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Abstract: In a previous study we have shown that the polygamma functions (derivatives of the logarithm of the gamma function) relate 

to Stieltjes transforms in the square of the argument. These transforms in turn may be converted to Stieltjes continued fractions; in 

the background is a determined Stieltjes moment problem. 

In the present study we use the Hamburger form of the Stieltjes integral to produce a set of real monotonic increasing and 

monotonic decreasing approximants to each of the real and imaginary parts of a polygamma function when the argument is complex. 

The approximants involve rational fractions which appear to be new. 

Special attention is given to In T(r) and the psi function. 
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1. Introduction 

It was shown by us [3] that the polygamma function 

G,(z) =s ln r(z), m=0,1,2 ,..., (1) 

(q(z) = #,,(.z) being the psi or digamma function, 4,(z) the trigamma function, etc.) satisfies the relation 

(2) 

m= 1, 2, 3 ,..., where 

g,(z) =JW 
x”“@,,,(y)dx 

0 (x+z2)(y- l)m+’ 
, y=e2+, 

k?(Y) =y(l -Ygy + my@,_ ,, 8,=l,m=0,1,2 ,.... 
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(For m = 0 the expression (m - l)!/z” is replaced by -1n I, and O! by unity). For example, 

#(z)=l nz--- :, lie dx 
0 (x+z2)(y- 1)’ 

i,(z)=f+-$++jm y&x 
0 (x+z’)(y- 1)” 

G,(z)= -~-~-(~)2/,w,,‘:~2~;~~~,. 

(3) 

showing the polygamma functions in terms of Stieltjes integral transforms with parameter z2. 
Our object here is to derive from (2) new approximation sequences (monotonic increasing, and 

monotonic decreasing) for the real and imaginary parts of 4,(z). These sequences are quite distinct from 
those which could be derived by separating out the real and imaginary parts from the Stieltjes type 
continued fractions (c.fs.) derived in Shenton and Bowman [3]; see expressions (19)-(24). 

2. The polynomials &,,( y ) and the integral g,(z) 

From (3) the symmetry of the polynomials is obvious. A general proof is to consider the function 

k(Y) =Y -(m+‘)/20m( y), m 2 1, (4) 

which satisfies the difference-differential equation 

k?(Y) = tm(dF+ l/$)++,(Y) + dF(l -Y)%-,(Y). 

It is also readily shown that 

+m(l/x)=tm(&+ l/dq#Jm-,(l/x)+ (1 - l/x)il/h)&LdVx). 
But %,,(Y)= &,Jl/y), m = 1,2, 3. 

It is now evident that under the mapping x = t2 in (2), we may write 

g,(z) =Jm 
tm+‘0,,,(e2”‘)dr = m fm+i~,,n,(e2n’)dt 

--oo (r2 + z2)(e2”‘- l)m+l J -_oo (12 + Z2)(enr - e-“t)‘“+’ 

in which 

+m(e2n’) = +~1(e-2n’). 

Hence the integrand in (5) is an even function and so 

g,,,(z) =~/_mm~ (Re(z) > 0) 

where a(t) is a distribution function on (- co, cc); i.e. 

(-l)“+‘~,(z)= (rnz--,‘)! +s++ /_",";'I',',"' 

(5) 

(6) 

where O,,,(-t)= O,,,(t) and m >, 1. 
But there is the basic c.f.-integral relation, namely 

( “t ) 
i 
J 

OQ @,,,(t)dt c:‘“’ c, =- 
_-oo t+iz z+ zt ... . 
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from expression (24a) of Shenton and Bowman (1971). Defining w = iz, we therefore have 

/ 

m O,,,(t)dt CA”‘) cl”‘) 

_-oo t+w =- w- w- . . . ’ Imw>O,Rew*O. 

Note we are interested in q,(z) when z is complex; i.e. Im( z) * 0. 

3. Real and imaginary parts of Z/~(Z) 

Let z = r eie with -m/2 < 8 < rr/2, 0 * 0, and write (27r/~)~lg~( z) in the form 

31 

(7) 

Then from (2) and (7), for m > 1, 

ReGMz)) =-+/ 
00 {tsin(m+ 1)8+rcos(~+2)6}@,(t)dr 

--m t2 - 2tr sin B + r2 
(9a) 

and 

Im{@,(z)> = A/ 
00 {tcos(m+ 1)0-rsin(m+2)8}0,(t)dr 

t2 - 2tr sin e + r2 
(9b) 

r --m 

We point out in the earlier paper on the subject that we missed the important symmetry properties of the 
integrand occurring in Gm(z). This property focuses attention on the Hamburger aspect of the integral 
transforms - a simplification is now induced into the expression for the sequence approximants to 
Re( 4,) + Im( $,) when we appeal to our own work on second-order continued fractions [2]. 

4. Link with second order continued fraction 

To set up increasing and decreasing sequences to (9a) and (9b), there are three important formal steps. 
A. To formulate rational fraction approximants to definite integrals of the form 

/ 
o” A(x)B(x)d+(x) 

-m C(x) 

where, A, B, C are polynomials. 

B. To describe the basis for the derivation of monotonic sequence approximants. 
C. To formulate details of the computational schemes. 
The scheme is described in detail in [2]. We recall the main points. 
An nth order c.f. is associated with 

qz,,z2,...4J= / 
m++Wd~b) 

0 c,(x) (10) 

where A, B are real polynomials and 
n 

C,(x)= n (x+z,) forx>O,zxdistinct, 
A-1 

and linked to the c.f. (Stieltjes transform) 

(11) 

F(z)q!gL”” a, 
i 
_ P,(z) 

z+c, - z+c, - ... Qs(Z> 
ass-+w . 

i 
(12) 

In the paper we were interested in the general case and in particular, functions $(x) as a solution of the 
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Stieltjes moment problem - the formal change to moment problems for which G(X) is a constant for x < a, 

and x > b( > a) presents no problem but care is needed over validity considerations. Again our present 
study concentrates on the case n = 2, involving second-order (generalized) c.fs. In (10) we need only to 

consider polynomials A(*), B( .) such that the product degree does not exceed two. Sequences of 
approximants appear involving the parameters in the denominator C,, which in the present case (n = 2) 

takes the form 

C,(x) =x2 +p,x +p2. 

We need to define the following functions: 

(13) 

(ii) (A,B)=-!- ’ ’ 
I I AP, & 

where 

O” @tx) -+‘S)) dGtx) 

x + z, 
, s= 1,2. 

(iii) W,(B) is similar to (A, B) except that the last row of the numerator determinant is replaced by yls, 

y,, where y,, = P,( z,)B( - zr). As is readily shown, 

W,(B) = k (- 1)2-rb,L$2-‘) 
r-1 

where B(x)= X~_,b,x*-’ and V,‘“‘, X = 0, 1, is similar to U,“’ except that the last row of the numerator 
determinant is z:P,(z,), ztP,(z,). 

Then an approximating sequence to 

F(z,, 4 = / 
- A(x)Btx)detx) 

0 tx+z,>(x+z2) ’ 

where 

P,(A, B) = 

assuming convergence of the integral, is 

f’,(4B)/Q,(z,,z,) (s= I,&...) 

- (A,B) K(B) Y+,(B 

U”‘(A) up u(l) 
s+ I 

P(A) up u,‘+“i 

1 

(15) 

(16) 

Various choices of the polynomials A, B lead to different forms, but it is fairly obvious that 

J’,(A,B)=P,(B,A). 

For our present purposes we need the result for A(x) = B(x) = Cx + D. We find formally the sequence of 
approximants to 

J 
CQ (Cx + D)‘d+( x) 

(17) 
0 x*+p,x+p2 ’ 

namely 

T,(A,A; C2)=C2ao+ 
e+=(A,A) 
Qsh ~2) ’ 

(17a) 
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where 

(Note that P:(., .) 1s a ua r rc q d at’ f orm in C, and D with variable coefficients.) 

5. Monotonic sequences 

5.1. Returning to the function Q,(z) involving the polygamma function $,,(z), the real and imaginary 
parts ((9a), (9b)) will not necessarily, using (16) be approximated by monotone sequences. But for real 
polynomials there is always a solution to 

tsin(m+1)8+rc0s(m+2)8=(C,~+D,)*-C~(t2-2trsin~+r2), (lga) 

namely 

c, = 1 - cos(m + 1)e 

I 
D, = 

sin(m+ 1)/J-sine 

2rcose ’ 2c, cos 8 

Recallthatm=1,2,..., and --rr/2<B<r/2,l?*O. 
Similarly, a solution to 

tsin(m+ 1)B+rc0s(m+2)8=C,Z(t2-22trsinfI+r*)-(c2t+D2)* 

is 

c, = 
i + C~~(m + i)e I D,= - sin(m+2)8+sine 

2rcosB ’ 2c2 case . 

(18b) 

(18~) 

Wenowhaveform=1,2,..., -r/2<tI<?r/2,B*O, 

ReP%(z)) = -+{l.i.s. P:m)( r; e)} 

= s(1.d.s. Q:“‘( r; e)} 

( 194 

(19b) 

(limit of the increasing sequence = l.i.s, and limit of the decreasing sequence = 1.d.s.) where 

(i> Pr(m, =L 1 D,I/;“‘- W:“’ D I’(“- C,v,‘:: I 1+1 

44 c,q (‘) - D,cT,"' C,cr,:"i - D,or,':; 

(ii) Qj”’ is derived from P, (n’) by replacing D, by D,, C, by C,, and finally changing the sign. 
(iii) W,(Z) = U,y{U,“’ - V,‘,t’,V,(“‘. 

5.2. For Im( @,,,( z )>, C,, D, and C,, D2 are replaced by 

094 

It is possible for one of the parameters C,, C,, C:, CT to be zero resulting in an infinite value for one of the 
D ‘s. This situation is resolved as follows; there are two cases: 

(a) sin(m + i)e = 0. 
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Here for the real part of Qz(z) use the sequence 

cos(m+2)8 

rm 
(1.l.S. P,‘“‘( r; e>> 

where 
UC” 

p/yr; +’ ’ 
u(l) 

,+ I 1 1 q(z) y(O) y(O) ’ 
,+ I 

and for the complementary decreasing sequence 

(2Oc) 

(204 

where 

pjm’(r; e)=‘- 
r sin B y(O)+ y(‘] r sin B y:(,o/ + V,(:{ 

w,(z) U,(O)+ r sin e U,(I) f-I(O) + r sin e U(l) ' ,+I r+l 

(b) cos(m + l)e = 0. 
Use (20~) with cos(m + 2)e/rm replaced by -sin(m + 2)8/Y, and (20d) with the factor outside the 

braces replaced by - sin( m + 2)B/(rmf2 cos*B). 

5.3. The fundamental entities. The sequences (q(O)}, {~“‘}, {v(O)> and (y:“]} are set-up from the 

recurrences 

s up us(l) yew v3:(l) 

0 -1 0 0 0 (22) 

101 0 C;m] 

Note that only the first few partial numerators Cdm], Cl”‘], a re known in the general case ([3], (24b)); 
however, general expressions are known for I/*(X) (Stieltjes [5]) and also for 4,(x) (Shenton, unpublished). 
For the latter 

where C,“], = s2(s2 - 1)/(4(4? - l)), s = 2, 3,. . . . 

Numerical example. Let m = 1, z = 1 + ifi, r = 2, and 8 = n/3. Then 

c,=+&, D,= -1, C,=+, D,= -$3, 

leading to Table 1. 
For the real part we have for the coefficients in the determinants P,(“‘( r; 8): 

&fi -0.; 0.503119521 -0.1; - 1.609082689 

1 0.173205081 -4.714285710 13.69145024 - 18.0 

(change sign of final determinant value), and for the coefficients in the determinants Qj”“( r; 0): 

-0.376190476 1.154700536 - 1.607792206 

5.691024110 - 1.428571490 - 19.83985464 

(23) 

(24) 
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Table 1 

s U’O’ 
I 

u”’ 
s 

V’O’ 
I VJ” 

0 -1 0 0 0 

1 0 1 0 l/6 
2 4.2 - 3.464lOiZ 0.12 -0.511350269 

3 - 13.85640646 7.28571430 - 0.577350269 1.247619048 

4 25.14285720 - 8.08290382 l.Of - 1.462620685 

5 - 11.33706004 -8.181818080 -0.587847550 - 1.179220764 

Table 2a Table 2b 

1 p(l) I Q!” 

1 - 0.02 13294 - 0.0193452 1 -0.001851216 +0.000132911 
2 - 0.02 13259 -0.02107% 2 - 0.001059332 - 0.0008 13027 
3 -0.0212490 -0.0211917 3 -0.001057682 -0.001000342 
4 -0.0212129 -0.0211921 4 -0.001043183 - 0.001022385 

True value - 0.02120402 True value - 0.00102873 

The real part of 

@,(l+ifi)=Re 

follows from Table 2a. 
For the imaginary part we have for the coefficients in the determinants P,(““*(r; e), 

ib -0.122008468 0.046459255 0.357578546 - 1 .I77457932 

1 - 1.364101616 0.357511070 4.488524780 - 13.850348 10 

and for the coefficients in the determinants Qim’(r; e), 

- & 0.455341801 - 1.201159793 1.820199231 0.001762832 

1 5.566101616 - 14.21391753 20.65433242 2.51328806 

The imaginary part of 

@,(z)=Im G,(z)-G--s) 
i 

follows from Table 2b. 

6. Remarks on validity 

The distribution functions (weight functions O,,,(t) given in (7)) for In r(z) and the polygamma 
functions relate to determined Stieltjes moment problems. For example, omitting the first two terms in 
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#,(z), the series coefficients in the remaining series are the moments of a bounded non-decreasing function 
with infinitely many points of increase on (0, 00). But in our earlier study we overlooked the fact (described 

in Section 1) that for m > 1, the distribution functions relate to the whole axis of reals, so that the 
corresponding moment problem is the Hamburger; i.e. the basic function (5) relates to 

z(z; l7) = J _Lz (z=x+iiy). (25) 

Clearly for validity here, Re(z) f 0 at least. Notice that nothing is altered to any extent with the c.f. form 

valid for Re(z) > 0 (the forms are not valid for Re(z) < 0 because of the initial formulation of the relation 
between q,(z) and its asymptotic series). 

We have to consider the validity of generalized c.f. derived from integrals such as (see (lo), (15) (17)) 

z(z,,z m 2; 0) = j 
de(t) 

--oo (t+z,)(t+zJ 

Briefly one approach is to consider the problem of the validity of expansions stemming from 

min J m tr+zm+z*) 
1 

- ?r,(r) *do(r) 
n, --m (t+z,)(t+z,) I 

where we assume (t + z,)(z + z2) > 0 for t E (- cc, cc) and rrs are real polynomials; i.e. the question 
whether Parseval’s formula applies to distribution functions 

u*(r) = (” (x + z,)(x + z2)du(x) (27) 
J-03 

for a( *) a solution of the Hamburger moment problem. But (Shohat & Tamarkin [4]) a necessary and 
sufficient condition due to M. Riesz [ 1] for the validity of Parseval’s formula for functions f( .), is that 

f~ Lz and the moment problem is determined. Add to these Carleman’s criterion for the moments and the 
validity question is settled sufficient for our requirements. In particular for q,(z), m > 1, Carleman’s 
criterion is satisfied for the moments [see [3], (14) and (15)), appropriate distribution functions exist, and 
the real and imaginary parts involve positives polynomials (t + z,)(t + z2) for all real r. 

7. Sequences for lnT( z) and 4 (z) 

We have 

lnr(z)=(z-+)l nz-z+f ln(2n)+J(z), 

where 

J(z)=zjwms, 

with 

(28) 

u(r)=&jT_k{ln(l -e-2”fir’}dx (Re(z)>O). 
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Moreover 

J(,)=_fie - B, 
z+A, - z+A, - ‘.. 

where 

&=a,, Bs=az,_,azs, s>, 1, A,=a,, A,=az,_z+a2s_,, sa2. 

(ao = - l/12, CI, = l/30, a2 = 53/210, a3 = 195/371, a4 = 22999/22737, etc.) A slight change of notation 

shows that 

J m da(r) PO PI -=___ ~ 
2 _ Cot-t-z z2+A, - z2+A2 _ . . . ’ 

But 

where z = x + iy, x > 0, and y * 0. As in Section 5, we now can set up monotonic sequences of 

approtimants. We find 

where 

Re(J(z)} = x(1.i.s. P,(r, 0)> = x(1.d.s. Q,(r, e)} (29a) 

with 

d V”‘- C Y(‘) P,(rJ)=~ ’ m ’ m d,V,j;), - C,V;:‘, 

‘dd C,Uj”-d,U;” C,U;“?, -d,U,,:‘, ’ 

Q,(c~)=~ 
d,V;‘) - C2V,;‘) d,V;O,‘, - C,V,:‘, 

%,(z) - C2U;‘)+ d,U;” - C,U;l”,“, + d,U;:‘, ’ 

c, = [{Isin el - sin28} 

r(sin(28)I ’ 

d =2&J cos(2e)+ i . 

’ 2c, 

2c;r2 ~0~ 28 - i c 
2 

= {{Isin el+ sin20) 

rJsin(28)l ’ 
d, = 

2c2 

For the imaginary part we have similarly 

y- I Im{ J( z)} = 1.i.s. P,*( r; 6) = 1.d.s. Q;f( r; 0). 

for which c,, d, etc. are replaced by 

* _ J{COS 8 + c0s2e) 
Cl - 

d* = 2~:? cos(2e) + i 

rlsin(28)l ’ ’ 2cf 

* _ [(OS e - c0s2e) 
c2 - 

d* = 2~;~2 cos(2e) - 1 

rlsin(28)l ’ ’ 2c; 

The fundamental entities are defined in 

UC” = A,@!{ - B,_ ,U,‘!i + r4Ui(l’,, 

u:(l)= {A, + 2r2 cos(28)}U’!), - B,_,U,“: - LJ,‘!{; 

V”’ = A,V,‘!I - B,_ ,V,‘-“; + I(,‘?, , 

;(I)= {A,+ 2r2cos(28))V,(!{ - B,_,V,(!\ - r”V,‘_“l. 

(29b) 

(294 

(30) 

(31) 

(32) 
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Table 3 

0 -1 0 0 0 
1 -& 1 0 I 

ii 

2 24.98247978 - 5.188679246 L -0.435167715 

3 - 66.51864975 - 7.504220150 -;I224417989 -0.617170022 

4 -624.8213913 89.79538218 - 2.08895459 7.553848138 

Table 4a Table 4b 

Real parts Imaginary parts 

m pIPI In I- m 2 P,* In r 

1 0.016905756 - 1.876093669 

2 0.016920588 - 1.876078837 

3 0.016920591 - 1.876078834 

m Q, ln r 

1 - 0.033376754 0.129635518 

2 -0.033366135 0.129646136 

3 - 0.033366003 0.129646268 

m 2 QX In r 

1 0.016921553 - 1.876077872 

2 0.016920979 - 1.876078446 

3 0.016920658 - 1.876078767 

1 -0.033360957 0.129651314 

2 - 0.033365744 0.129646527 

3 - 0.033365936 0.129646334 

with initiators 

s qo) q(l) qw q 

0 -1 0 0 0 
1 -A, 1 0 B, 

Numericalexample.Lett=1+2i,r=~5,sin8=2/~5,sin28=~cos28=-~.Then 

c 

I 

=\1(2J5-4), 

4 

d = 

1 

JO-3J5 

8c, 

’ c 2 =J(2J5+4), 

4 

d 2 -lo-3J5; 

8~2 

and we find the values of Table 3. 
The approximants (P,,,} etc. to J(z), and In r(z) for z = 1 + 2i follow from Tables 4a, b. 

Hence, at this stage 

- 1.87607883 

0.12964627 

-C Re lnT( 1 + 2i) < - 1.87607877, 

< Im lnT( 1 + 2i) < 0.12964634. 

8. Further applications 

The derivation of the real and imagainary parts of q(z) follow similarly. Further, if validity can be 
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established, c.fs. such as 

j(z)++ 
. . . 

can be used to set up the sequence approximants to the real and imaginary parts of the corresponding 
function. 

Appendix 

It can be shown that the formulas (18b)-(20b) also hold for m = 0, for which 

QO(z)= -$(z)+lnz-&. (Al) 

Similarly we have (corresponding to m = - 1) from (28) the sequences 

-’ 1.d.s. 

i I 

Yv, CO)+ Jq’) yT/,‘,o/ + v,‘:\ 
=x 

cp’+yq” v,c,“i + yuj:‘, 

(A21 

(A31 

For the imaginary part use (19~) with C, = l/J(2x), D, = (X -y)/\r(2x) for an increasing sequence, and 

C, = l/J@), D, = -(x +y)/J(W f or a decreasing sequence (changing the sign of the numerator 
determinant). 

In both cases, we assume Re(z) > 0. 
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