of meshes, the correspondence being induced via the layout for the tree of
meshes. It is clearly no longer possible to realize G in the faulty tree of meshes.
However it is possible to realize a smaller graph with a similar structure using only
the functioning processors.

SOLVINGVLSI GRAPH LAYOUTPROBLEMS 321

More formally, consider a class of graphs for which any N-node graph in the class
has a @-bifurcator of size O(f(N)) h w ere the function f is such that f(x)/+ is
nondecreasing for increasing x. For example, f(x) = fi for the class of square
meshes (as well as for the class of trees or the class of planar graphs). In what
follows, we will show how to embed any M-node graph from the class in any
T cf(N),2,0gN,f(Nj that has M functioning processors where N > M and c is a sufficiently
large constant. In particular, we will show how to embed Tf(M~,2,,,gM,f(M~ in the
structure. By the results in Subsection 5.3, this will be sufficient to prove the claim.
Thus the layout strategy developed in Section 5 is impervious to the existence of
faulty processors. This result substantially generalizes and simplifies a similar result
proved by Leighton and Leiserson for embedding meshes around faults in [221.

THEOREM 15. Given the preceding constraints on N, M, c, and f, a completely
functioning truncated tree of meshes Tff,,,,,ogM,f(M~ with M processors can be
embedded in any partially functioning truncated tree of meshes Tcf(N,,Z,ogN,f(N, with N
processors (M of which are functioning) so that the processors of the former are
mapped onto the functioning processors of the latter.

Proof: Label the functioning processors in each tree of meshes from 1 to M by
counting from left to right across the bottom level of each graph. (Recall that the
processors are evenly distributed on the bottom level.) Map the kth processor of
T fo,~,2,0gM,f(M~ onto the kth functioning processor of Tcf(N~,Z,ogN,f(N~. Route the edges
of the former graph through the meshes of the latter in the usual way, at the same
time embedding meshes of the former in blocks within the meshes of the latter.

It remains to show that the capacity of each mesh in Tc/(N~,Z,ogN,~~N~ is sufficient for
the embedding. Consider a mesh X on the ith level of Tcf(N~,Z,ogN,f(N~. This mesh has
side lengths cf (N)/2”* and at most N/2’ functioning processors below it in the
bottom level of the graph. The only meshes and edges of Tf(Mj,2,0gM,f(,,,j that are
embedded in X are those that correspond to roots of the forest of complete binary
trees formed by removing the corresponding interval of (at most N/2’) processors in
T fmf),*logM/fb+f)’ These roots are identified by splitting Tf(M~,2,0gM,f(M~ (as in Lemma 3)
at the two endpoints of the interval. There are at most two roots at each level in the
resulting forest and the sum of their side lengths (a geometrically decreasing sum) is
proportional to f (M)/2j”, where j is such that iVf/2j <N/2’. (Remember that there
are at most N/2’ processors in the leaves of the forest so that the height of the largest
complete binary tree in the forest is j, where M/2] < N/2’.) Thus the sum of the side
lengths of the meshes embedded in X is O((f (M)/2”*) m) which, for sufficiently
large c, is less than cf (N)/2”* (this is the side length of X), since N > M and
f (x)/G is a nondecreasing function. Hence X is large enough and the embedding is
possible. 1

Special Cases. A similar argument works for graphs with special bifurcators.

PROBLEM 8. Given a graph G, assemble G using the minimum number of copies of
a single chip having few external pin connections.

328 BHATT AND LEIGHTON

Suppose that we wish to assembleN-node graphs with (F, @)-bifurcators but that
each chip contains only m nodes, where m < N. Consider a chip consisting of a trun-
cated tree of meshes To,fiF,fi,, o(logfilF) 9 with the m processors divided equally
among the bottom-level meshes, and external pin connections to the top of the top
level mesh. Two copies of this chip may be wired together to form a truncated tree of
meshes with 2m processors. Thus, graphs with twice as many processors can be
assembled with two chips than can be assembled on a single chip. More generally, we
have the following result.

THEOREM 16. There is a universal restructurable chip with m processors and
O(,/& F/e) external pins, occupying area O((F’m/N) log’ m/F), such that
every N-node graph with an (F, $)-btjiircator can be assembled using multiple
copies of the universal chip. Furthermore, the number of chips used in the assembly is
as small as possible.

ProoJ: Consider the top log N - log m levels of a fully balanced decomposition
tree of G. Each of the subgraphs at level log N - log m has N/2’ogN-‘ogm = m
nodes, and has a @-bifurcator of size O(fiF/fl). By Theorem 7, each
of these subgraphs can be realized with a single universal chip consisting of a
truncated tree of meshes TO(&FI~Nj,O(~og mN~Fj whose area is bounded by
O((F2m/N) log’ w/F), and which has 0(mF/fl) external pin connections. To F
complete the assembly, the chips are wired up by making connections between pins
on different chips as given by the decomposition tree. 1

A noteworthy consequence of this result is that when F = O(fi), the restruc-
turable chip has O(G) pins, which is independent of the size of the network to be
assembled. This is the best possible. To realize networks with larger bifurcators, the
parameters of the restructurable chip depend on the size of the network assembled.

Special Cases. For graphs with special bifurcators, the same is true except that
only O(F’) area is used on each chip. For type A fl-bifurcators, the number of pins
needed is much lower. For example, N-node trees require only O(log m) pins per chip
[4]. (As is the case for all planar graphs, the number of pins does not depend on the
number of nodes. This is because N-node planar graphs have fi-bifurcators of size
O(n).) Recently, we improved this result to 6 pins for trees by using slightly
different techniques (but by giving up the use of a small portion of the processors on
some chips). Hence, pin count constraints place no limit at all on the size of trees
that can be fabricated with a single configurable chip, no matter how many
processors are placed on each chip.

7. LAYOUT ALGORITHMS BASED ON GRAPH BISECTION HEURISTICS

In the previous section we saw how a variety of layout problems could be
efficiently solved once the decomposition tree of a graph was known. All the results

SOLVING VLSI GRAPH LAYOUT PROBLEMS 329

were of the flavor: “If G has an (F, \/Z)-bifurcator, then...” But, given a graph, how
do we find a small fl-bifurcator or a suitable decomposition tree for the graph?

Some graphs are easy to decompose, so that a small bifurcator can be found
relatively easily. Such graphs include trees, cube-connected cycles, and, more
generally, graphs that are constructed recursively. It is also easy to find a small bifur-
cator if a small-area layout is known. (From Lemma 4, recall that graphs with layout
area A have a (fi, fl)-bifurcator.)

In general however, it is extremely difficult to find small bifurcators for graphs.
The reason is that the process of graph decomposition involves the problem of graph
partitioning, or graph bisection. The graph bisection problem, also known as the
“min-cut” problem, requires a graph to be partitioned into two components of equal
size, removing the minimum possible number of edges. This problem is known to be
NP-complete [131.

There are, however, a large number of heuristics for bisecting graphs which appear
to perform well in practice [6, 7, 10, 18, 37, 401. Many automated layout systems
use these and other partitioning heuristics. Is there any theoretical justification for
this? In what follows, we answer afftrmatively by showing that a provably good
algorithm for graph bisection can be tailored into a provably good layout algorithm.

The key idea is to convert a bisecton width heuristic into a heuristic for drawing
graphs with few crossings. (Determining crossing number is also NP-complete [141.)
Like small-area layouts, such drawings can be used to find small $-bifurcators. The
following theorem shows that with a provably good bisection heuristic, the number of
crossings is provably small (i.e., within guaranteed bounds from optimal).

THEOREM 17. Suppose there is an algorithm which, for every N-node graph with
bisection width B, finds a bisection of size at most y(N) B in polynomial time. (y(N) is
some nondecreasing functional measure of error.) Then there is a polynomial time
algorithm which, for every N-node graph with crossing number C, produces a drawing
with at most O((C + N) y’(N) log’ N) crossings.

Proof Use the bisection width algorithm to produce a decomposition tree for G
by recursively bisecting each subgraph in the tree. As in Fig. 4, define G,, and G,, to
be the left and right sons of G, in the decomposition tree. Further define B, to be the
bisection width of G,, C, to be the crossing number of G, and N, to be the number
of nodes in G,. Clearly, N, = N/2 Iw’ A simple application of the planar separator .
theorem shows that C + N > R(B2) for any graph and thus C, + N, > O(Bk) for
every w [19,201. Since G, contains G,,, for every w’, we also know that C, > C,,,
and thus that C, + N, > Q(Bi,,) for every w’.

The algorithm for drawing G is recursive. At each step, we will use drawings of
G,, and G,, to construct a drawing of G,. In addition, we will store a path from
each node to the exterior face of the drawing which has a small number of crossings.
These paths are used when inserting edges at each recursive step, but are otherwise
only remembered and updated (i.e., they do not count in the crossing totals). Let CL
be the number of crossings in the constructed drawing of G, and let P, be the

330 BHATT AND LEIGHTON

maximum number of edges that would have to be crossed to draw an edge from any
node in the constructed drawing of G, to the exterior of the drawing. Using a
straightforward divide-and-conquer analysis similar to that used to prove
Theorem 7-8 of [191, we can see that

C:, < CL, + C:, + y’(N) B; + y(N) B,P,

and

for every W. Solving the latter recurrence, we find that

and thus that

c: < CL, + c:, + O(y2(N)(C, + NJ log N,).

It is now a straightforward matter to prove by induction on 1 WI (starting with
] w J = log N and decreasing) that

c:, < 0(Y*(w(c, + NJ 14 NJ,

thus proving the theorem. 1

As a consequence of Theorem 17, we can prove the following result on finding @-
bifurcators.

THEOREM 18. If there exists a polynomial time algorithm which finds a y(N) B-
bisection of any N-node graph with bisection width B, then there is a polynomial time
algorithm for finding a (p(N) F, \/Z)-bifurcator for any graph G, where F is the size
of the minimum fl-bifurcator for G and p(N) = O(y(N) log3’* N).

Proof. First use Theorem 17 to construct a drawing for G with C’ =
W*(N) log* N(C + N)) crossings, where C is the minimal crossing number of G. In
what follows, we show how this drawing can be used to construct a fl-bifurcator for
G of size O@(N) log Ndm).

Consider the graph G’ formed by replacing the C’ edge crossings in the drawing of
G with artl3cial nodes. This graph is planar and has M = N + C’ nodes. By the
Lipton-Tarjan planar separator theorem [29], we can conclude that G’ has a fi-
bifurcator of size O(m) = 0(,/m). Thus G has a \/2-bifurcator of size
O(@??) = O(y(N) log Ndm).

By the optimality of C and the solution to Problem 4 in Section 6, we know that
C + N < O(F* log N/F), where F is the size of the minimal @-bifurcator of G.
Hence, we have constructed a @-bifurcator for G of size O(y(N)(log N)
Fdv) = p(N) F, where p(N) = 0(?(N) log3’* N). 1

SOLVING VLSI GRAPH LAYOUTPROBLEMS 331

Although Theorem 18 can be easily applied to the layout area problem, better
bisection-width-based bounds can be derived directly from Theorem 17. These bounds
are stated in the following theorem.

THEOREM 19. If there exists a polynomial time algorithm that finds a y(N) B-
bisection for any N-node graph with bisection width B, then there exists a polynomial
time algorithm that produces a layout for any N-node graph G with area at most
v(N) A, where A is the minimum layout area of G and w(N) = 0($(N) log4 N).

Proof. First use the algorithm described in Theorem 17 to find a drawing for G
with at most #(N)(C + N) crossings, where C is the crossing number of G and 4(N) =
O(y*(N) log* N). Convert the drawing into a planar graph by replacing each crossing
with an artificial node as in Theorem 18. Using the algorithm developed by
Leiserson [26] and Valiant [45], this graph can be laid out using at most
O(#(N)(C + N) log* N) area. The construction is completed by replacing the artificial
nodes with their original edge crossings. Since A > C + N, it is clear that the layout
has area at most w(N) A, where v(N) = O(y*(N) log4 N). 1

8. AREA,~ROSSING NUMBER, AND EDGE LENGTH BOUNDS

In Section 6, we argued that the new framework is universally good in the sense
that no graph with an (F, fi)-bifurcator has a much better layout than that provided
by the framework. In this section, we show that the framework is existentially optimal
inasmuch as there exist graphs with (F, fl)-bifurcators that are laid out optimally
by the framework.

8.1. Universal Bounds

In Theorem 20, we characterize the layout area, crossing number and minimax
edge length of a graph in terms of its minimal fl-bifurcator. Most of the bounds
have already been proved but we state them together again for convenience.

THEOREM 20. Let F be the minimum fl-bifurcator of an N-node graph G, which
has minimum layout area A, minimax edge length L, and crossing number C. The

following inequalities hold, and the upper bounds can all be realized simultaneously.

F* <A < 0 (F* log* N/F),

R(F*) Q C + N < 0 (F* log N/F),

and

R(F*/N) <L < 0
i

332 BHATT AND LEIGHTON

Proof. The upper bounds were proved in the solutions to Problems 1, 2, and 4 in
Section 6. Note that the bounds are all realized for the same layout.

The area lower bound is from Lemma 4. The crossing number lower bound follows
from the analysis in Theorem 18. In particular, any N-node graph with crossing
number C has a @--bifurcator of size O(dm). The edge length lower bound
follows from the crossing number lower bound. Since C + N > R(F*), the wire area
of the layout is at least that large and thus at least one of the O(N) wires in the
network must have length Q(F*/N). (In fact, the average edge length is Q(E;*/N).) I

As we have noted throughout the paper, it is possible to improve the upper bounds
in Theorem 20 for special classes of graphs. As we show in the next section however,
such improvements are not always possible.

8.2. Existential Bounds

We next show that the universal upper and lower bounds given in Theorem 20 are
everywhere existentially tight. We first define the expander-connected mesh and show
that it achieves (simultaneously) the universal lower bounds on area, crossing number
and edge length for any N and F. Then we define the expander-connected mesh of
trees and show that it attains the corresponding universal upper bounds.

An expander-connected mesh P,,,, with N = mn* nodes is formed by superim-
posing n* copies of an m-node expander graph on m copies of an n x n mesh. More
precisely, define P,,, to be the graph consisting of m disjoint n-by-n meshes which
are interlinked with additional edges so that for each i and j (1 < i, j < n), the
subgraph induced on the m nodes which are in the (i,j) position of some mesh is an
expander graph. For example, P,,, is shown in Fig. 10. The dotted lines represent
edges in the expander graphs while the solid lines represent edges in the meshes.

Remark. Strictly speaking, the expander-connected mesh has node degree 7 and
does not lit into our layout model. This problem can be dealt with in a variety of
ways but the simplest is to replace each degree 7 node with a 7-leaf binary tree. The

2- node expander graph

FIG. 10. The expander-connected mesh P,.,

SOLVING VLSI GRAPH LAYOUT PROBLEMS 333

area, crossing number, and minimax edge length bounds for the resulting degree 3
graph differ by at most a constant factor from those derived below for the unaltered
graph. A similar fact is also true for the expander-connected mesh of trees.

In the following we show that the size of the smallest fl-bifurcator of P,,, is at
least J2(mn). This is accomplished using the lower bound techniques developed in
[19,201 to prove that the bisection width of P,,, is at least Q(mn). This means that
the smallest \/2-bifurcator for P,,, has size f2(mn).

LEMMA 21. The bisection width of P,,, is at least L?(mn).

Proof. Let (i,j, k) denote the (i,j) node of the kth mesh of P,,,. In addition, let
P;,, denote the graph formed by extending each expander graph of P,,, to a
complete graph (i.e., to the graph formed by inserting edges between nodes (i,j, k)
and (i,j, k’) for every 1 < i,j < n and 1 < k, k’ < m). In what follows, we will use the
methods of [19,201 to find a lower bound on the bisection width of Ph,n. This, in
turn, will be used to find a lower bound on the bisection width of P,,,.

Consider the embedding of the complete graph on mn* nodes (Kmn2) in Ph,, which
links node (i,j, k) to node (i’,j’, k’) via the path

(i,j, k) + (i 5 l,j, k) -+ (i f 2,j, k) + -.a + (i’,j, k)

+ (i’,j k 1, k) + (i’,j f 2, k) + s-e -+ (i’,j’, k)

+ (i’, j’, k’).

(Note that the notion of an embedding used here is different than that defined in
Section 2, where edges were mapped to edge-disjoint paths in the grid.)

A simple counting argument reveals that each mesh edge of Ph,, is utilized at most
O(mn3) times by the embedding of K,,, while each complete graph edge is used at
most O(n’) times. Since at least m2n4/4 edges of K,,,, must cross any bisection of
K m,n2, we can thus conclude that any bisection of Pk,, must cut at least Ll(mn) mesh
edges or at least R(m*n*) complete graph edges. Clearly, any bisection of Ph,, which
cuts Ll(mn) mesh edges must also cut Q(mn) mesh edges of P,,,. In what follows, we
will show that any bisection of Ph,, which cuts s complete graph edges must cut at
least fJ(s/m) expander edges of P,,, . This will imply that any bisection of P&,n which
cuts R(m*n*) complete graph edges must cut O(mn*) expander graph edges of P,,,,
thus completing the proof.

Consider a bisection of Ph,, which cuts s complete graph edges. Let si,j denote the
number of edges cut in the (i, j) complete graph of PL,, for 1 < i, j < n. Clearly,
s = Cr,j=, s~,~. As each node in an m-node complete graph is incident to at most
m - 1 edges, we know that the bisection of Ph,, divides the (i,j) complete graph into
two subgraphs which contain at least siJ/m nodes each. Thus at least 12(sij/m) edges
of the (i,j) expander graph of P,,, are cut by the bisection. Summing, we find that
the bisection cuts at least G(s/m) expander edges of P,,, in total. 1

We can construct an expander-connected mesh with N nodes and minimum fi-

571/28/2-IO

334 BHATT AND LEIGHTON

bifurcator F for any N and F such that G(fl) < F < O(N), by setting n = @(N/F)
and m = O(F*/N). We now show how to construct a layout for P,,, which achieves
(up to a constant) the universal lower bounds for area, crossing number and minimax
edge length of Theorem 20.

THEOREM 22. There is a layout for P,,, which has area and crossing number at
most O(m2n2) = O(F2) and maximum edge length at most O(m) = O(F’/N).

ProoJ Lay out each expander graph in an O(m)-by-O(m) grid so that the node in
the kth mesh is in the (k, k) position of the grid. Arrange these sublayouts in a mesh-
like pattern so as to be consistent with the mesh structure of P,,,. Next insert the
mesh edges in the natural way. The resulting layout should look like Figure 10. It is
easily verified that the area of this layout (and hence its crossing number) is at most
O(n’) X O(m’) = O(m2n2), and that every edge has length at most O(m). [

Before defining the expander-connected mesh of trees, it is useful to review the
definition of a mesh of trees as proposed by Leighton in [19,201. (An equivalent
structure, the orthogonal trees network, has been studied by Nath, Maheshwari, and
Bhatt in [33]. Cappello and Stieglitz have also studied this graph, which they call the
orthogonal forests, in [81.) The 2-dimensional mesh of trees M,,, (where n is assumed
to be a power of 2) is defined as follows. Starting with an n x n matrix of nodes and
adding nodes wherever necessary, construct a complete binary tree in every row and
column of the matrix. The trees should be constructed so that

(i) the leaves in each tree are precisely the nodes in the corresponding row or
column of the original matrix, and

(ii) the subgraph induced on the nodes in each quadrant is M2,n,2.

For example, we have drawn M,,, in Fig. 11. The nodes in the original 4 x 4
matrix are represented by dots. The nodes which were added in order to form row
trees are drawn as small triangles while those added to form column trees are shown
as small squares. Solid lines indicate row tree edges while dashed lines indicate
column tree edges.

FIG. 11. The 4 x 4 tree of meshes M,,, .

SOLVING VLSI GRAPH LAYOUT PROBLEMS 335

The expander-connected mesh of trees is similar to the expander-connected mesh
P m,n except that the meshes are replaced by meshes of trees. More precisely, the
expander-connected mesh of trees (denoted by Q,,,) is defined to be the graph
consisting of m disjoint n x n meshes of trees which are interlinked with additional
edges so that for each i and j (1 < i, j < n), the subgraph induced on those leaves in
the (i, j) position of some mesh of trees is an expander graph. For example, we have
drawn Q2,* in Fig. 12. The dotted lines represent edges in the expander graphs while
the dashed and solid lines represent edges in the meshes of trees.

It is not difficult to check that Q,,, has N= @(mn’) nodes and a \/Z-bifurcator of
size F = mn. In the following theorem, we will show that Q,,, has layout area at least
,f2(m2n2 log* n) = R(F* log* N/F), crossing number at least fJ(m*n* log n) =
LJ(F* log N/F) and minimax edge length at least B(mn log n/log log n) =
L?(F log N/F/log log N/F). Thus the universal upper bounds proved in Theorem 20
are existentially tight for every N and F.

THEOREM 23. The expander-connected mesh of trees Q,,, has layout area
O(m*n* log* n), crossing number O(m*n* log n) and minimax edge length
O(mn log n/log log n).

Proof: The upper bounds follow trivially from Theorem 20 and the fact that Q,,,
has a \/Z-bifurcator of size O(mn). The lower bounds are substantially more difficult.
In fact, we suggest that the reader be familiar with the lower bound techniques
described in [19, 201 for the case when m = 1 before wading through the following
proof for general m. We commence with the area lower bound.

8.2.1. Area Bound

Let W,(n) denote the minimum wire area of Q,,,. We will show that for a
sufficiently small (but positive) constant Q,

W,(n) > am*n* log* n

for all m and n. This will, of course, imply the desired lower bound for layout area.
The proof is by induction of n. Since Q,,, contains n* disjoint m-node expander

FIG. 12. The expander-connected mesh of trees Q2,2.

336 BHATT AND LEIGHTON

graphs, the hypothesis is clearly true for n < 16 provided that a is a sufficiently small
constant. In what follows, we will assume that the hypothesis is true for all values
less than n in order to prove it for n.

Consider any layout for Q,,, which uses IV,(n) wire. Partition the layout into
three vertical strips V,, V,, and V2 so that center strip contains 7mn*/8 leaves and
each outer strip contains mn*/16 leaves. Similarly partition the layout into three
horizontal strips H,, Hi, and H, so that the middle strip contains 7mn2/8 leaves and
each outer strip contains mn*/16 leaves. For example, see Fig. 13.

Let d denote the length of the longest side of the center block formed by the inter-
section of V, and H,. Without loss of generality, we assume that the longest side is
horizontal. In what follows, we will show that d > & fimn log n.

Since each of the regions V, n H, and V, n H, can contain at most mn*/l6
leaves, it is clear that I’, n H, contains at least 3mn2/4 leaves. Consider the n3’*
subgraphs of Q,,, produced by eliminating the top j log n levels of the row and
column trees of Q,,,. Each of these subgraphs is isomorphic to Qm,n,,4. By the
pigeonhole principle, at least a of these subgraphs have at least f of their leaves inside
V,nH,. If d < & &mn log n (otherwise, we are done), then at most
4d < f fimn log n edges can cross the boundary of I’, n H,. Thus, at most
;codan log n of the subgraphs which have most of their leaves in V, n H, can have
m or more nodes or parts of edges outside of V, n H,. (This is because every
partition of Q,,,,,4 for n > 16 into two subsets, each of which contains m or more
nodes, requires the removal of at least m/c, edges where c, is a constant.)

This means that V, n H, contains at least an3’* - $c, &n log n nearly complete
copies of Qm,nlla. Since (by induction), Wm(n1’4) > &am*n”* log* n, and since each
nearly complete copy of Q,,,,,4 is missing at most m nodes and edges, it is not
difficult to show that the wire area of each nearly complete copy of Q,,,,,4 is at least
&am n * ‘I* log* n. Thus I’, n H, contains at least

(an312 - $,&in log n) X &am*n”* log* n

wire area. For constant a sufficiently small, this is at least &am%* log’ n. Hence
d > &-&mn log n, as claimed.

We next use the layout for Q,,, to construct a drawing for the complete graph on

-1-y
n&l6 I 7 mn2/8 mn2/16

FIG. 13. Partitioning a layout.

SOLVING VLSI GRAPH LAYOUT PROBLEMS 337

mn2 nodes (namely, the mn2 leaves of Q,.,). In particular, the edge from leaf (i,j, k)
to leaf (i’, j’, k’) is drawn from (i,j, k) to (i/J’, k) along the path from (i,j, k) to
(i’,j, k) in the jth row tree of the kth tree of meshes and from (i’,j, k) to (i’,j’, k) in
the i’th row tree of the kth tree of meshes. The edge to (i/J’, k’) is completed by
drawing a line from (i/J’, k) to (i’,j’, k’) directly. (Notice that we have traced over
the mesh of trees edges but not the expander edges.) No matter how the edges are
drawn in the plane, however, (e.g., they may cross or overlap) it is clear from Fig. 13
that the sum of the lengths of the edges (as measured in Euclidean space) is at least
(mn2/16)’ d> 2-12,,/- am3n5 log n. This is due to the fact that (mn2/16)2 edges pass
from region V, to region V, and that these regions are separated by a distance d.

Let Li denote the sum of the lengths of the edges in the ith levels of the binary
trees in the layout of Q,,,. In addition, let R denote the sum Czj= i Ri,j, where Ri,j is
the sum over 1 < k, k’ < m of the distance between (i,j, k) and (i,j, k’). Each level i
edge is traced over at most mn32-’ times in the drawing of the complete graph. In
addition, the straight-line path between (i,j, k) and (i,j, k’) is traced over at most n2
times for any i,j, k and k’. Thus,

log n

Rn2 + x Lin3m2-’ > 2-“&m3ns log n.
i=l

This means that one of the following inequalities must be true:

R>2-13fim3n310gn
or

log n
,JTl Li2-’ > 2-13 fim2n2 log n.

In the first case, we observe that there is a constant c, such that R’ > c, R/m,
where R’ = CyJ=, Rj,j and R;,j is the sum of the lengths of the edges in the (i,j)
expander graph of Q,,,,. This observation follows from the fact that Rf,j > c,Ri,dm
for every i and j. (This fact can be proved by integrating the values of Ri,j and R;,j
over all vertical and horizontal cuts of the layout. Each cut will contain r(m - r)
pieces of edges of Ri,j and (c,/m) r(m - r) pieces of edges of R1,, where r and m - r
are the number of nodes on opposite sides of the cut.) Since W,(n) > R’ and since
R’ 2 2-“c,@m2n3 log n, we can conclude that (for a sufficiently small constant a)
W,,,(n) 2 am2n2 log n, thus proving the inductive hypothesis.

In the second case, we can show by a simple contradiction argument (just plug the
claimed value back into the sum) that there exists an i such that

L, > 2-13fim2n2 log n2’
I/ pi’ ’

where /I is the constant CyY I l/i*. Using the straightforward relation

W,(n) > 22iWm(n2-i) + Li,

338 BHATT AND LEIGHTON

we can conclude that

W,(n) > 22’amZ(n2-i)2 (log n - i)’ +
2-13 &irn*n* log n2’

~am2n210g2~~2ia~2~210gn+ 2-13~~~~210gn2i

which is at least am*n* log’ n for a sufficiently small constant a. This completes the
proof of the area lower bound. We next prove the minimax wire length lower bound.

8.2.2. Wire Length Bound

From the proof of the wire area lower bound, we know that one of the following
inequalities must hold:

R > 2-13fim3n3 log n,

or
log n
JJ Li2-’ > 2-13fim2n2 log n.
i=l

When the first inequality holds, we showed that W,,,(n) > R(m*n’ log n). Since
Q,,, has O(mn*) edges, this means that at least one of the edges in the layout must
have length LI(mn log n) > O(mn log n/log log n). When the second inequality holds,
a simple contradiction argument (as before, just plug the values back into the sum)
can be used to show that either

(1) there is an i < 6 log log n such that Li > R(m*n* log n2’/log log n), or
(2) there is an i > 6 log log n such that Li > Q(m*n* log n2’/i*).

Since there are mn2 ‘+I level i edges in Q,,, , the first condition insures that the
layout contains a wire of length f2(mn log n/log log n). The analysis of the second
case is somewhat more difficult.

Consider a layout for Q,,, which achieves the minimax edge length and (among
layouts which satisfy this constraint) has minimum area. Since W,(n) > Li for all i,
the second inequality implies that

W,(n) > fl(m*n* log’ n/log log* n)

2 Q(m*n* log6 n)

for this layout. Thus (without loss of generality) the horizontal length of the layout is
at least O(mn log3 n).

Partition the layout into three equal-area vertical strips. By the minimality of the
layout area, we can conclude that each of the outer strips contains Q(mn log3 n)
nodes. (Otherwise, a smaller layout with identical minimax edge length could be
constructed.)

SOLVING VLSI GRAPH LAYOUT PROBLEMS 339

Since each mesh of trees has diameter O(log n), each mesh of trees must be entirely
contained in an O(mn log’ n) by O(mn log’ n) rectangle. (Otherwise, there would be
an edge of length Sd(mn log n) and we would be done.) Thus nodes in the same mesh
of trees must be grouped together in the layout. Since each mesh of trees contains
@(n’) nodes, the outer strips must contain fJ(m log3 n/n) complete meshes of trees.
Thus at least a(m log3 n/n) > a(m/n) nodes of each expander graph are contained in
the left and right outer strips of the layout. Since any two sets of rl and r2 nodes are
linked by a path of length O(log(m/r,) + log(m/r,)) in an m-node expander graph,
this means that there is a path of length O(log n) connecting the left outer strip to the
right outer strip. As the strips are separated by a distance R(mn log3 n), we can
conclude that the layout contains an edge of length O(mn log* n). This completes the
proof of the minimax wire length lower bound. We next prove the crossing number
lower bound.

8.2.3. Crossing Number Bound

Let C,(n) denote the minimum crossing number of Q,,,. As was the case with the
wire area lower bound, we will show by induction on n that

C,(n) > cfm*n* log n

for a sufficiently small (but positive) constant a. The basis of the induction follows
from the fact that C > Q(B*) for any N-node graph with bisection width B s f2(@).
This fact immediately implies that the crossing number of an m-node expander graph
is n(m’). In what follows, we will assume that the hypothesis is true for all values
less than n in order to prove it for II.

Consider a drawing of Q,,, in the plane which has C,(n) crossings. By the
optimality of C,(n), we can assume that no pair of edges cross more than once and
that pairs of edges incident to the same node do not cross at all. Using the drawing
for Q,,,, construct a drawing for a graph with R(m2n4) edges and mn* nodes as
follows:

(1) Draw an edge between every pair of nodes in the same expander graph
which are incident to crossing expander graph edges.

(2) Draw an edge between pairs of leaves in the same mesh of trees.
(3) Draw an edge between pairs of leaves separated by a path of length 1 or 2

in the graph formed by steps (1) and (2).
(4) Eliminate multiple edges.

Each edge in the new graph should be drawn along the edges of Q,,, in the natural
way (e.g., the edges introduced in step (1) are drawn along the corresponding
crossing edges of Q,,,). It is not difficult to check that each expander edge is traced
over at most m times during step (1) and that each level i mesh of trees edge is traced
over at most n32-’ times in step 2. These values are multiplied by a factor of O(n’)
for expander edges and O(m) for mesh of trees edges by step 3.

340 BHATT AND LEIGHTON

Since every drawing of an m-node expander graph has G(m’) crossings, it is not
diflicult to see that the resulting graph (even after step 4) has E = ~(m’n”) edges and
N = mn’ nodes. In Theorem 7-6 of [191, Leighton shows that any drawing of such a
graph must have f2(E3/N2) = D(m4n8) crossings. Thus

logn logn

sm2n4 + C rim2n52-’ + 2 tiJm2n62-‘-j > Q(m”n”),
i=I i,j=l

where ti,j is the number of crossings in the drawing of Q,,, involving a level i edge
and a level j edge, ri is the number of crossings involving a level i edge and an
expander edge, and s is the number of crossings involving two expander edges. This
means that one of the following inequalities must be true:

s > Q(m2n4),
logn
1 ri2-’ > 12(m2n3),
i=l

or

ti,j2-i-j > R(m%*).
i,j= 1

If the first inequality holds, then we can conclude that

C,(n) > s > R(m2n4) > am2n2 log n

for sufficiently small a. If the second inequality holds, then

logn logn

C,(n) > x ri 2 2 ri2-i > D(m2n3) > am*n* log n
i=l i=i

for sufticiently small a. The analysis for the third case is somewhat more difficult.
Let ti = Cp:/’ ti,j be the number of crossings involving a level i edge and a level j

edge, where j> i. When the third inequality holds, it is clear that x:2,” ti2-2i >
B(m*n*). Thus there is an i such that ti > 12(m2n22’). Using the inductive hypothesis,
we can thus conclude that

C,(n) > 2*‘C,(n2-‘) t ti

> 22iam2(n2-i)2 (log n - i) t ti

= am*n* log n - iam*n* + Q(m*n*2’)

which is at least am2n2 log n for a suffkiently small constant a. This concludes the
proof of the crossing number lower bound and of the theorem. 1

SOLVING VLSI GRAPH LAYOUTPROBLEMS 341

9. REMARKS

The divide-and-conquer strategy based on bifurcators has also been successfully
applied to the study of three-dimensional VLSI layouts [23]. In addition, the
techniques and results are applicable to graph and data-structure embeddings, and
also provide bounds on one- and two-dimensional bandwidth minimization.

There are a number of problems left unresolved in this paper. Some of the more
important ones are mentioned below.

(1) How much area is needed to lay out an N-node planar graph? The best
universal upper bound is O(N log* N) [26,45] while the best existential lower bound
(for the tree of meshes) is R(N log N) [19,201.

(2) Is there a polynomial time algorithm for laying out trees with edges not
much longer than the minimax edge length? The best tree layout algorithm known
produces layouts with edges of length @(@/log N)[3]. Although this is optimal for
some trees, it is way off for others. On the other hand, it is N&complete to determine
if a tree can be laid out with all edges of length one [2].

(3) Is there a better way to realize a network in an environment that contains
defective processors? Theorem 15 guarantees that any graph can be realized using the
good processors provided the “channels” have width R((F/@) log N/F) in a regular
layout. This bound is clearly optimal for some networks (such as expander-connected
meshes of trees) but is not known to be optimal for simpler networks. In particular, it
is not known whether or not a constant number of tracks per channel suffices to
configure a mesh from the good processors. Since F = fl for an N-node mesh, the
best known upper bound on channel width is O(log N).

(4) Is there a provably good, polynomial time algorithm for the bisection
width problem? Although the bisection width problem is known to be NP-complete
[13], there are many heuristics which do quite well in practice [6, 7, 10, 18, 37, 401.
Analyzing these or developing new heuristics along similar lines may help solve the
layout problem.

(5) Is there a provably good, polynomial time algorithm for the crossing
number problem? This problem was recently shown to be N&complete [141, but the
possibility of approximation algorithms is not ruled out. The arguments of Section 7
suggest that graph bisection algorithms might be effective for this problem.

ACKNOWLEDGMENTS

Charles Leiserson was a major collaborator in this research. Most of the problems, and their
solutions, came up in discussions with him. Thanks also to Michael Kaufmann for reading through a
first draft of this paper and for providing numerous helpful remarks. Working independently, Kaufmann
proved the regular layout results for graphs with small bifurcators. (These and other interesting layout
results can be found in his master’s thesis at the Universitiit des Saarlandes.) We are also grateful to
Tom Lengauer, Kurt Mehlhorn, Gary Miller, Franc0 Preparata, Ron Rivest, Arnie Rosenberg, Jim Saxe,
Larry Snyder, and Clark Thompson for their helpful remarks. Finally, special thanks to the referee for
putting up with an error-filled earlier draft and for providing detailed and insightful comments.

342 BHATTAND LEIGHTON

REFERENCES

1. J. BENTLEY AND H. T. KUNG, A tree machine for searching problems, in “Proceedings of the 1979
International Conference on Parallel Processing,” IEEE, New York, 1979.

2. S. N. BHATT AND S. COSMADAKIS, “The Complexity of Minimizing Wire Lengths in VLSI
Layouts,” unpublished manuscript, MIT, Cambridge, Mass., 1982.

3. S. N. BHATT AND C. E. LEISERSON, “Minimizing the Longest Edge in a VLSI Layout,” MIT VLSI
Memo 82-86, 1982.

4. S. N. BHATT AND C. E. LEISERSON, How to assemble tree machines, “Fourteenth Annual ACM
Symposium on Theory of Computing,” 1982.

5. G. BILARDI, M. PRACCHI, AND F. PREPARATA, “A critique and appraisal of VLSI models of
computation, in “Proceedings, CMU Conference on VLSI Systems and Computations,” 1981.

6. M. A. BREUER, “Min-cut placement, J. Design Automation and Fault Tolerant Computing 1, (4)
(1977), 343-362.

7. T. BUI, “On Bisecting Random Graphs,” S. M. thesis, Department of Electrical Engineering and
Computer Science, 1983; MIT LCS Technical Report 287.

8. P. R. CAPPELLO AND K. STEIGLITZ, “Area-Efficient VLSI Structures for Multiplying at Clock
Rate,” Technical Report 289, Department of EECS, Princeton Univ. Princeton, N. J., (1981).

9. D. DOLEV, F. T. LEIGHTON, AND H. TRICKEY, “Planar embeddings of planar graphs,” MIT LCS
Technical Memo 237, 1983.

10. C. M. FIDUCCIA AND R. M. MATTHEYSES, “An Almost Linear Algorithm for Partitioning
Networks,” unpublished manuscript, 1982.

11. R. FLOYD AND J. ULLMAN, The compilation of regular expressions into integrated circuits, in
“Twenty-First Annual IEEE Symposium on Foundations of Computer Science,” 1980.

12. 0. GABBER AND Z. GALIL, Explicit constructions of linear size superconcentrators, in “Proceedings,
20th Annual IEEE Symposium on Foundations of Computer Science,” pp. 364-370, (1979).

13. M. R. GAREY AND D. JOHNSON, “Computers and Intractability: A Guide to the Theory of NP-
Completeness,” Freeman, San Francisco, 1979.

14. M. R. GAREY AND D. S. JOHNSON, unpublished manuscript, 1982.
15. J. R. Gilbert, “Graph Separator Theorems and Sparse Gaussian Elimination,” Ph. D. thesis,

Stanford Univ. 1980.
16. C. GOLDBERG AND D. WEST, “Even Splittings of Circle Colorings,” unpublished manuscript, 1982.
17. J. GREENE AND A. EL GAMAL, Area and delay penalties in restructurable wafer-scale arrays, in

“Third Caltech Conference on VLSI” (R. Bryant, Ed.), Computer Science Press, Rockville, Md.,
1983.

18. B. W. KERNIGHAN AND S. LIN, “An efficient heuristic procedure for partitioning graphs,” Bell
System Tech. J. (1970), 291-307.

19. F. T. LEIGHTON, “Layouts for the ShufIle-Exchange Graph and Lower Bound Techniques for
VLSI," Ph. D. thesis, M. I. T., Cambridge, Mass., 1981; revised version, “Complexity Issues in
VLSI,” Foundations of Computing Series, M.I.T. Press, Cambridge, Mass., 1983.

20. F. T. LEIGHTON, New lower bound techniques for VLSI, in “Twenty-Second Annual Symposium on
Foundations of Computer Science,” IEEE New York, 1981.

21. F. T. LEIGHTON, A layout strategy for VLSI which is provably good, in “Fourteenth Annual ACM
Symposium on Theory of Computing” 1982.

22. F. T. LEIGHTON AND C. E. LEISERSON, Wafer-scale integration of systolic arrays, in “Twenty Third
Annual IEEE Symposium on Foundations of Computer Science,” 1982.

23. F. T. LEIGHTON AND A. L. ROSENBERG, “Three Dimensional Circuit Layouts,” M.I.T. VLSI Memo
102, 1982.

24. C. E. LEISERSON, “A Model for VLSI Computations,” Thesis proposal, Carnegie-Mellon Univ.,
Pittsburgh, 1979.

25. C. E. LEISERSON, Systolic priority queues, in “Proceedings of the Caltech Conference on Very
Large Scale Integration” (C. Seitz, Ed.), California Institute of Technology, Pasadena, 1979.

SOLVING VLSI GRAPH LAYOUT PROBLEMS 343

26. C. E. LEISERSON, Area-efficient layouts (for VLSI), in “Twenty-First Annual Symposium on Foun-
dations of Computer Science,” IEEE, New York, 1980.

27. C. E. LEISERSON, “Area-Efficient VLSI Computation,” Ph. D. thesis Carnegie-Mellon Univ.,
Pittsburg, 1981; MIT Press, Cambridge, Mass., 1983.

28. P. M. LEWIS, R. E. STEARNS, AND J. HARTMANIS, Memory bounds for recognition of context-free
and context-sensitive languages,” in “IEEE Symposium on Switching Circuit Theory and Logical
Design,” 1965.

29. R. J. LIPTON AND R. E. TARJAN, A separator theorem for planar graphs, in “A Conference on
Theoretical Computer Science,” Univ. of Waterloo, 1977.

30. G. A. MAGI& A network of microprocessors to execute reduction languages. I and II, Internat. J.
Comput. Inform. Sci. (1979).

31. C. MEAD AND L. CONWAY, “Introduction to VLSI Systems,” Addison-Wesley, Reading, Mass.,
1980.

32. K. MEHLHORN, personal communication, 1982.
33. D. NATH, S. N. MAHESHWARI, AND P. C. P. BHATT, Efficient VLSI networks for parallel processing

based on orthogonal trees” IEEE Trans. Comput. (1983).
34. M. PATERSON, W. Ruzzo, AND L. SNYDER, Bounds on minimax edge for complete binary trees, in

“Thirteenth Annual ACM Symposium on Theory of Computings,” 1981.
35. J. RAFFEL, On the use of nonvolatile programmable links for restructurable VLSI, in “Proceedings

of the Caltech Conference on Very Large Scale Integration,” 1979.
36. V. RAMACHANDRAN, On driving many long lines in a VLSI layout, in “Proceedings, Twenty third

Annual IEEE Symposium on Foundations of Computer Science,” 1982.
37. R. L. RIVEST, The “PI” (placement and interconnect) system, in “Proceedings, 19th Annual Design

Automation Conference,” 1982.
38. A. ROSENBERG, “Routing with Permuters: Toward Recontigurable and Fault-Tolerant Networks,”

Technical Report CS-1981-13, Duke Univ., Durham, N. C., 1981.
39. W. Ruzzo AND L. SNYDER, Minimum edge length planar embeddings of trees, in “Proceedings,

CMU Conference on VLSI Systems and Computation,” 1981.
40. A. SANGIOVANNI-VINCENTELLI, L. CHEN, AND L. CHUA, An efficient heuristic cluster algorithm for

tearing large-scale networks, IEEE Truns. Circuits Systems CAS-24 (12) (1977) 709-7 17.
41. C. D. THOMPSON, Area-time complexity for VLSI, in “Eleventh Annual ACM Symposium on

Theory of Computing,” 1979.
42. C. D. THOMPSON, “A Complexity Theory for VLSI, Ph. D. thesis, Carnegie-Mellon Univ.

Pittsburgh, 1980.
43. J. D. ULLMAN, “Computational Aspects of VLSI,” Computer Science Press, Rockville, Md., 1983.
44. L. G. VALIANT,~~ non-linear loweer bounds in computational complexity, in “Proceedings, Seventh

Annual Symposium on Theory of Computing,” 1975.
45. L. G. VALIANT, Universality considerations in VLSI circuits, IEEE Trans. Comput. (1981).

Printed in Belgium

