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Abstract

In [Ch. Brouder, A. Frabetti, Renormalization of QED with planar binary trees, Eur. Phys. J. C 19 (2001)
715-741; Ch. Brouder, A. Frabetti, QED Hopf algebras on planar binary trees, J. Algebra 267 (2003) 298—
322] we introduced three Hopf algebras on planar binary trees related to the renormalization of quantum
electrodynamics. One of them, the algebra H*, is commutative, and is therefore the ring of coordinate
functions of a proalgebraic group G*. The other two algebras, H¢ and HY, are free non-commutative.
Therefore their abelian quotients are the coordinate rings of two proalgebraic groups G¢ and GV . In this
paper we describe explicitly these groups.

Using two monoidal structures and a set-operad structure on planar binary trees, we show that these
groups can be realized on formal series expanded over trees, and that the group laws are generalizations
of the multiplication and the composition of usual series in one variable. Therefore we obtain some new
groups of invertible tree-expanded series and of tree-expanded formal diffeomorphisms respectively.

The Hopf algebra describing the renormalization of the electric charge corresponds to the subgroup of
tree-expanded formal diffeomorphisms formed of the translations, which fix the zero, by some particular
tree-expanded series which remind the proper correlation functions in quantum field theory. In turn, the
group of tree-expanded formal diffeomorphisms and some of its subgroups give rise to new Hopf algebras
on trees.

All the constructions are done in a general operad-theoretic setting, and then applied to the specific
duplicial operad on trees.
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Introduction

In [5], C. Brouder and the author introduced three Hopf algebras H¢, H? and H* related to
the renormalization of perturbative quantum electrodynamics. They are constructed on planar
binary trees, where each tree represents a suitable sum of QED Feynman graphs. The abelian
quotients H;,, HZb, and the algebra H*, are commutative Hopf algebras, and therefore they are
coordinate rings for some proalgebraic groups, that we denote respectively by G¢, G and G*.
By proalgebraic group, we mean a functor G which associates a group G(A) to any associative,
unital and commutative algebra A, and which is represented by a commutative Hopf algebra
‘H which is not necessarily finitely generated. In other words, the group G(A) is isomorphic to
the group Homy,(H, A) of algebra homomorphisms, considered with the convolution product
inherited from the coalgebra structure of H, cf. [1,3].

In this paper, we describe explicitly these groups as group functors, and show that they can
be considered as generalizations of the groups of formal series in one variable, endowed with the
multiplication and the composition. To do this, we introduce the notion of tree-expanded series.

Let A be an associative, unital and commutative algebra over the field Q. Denote by Y the set
of all trees, and by A[[Y] the vector space of sequences (a;);cy Where a; € A. For our purpose,
it is convenient to write a sequence (a;) as a formal series a(x) = Zteyatxt, where x is a
formal variable. Here the word “series” is an abuse of language, since x’ is just a symbol, for

instance x\<( . We call such sequences tree-expanded series in a variable x, with coefficients in A.
These series behave like usual ones. We can multiply them, and compose those which have zero

constant term. Here, the constant term is the coefficient of the symbol x | , Where | is the tree
given by the sole root.
As affine varieties, we can identify the groups as follows. If we denote by Y the set of trees

different from | , the groups G* (A) and GY (A) are both isomorphic to the subset x 4 A[Y].
On the other side, if we denote by Y the set of trees different from | and Y, the group G*(A) is
isomorphic to the subset of xV +A[Y] containing the tree-expanded series of the form
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t
) =xT +) o x Y,

teY

where the coefficients satisfy the condition

gpt:(pYz] ¢Yt2~-~(thy, ift =

In this paper we describe the group laws of G¢(A), GY (A) and G*(A) presented as sets of
tree-expanded series, and their relationship with their analogue groups of usual formal series.

Seen as representable group functors, the isomorphisms G(A) = Homgy, (H, A) bring a tree-
expanded formal series f(x) =), y f; x into the algebra homomorphism from H to A which
associates to the tree ¢ € H the coefficient f; € A.

This situation is in fact not peculiar to trees. We show that the same kind of constructions can
be done on the set A[[P]] of P-expanded series, if P is a graded collection of finite sets with
suitable properties. These turn out to be: a set-operad structure on P, and two associative binary
operations in P(2). The results on trees are then obtained by considering the duplicial operad
generated by the over and under grafting operations on trees. Similar results could be obtained
for other operads, and in particular for the diassociative operad describing dialgebras, however
we do not investigate the resulting groups of series in this paper.

One of the key resulting groups, that of formal diffeomorphisms, requires only an operad
structure. For algebraic operads, essentially the same construction was considered by F. Chapoton
in [7] and by P. van der Laan in [16] with different motivations and applications. Chapoton spec-
ifies to the pre-Lie operad of rooted trees, and uses the rooted tree-expanded series to describe
the flow of a linear vector field on an affine space. Van der Laan describes the non-symmetric
case and introduces the non-commutative lift of the coordinate rings. We will comment briefly
the relationship between the different constructions in Section 2.1.

Notations. All vector spaces and algebras are defined over the field QQ of rational numbers,
although the algebras ¢, H” and H* were originally defined over the field of complex numbers.
In fact, this restriction was not necessary.

For any set X, we denote by QX the vector space spanned by X, by Q(X) the tensor algebra
on X (non-commutative polynomials), and by Q[X] the symmetric algebra on X (commutative
polynomials).

1. Group of invertible tree-expanded series

In this section, we recall how to associate a group of series to a graded monoid, and discuss
the relationship with the group of invertible usual series in one variable.

Then we consider two graded monoids built on trees, with the over and under grafting oper-
ations, and describe the resulting groups of tree-expanded series. We show that the coordinate
rings of these groups coincide with the “QED propagator” Hopf algebras introduced in [5].
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1.1. Group of series expanded over a graded monoid

Let M(n) be a collection of finite sets indexed by non-negative integers, and set M =
|_|”>0 M(n). Then M is a graded monoid if it is endowed with an associative graded opera-
tion - : M x M — M and a neutral element e € M(0).

Let A be an associative, commutative and unital algebra over Q, and denote by A[[M]] the
vector space of M-expanded series f(x) =) peM fp x¥P, with f, € A. We define a multiplica-
tion in A[[MM]] by setting

(f-@ =Y > fregx’. (1.1)
peEMgeM

This series is well defined because for a given u € M there exist finitely many elements p, g €
M such that p - ¢ = u. Then A[[M]] forms a unital algebra, with unit x°.

Theorem 1.1 (Obvious). Set M = |_|n>1 M(n). The subset Gi/'\‘/V[(A) = x¢ + A[M] forms a
group.

We call Gi/’\‘)’t (A) the group of invertible M-series, with coefficients in A.

Example. The first example of such a group is constructed from the graded monoid N of non-
negative integers, with N(n) = {n} and the addition. We then obtain the group G™(A) =1 +
xA[[x]] of usual invertible formal series.

The construction of the group Gi/‘\‘/vl(A) is functorial in M. Since the grading 7 : M — N is
a canonical morphism of graded monoids, and any p € M(1) gives a section i, :N — M by
n+— p", we can compare the series expanded over M with the usual formal series.

Proposition 1.2. For any graded monoid M, there is a canonical morphism of groups
nI:GmMV(A) — G'"™(A). Moreover, any element p € M(1) gives a section i,:G™(A) —
Gy (A).

The construction of the group Gi/‘bvl (A) is also functorial in A. Indeed, the group functor Gi}\‘/vl
can be represented by a commutative Hopf algebra Hi/'\‘z, i.e., for any associative, commutative
and unital algebra A, we have

G (A) = Homye (H'RY, A).
As an algebra, Hij{‘/vl is a polynomial algebra with generators indexed by M. It is remarkable that
it admits a straightforward lift to a non-commutative polynomial algebra.

Given a commutative Hopf algebra H, by non-commutative lift of 'H we mean a non-
commutative Hopf algebra H"™ such that H is the abelian quotient of H"°. The abelian quotient
of a Hopf algebra H"® is the commutative algebra H; obtained as the quotient of " on the
ideal generated by the commutator [H", H"]. It is automatically a Hopf algebra.

In the case of HII, we consider the free associative algebra Hljl\]/vl’nc = Q(M), with generators
graded by the grading of M. The neutral element ¢ € M (0) is identified with the unit 1. Define
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a coproduct Ai/\“)'l :Hva,nc — HmMV’nC ® HmMV’nC as the algebra morphism given on the generators
u by

=Y p®q.
u=p-q

an nc

Define also a counit £ : H y /™ — Q as the algebra morphism given on all u # e by &(u) =

inv,nc

Proposition 1.3. The algebra H ;™ is a (non-commutative) graded and connected Hopf alge-
bra. It is cocommutative if and only if the monoid is abelian.
The coordinate ring of va is the abelian quotient ’H“W QI[M] of the Hopf algebra Hmv ne,

Example. In particular, the coordinate ring of the group functor G'™ is the polynomial algebra
H™ = Q[by, by, ...] on one generator b, in each degree n > 1. The coproduct on the generators
Of HIHV 1

n
Ainvbn = Zbk ® bn—k (bO = 1)’
k=0

and the counit is &(b,) = 0 for n > 1. This Hopf algebra is the unique free commutative and co-
commutative Hopf algebra on infinitely many generators spanned by natural numbers, commonly
known as the Hopf algebra of symmetric functions. It is well known to admit a non-commutative
lift to the tensor algebra H™:"® = Q(by, b, ...) which is still cocommutative.

Since the correspondence between proalgebraic groups and their representative Hopf algebras
is contravariant, the relationship between the Hopf algebras Hlf\l/vl "¢ and HI™"¢ can be find by
reversing the morphisms of Proposition 1.2.

inv,nc

Proposition 1.4. There is a canonical morphism of Hopf algebras H™ "¢ — H M - Moreover,

each element p € M(1) determines a section 'Hmv ¢ s pinvne,

Proof. The morphism H™"¢ — Hljl\q/vt "¢ is explicitly given by

by — Z P,

peM(n)

and it is injective if there is an element p € M(1). Then, its section Hmv "¢ HivnC g given
by the map

b, ifu=p"
eM { n ’
" ()= 0  otherwise.

The verification that these two maps are morphisms of Hopf algebras is straightforward. O
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1.2. Graded monoid of trees and invertible tree-expanded series

In this paper, by a “tree” we will always mean a planar binary rooted tree, that is, a connected
planar graph without loops, having internal vertices of valence 3 and a preferred external vertex
called the root. For any tree t, we call order of t the number [¢| of its internal vertices. For any
n = 0, we then denote by Y, the set of trees of order n. In particular, there is only one tree | with
no internal vertex, called the roof tree, and there is only one tree Y with 1 internal vertex, called
the vertex tree. The sets Y> and Y3 are the following:

Y2={\<(,\?/},

On the set Y = Un>0 Y, of all trees, let us consider the over and under products introduced
by J.-L. Loday in [11, Section 1.5]. We recall that for any planar binary trees ¢ and s, the tree
t over s is the grafting

t

t/s= s

of the root of ¢ on the leftmost leaf of s, while the tree t under s is the grafting

s
N\s=1"

of the root of s on the rightmost leaf of 7. Of course, the operations over and under are isomorphic,
and the isomorphism is given by the axial symmetry of the trees along their roots.

The over and under products on trees are associative, non-commutative, with unit given by
the root tree | . Moreover they are graded with respect to the order of trees, in the sense that

[t/s|=t|+|s|] and |t\s|=|t] + |s]. (1.2)

Therefore (Y, /) and (Y, \) are two graded monoids. Applying Theorem 1.1, we then obtain two
non-abelian group laws on the set of tree-expanded series

G (A) = {f(x>:2ftx’, fieA f = 1},

rey
with multiplications denoted by / and \, and with unit x | . Denote these groups as
G™'(A) 1= (GIM(A),/) and G"(A):=(GI(A),\).

Theorem 1.5. The non-commutative lift of the coordinate rings of the two group functors GV
and G coincide with the QED propagator Hopf algebras HY and He.
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In other words, if we denote by G and G* the group functors represented respectively by the
Hopf algebras ’HZb and H¢,, then the groups are exactly G¥ = G°** and G* = Gunder

Proof of Theorem 1.5. Let us recall, from [5], the definition of the “QED propagator Hopf
algebras” H” and H¢ on planar binary trees. As algebras, they are both isomorphic to the free
non-commutative algebra generated by all trees different from | , that is H? = H¢ = Q(Y),
where ¥ = Un>1 Y. Since Yo = {| }, we also identify the root-tree | to the unit 1 and write
H =M =Q(Y)/(] — D). _

The coalgebra structures are given by the “pruning coproducts™ AYY : HY — HY @ HY and
ANV ¢ — H¢ ® HE defined as the dual operations respectively to the over and under products
of trees. That is, they are defined on the generators u € ¥ by

ANy =" r®s and AN =) t®s. (1.3)

t/s=u t\s=u

The counits ¢: HY — Q and ¢: H® — Q are dual to the unit |, thatis ¢(| ) =1 and () =0 if
t # | , and the antipodes are then defined in a standard recursive way.

Comparing the pruning coproducts in H? and H¢ given by Eq. (1.3) with the over and under
multiplications in G¥ (A) and G°¢(A) obtained from Eq. (1.1) for the over and under products, it
is clear that the abelian quotients HZb and H¢, of the two non-commutative Hopf algebras H”
and H¢ are respectively the coordinate rings of the two group functors G and G,

Let us call order map the map | |:Y — N which sends each tree # € Y to its order |f| € N.
Formulas (1.2) say that it is a morphism of graded monoids, and in fact it coincides with the
projection m of Proposition 1.2. Since Y1 = {Y'}, we conclude that the order map induces two
surjective morphisms of groups from G°'*"(A) and G (A) respectively to GI™(A).

The vertex tree then determines a section for each of the two projections, namely the maps
jover, junder; Ginv(A) — GIV(A) such that

l-over(xn) :xY/” —x \<§Y

Let us call these trees respectively the left and the right comb trees. Therefore the inclusions i
and i°'®" identify the group G™ (A) of invertible series with the two subgroups of G""4"(A) and
G°"*'(A) made of tree-expanded series expanded only on the comb trees.

The result of Proposition 1.4 on the dual Hopf algebras ¢ and H”, namely that they contain

HIV-n¢ a5 a Hopf subalgebra, was already shown in [6].

and |

.under(xn) ZXY\" —x ?/ )

under

2. Tree-expanded formal diffeomorphisms

In this section we introduce a group of series associated to any non-symmetric operad in the
category of sets, and discuss the relationship with the group of usual formal diffeomorphisms in
one variable.

Then we apply the results to the duplicial operad, generated by the over and under operations
on trees. The resulting group of tree-expanded diffeomorphisms is bigger than the group G¢ that
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we are looking for. However we describe it explicitly, because its coordinate ring admits a non-
commutative lift which gives rise to a new graded and connected Hopf algebra on trees, which is
neither commutative nor cocommutative.

2.1. Group of series expanded over a set-operad

Let us recall the definition of a (non-symmetric) operad in the category of sets. Let P(n) be
a collection of finite sets, indexed by positive integers, and set P = Un>1 P(n). Then P is a
set-operad if there exist compositions maps

Y = Vnimy,...m, :Pn) x P(my) x --- x P(my) = Plmy +--- +my),
(Piqi,-- qn) = yv(Piq1, .-, qn)
satisfying the associative condition

. | 1 2 2
Yy pique o qn)iug, gy uT Ul )

1 n

=y(p; y(ql;ui,...,uml),...,y(qn;u’f,...,umn))

and an operation id € P (1) acting as the identity, that is

y(@d;q)=q and y(p;id,...,id)=p.

For any p € P(n), set |p| = n and call it the order of p.

The canonical example of a set-operad is the endomorphism operad Endg of a set S, given by
the collection of set-maps Endg(n) = Hom(S", S), together with the usual composition of maps.
If P is a set-operad, a morphism from P to the endomorphism operad Ends defines on the set S
the structure of a P-monoid.

Let A be an associative, commutative and unital algebra over QQ, and denote by A[P]] the
vector space of P-expanded series ¢(x) = peP fpx?, with f, € A. We define the composition
in A[P]] by

o))=Y Y gplg ... g, x? PV @2.1)

pEP ql,...,qu'P

Theorem 2.1. Set P = Un>2 P(n). The subset G%if(A) = x4 + AP forms a group, with
unit x'9. Moreover the composition respects the shifted grading deg(p) = |p| — 1.

We call G%f(A) the group of P-expanded formal diffeomorphisms.

Proof of Theorem 2.1. The series x4 € G%f(A) is obviously a unit. The subset G%f(A) is
obviously closed under o. To show that it is a group, it suffices to show that the composition in
A[['P]l is associative and respects the shifted grading. In fact, its series ¢ have invertible constant
term @ig = 1, and therefore their compositional inverse can be found recursively.

The associativity of the composition o is ensured by the associativity of the operadic compo-
sition y. In fact, given three P-expanded series ¢, ¥, , we have
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[ovron]@= Y @pWyg - Vgt - My, x7 Y Pt ttn),
peP
q1,--.qn€P
Ui,...uy€P
where n =|plandm = |y (p; qi1,...,qx)| = > . |gi|. On the other side, we have
[powom]m= > 2o eV Vg Ty
peP v]1 ..... vl1 ‘EP
q1senqn€P L
vf .., vl'ime'P
y(psv(q1 Ulseens |q1|) ----- V(‘In Ulseees U\Qn\))
where the total number of operations v is |q1] + -+ + |gn| = m. If we call v,ll = ug,, and
vk, = Upgy [t g k> fOT T =2, n, all the factors My of the second term have a corre-

sponding factor 7, in the first term, and the associativity of the composition y guarantees that
the exponents coincide.

The shifted grading ensures that the composition o is graded. In fact, for any operations p and
q1, ..., 4q|p|> we have

Ipl Ipl

deg(p) +deg(q1--.q;p) = (Ipl = 1) + Y _(lgil — 1) Dcm —1
i=1

=deg(y(piqis-...qpp)- O

Example. The simplest example of such a group is that of usual formal diffeomorphisms. To
see how it arises from a set-operad, consider the set-operad N* = Un>1{n} of positive integers,
with the compositions y (n; my, ..., m,) =mi + --- + m, and identity id = 1. It is the quadratic
set-operad generated by one associative operation in degree 2. An N*-monoid is a usual asso-
ciative monoid. From a set-operad P one can define an algebraic operad QP by considering the
collection of Q-vector spaces QP (n) spanned by the finite sets, and extending linearly the com-
positions y to maps QP(n) ® QP(m) ® --- @ QP (m,) — QP(m| + - - - + m,,). The algebraic
operad associated to the set-operad N* is the operad As of associative algebras. Therefore we
will use the symbol As also to denote the set-operad.

For P = As we have A[[As] = xA[[x] and A[[As] = x?>A[[x]]. Therefore the group G% (A)
is the group GY(A) = x + x2A[[x]] of usual formal diffeomorphisms ¢ (x) = x + Zn>2 On X
(tangent to the identity), with coefficients in A, considered with the composition (or substitution)

(@ o)) =p(¥(x) anw(x) —Z<Z > wmwkl...wk,,l)x", (2.2)

n=1 \m=1 ki+-+kn=n
ki, km>l

and with unit given by the series x.

Another example can be constructed from the diassociative set-operad Dias, whose algebraic
extension was introduced by J.-L. Loday in [10] and gives rise to dialgebras. It is given by the
collection of sets Dias(n) = {1, ..., n}, with compositions
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Dias(n) x Dias(my) X --- x Dias(m, ) — Dias(m| + - -- + my),
5 Jis s Jn) > i

However we do not investigate here the associated group of formal diffeomorphisms. A non-
trivial example of such a group is explained in details in the next section.

Remark 2.2. In [7] and [16], F. Chapoton and P. van der Laan independently defined essentially
the same group G o of formal series for any algebraic operad Q over Q. We point out here the
relationship between their construction and ours.

The group G g is formed of formal sums ) ueo M With i =id, endowed with the operation

<ZM)°(Z’7>=Z Z Y M M), (2.3)

neQ neQ UEQ N1,y €Q

where y denotes the operadic compositions in Q.

In the case where Q@ = QP comes from a set-operad P, the two constructions are essentially
the same. Each vector space Q(n) = QP(n) has a canonical basis given by the elements of
P(n), therefore any u € Q(n) can be written as a linear combination of these elements, that
ispu=> peP () Hp P where 11, € Q are scalar coefficients. Then the composition given by
Eq. (2.3) is just the linear extension of the composition given by Eq. (2.1). In other words, the
group G g coincides with the group G%f((@) of P-expanded diffeomorphisms with coefficients
in the ground field.

The advantage of Chapoton—van der Laan’s construction is that the group G g can be defined
for algebraic operads which are not set-operads. The advantage of our construction is that for
set-operads we can distinguish between operadic elements and coefficients. These can then be
chosen in any associative, commutative and unital algebra.

The construction of the group G‘;,if(A) is functorial in P. The order map | |: P — As is a
canonical morphism of operads. A section is simply an operad morphism .4s — P. Let us call
associative an element p> € P(2) such that y (p2; p2,id) = y(p2;id, p2), and multiplicative an
operad P equipped with an associative element. Then any associative pp € P(2) gives a section
n+— p, =y(p2; pn—1,1d). Therefore we can easily compare the series expanded over P with
the usual ones.

Proposition 2.3. For any set-operad P, there is a canonical morphism of groups  : G%f(A) —
GYT(A), induced by the order map | |. Moreover, if P is multiplicative, any associative py € P(2)
gives a section i, : GY(A) > GE(A).

Again, the construction of the group G%f(A) is functorial also in A, and the group functor G%f
is represented by a commutative Hopf algebra H%f. As an algebra, ’H%f is a polynomial algebra

with generators indexed by P and graded by the shifted degree. As shown by van der Laan for
algebraic operads, the coordinate ring ’H%f admits a non-commutative lift.
Consider the free associative algebra H%f’nc = Q(P), graded by the shifted grading deg(u) =

lu| — 1 for u € P, and where the element id € P(0) is identified with the formal unit 1. Define
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dif,nc

a coproduct Ad‘f Hp Hdlf “® Hdlf " as the algebra morphism given on the generators u

by

A%f(u) = Z P®GL...q|p|-

D1, p €PULId}
v(Piq1,--sq)p)=u

dif,nc

Define also a counit ¢ : Hp ™ — Q as the algebra morphism given on all p # id by ¢(p) =0

Proposition 2.4. The algebra ’Hdlf ne
tative nor cocommutative.
The coordinate ring of the group Gdlf is the abelian quotient Hd‘f QIP] of the Hopf algebra

Hdlf nc )

is a graded and connected Hopf algebra, neither commu-

Proof. The fact that Hd‘f is the coordinate ring of the group G%f(A) is obvious. The existence
of a non-commutative hft is ensured by the assumption that the operad P is non-symmetric. In
this case, in fact, the operadic composition fixes the order of the operations, and this guarantees
the coassociativity of the coproduct lifted to tensor products. O

Example. The coordinate ring of the group functor G4 is the polynomial algebra Q[ay, a2, . . .]
on the graded generators a,, one in each degree n > 1. It is a Hopf algebra, with coproduct given
by

dif ¢ — m—‘rl I [71 Pn—m
AN =) an® ) > PRI RS

m=0 =0 Pls-ees Pn—m =0
pP1+p2+-+Pn—m =l
P1+2pa+-t(n—m) pp_pm=n—m

counit €(a,) = 0 for n > 1, and antipode defined recursively. Up to a rescaling of the generators,
this Hopf algebra is known as the Faa di Bruno Hopf algebra, cf. [8,9] or [13].

The non-commutative version of this Hopf algebra is exactly the one defined in [6], with
coproduct lifted as

n
A ap) =) an ® > kot - -k, (ag=1).

k(),k],.‘.,km>0
ko+ki+-++kyp=n—m

The non-commutative version of Proposition 2.3 gives the following result.

Proposition 2.5. There is a canonical morphism of Hopf algebras HY"¢ — H%f’nc. Moreover,

if P is multiplicative, each associative py € P(2) gives a section Hdlt "¢ s pdifine,

Proof. The map Hdifne — ’H;i;if’nc is explicitly given by

ap — Z p.

peP(n+1)
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It is an inclusion if P(2) is not empty, and its section H%if’m — HYitne is given by the map

we Py (Ot U= Pa =y (ucsipr.id.....i0)
0 otherwise.

The verification that these two maps are morphisms of Hopf algebras is trivial on the abelian
quotients, and the passage to the non-commutative algebras is straightforward. 0O

2.2. Set-operad of trees and tree-expanded formal diffeomorphisms

Any tree t € Y can be written as a monomial in the vertex tree Y, using the over and under
products and suitable parentheses. For instance,

X =Y/Y, Yo=Yy,
N o=y, = OV =Y 0.

This decomposition is not unique in general, as shown by the last example.

For any tree ¢ € Y, we call ¢-product the map p,: Y <"l — ¥ which describes the tree 7 as
an over and under product of Y by itself.! More precisely, 1; reproduces the tree r when eval-
uated on [¢| copies of Y, that is u,(Y,Y,...,Y) =t, and computes the product defined by the
shape of ¢ on all the other trees s1,52,...,8) € Y. Graphically, this means that, for any trees
$1,82,...,8 # | , the tree p;(s1, 52, ..., 5),) is obtained by replacing each internal vertex of ¢,
which has shape Y, by the tree s;, in the order given by the parentheses arising in the decompo-
sition of # by Y. The tree thus obtained clearly has order

|e(st, 82, o8| = Istl 4 Isal 4+ 4 sy - (2.4)

In particular, if t+ =, the map py : Y — Y acts as the identity, that is Wy (s) = s for any
s # | . Other examples are:

52
si

N = (Y\Y)/Y hence n \§(S1,S2753)=(51\S2)/S3= 53,

S1 S3

¥ =Y/Y\Y hence MV(SI’ 52,53) =s51/52\s3 = 55,
We call tree-product the collection of the 7-products given by

M:U?Xm—)l_/.

tey

Lemma 2.6. The collection of trees Y = Un> 1 Y forms a set-operad, with operadic composition
given by the tree-product .

1" A similar monomial is considered by J.-L. Loday in [11], based on the decomposition of a tree into some left and
right products different from the over and under products considered here.
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Proof. Since ¥ = |J2°_, Y;u, we have

o
U}_’x“':UYnx?X": U YnXlex'”XYmn’
n=1

te¥ nzl
my,...,ny 21

and we see in particular that for any choice n > 1 and my, ..., m, > 1, the map p restricted

to ¥, x Yy, X -+ X Yy, takes value in the homogeneous component Yy, +...4m, Of Y. In other
words, the tree-product can be seen as the collection of the maps

Hn.my...., mp :Yn X le Xoee X Ymn - le+"'+mn

givenon the treest € Yy, 51 € Yy, ..., 85 € Yy, by

,u'n,ml,.‘.,mn(t; STy eevsSn) = MU (81, ..., 80).

The graphical interpretation of the tree-product given above ensures that the maps (. m,,...m,

act by substitution of the variables (internal vertices) in ¢ by the operations s1, ..., s,.
Then it suffices to show that the tree-product w is associative, in the sense that for any tree
t € Y with |t| = n, any choice of n trees s, ..., 5, € Y with |us(sq,...,8:)| = Z?:l |si| = m,
and any choice of m trees uy, ..., u, €Y, the two trees
[T T sn)(uls co Up) (2.5)
and

P (B U1y U1y sy (Usy T - s Uy 52D« - s Bsy (Ujsy [t |41 - - Um))  (2.6)

coincide.

To obtain the tree (2.5), we first construct the tree u;(si,...,S,) by replacing each vertex
of + with each of the trees s1,...,s,, in the order given by p,; as a monomial w.r.t. the over
and under products. By Eq. (2.4), the tree thus obtained has exactly Y 7, |s;| = m vertices.
Therefore, we can apply the u,(sq, ..., sy)-product to the m trees u;, and get the final tree
Bty (s1senrsn) U - o Um)-

Since the p;(s1, ..., sp)-product of m trees contains all the sub-products of shapes s; delimited

by parenthesis, and moreover they are all ordered by the shape of ¢, the final result is the same that
we obtain if we first apply each p,-product to the suitable package of trees u ;, and then apply
the 7-product to the n new trees thus obtained. In summary, the resulting tree yields exactly
(2.6). O

The over and under operations on trees are associative operations which also satisfy one extra
property: for any s, ¢, u € Y (in fact s and u could be equal to | ), we have

(s/O\u =s/(t\u).

A set endowed with two associative operations verifying this extra property was already con-
sidered by T. Pirashvili in [15], where it is called duplex. The operad which characterizes such



390 A. Frabetti / Journal of Algebra 319 (2008) 377-413

operations was considered by M. Aguiar and M. Livernet in [2], and by J.-L. Loday in [12], from
whom we adopt the terminology.

For our purpose, we then call duplicial operad, Dup, the set-operad generated by the opera-
tions over, /, and under, \. More precisely, Dup is the quadratic operad obtained as the quotient
of the free set-operad (with identity) F = F(/, \) on two binary operations, satisfying the three
relations

(a/b)/c=a/(b]c),
(a/b)\e =a/(b\c),
(@\b)\c = a\(b\c),

whenever the operations are applied to three elements a, b, c. The operadic composition on Dup
is induced by that on F, given, for any n, m1, ..., m, > 1, by the map

Fn) x F(my) x -+ x F(my) — F(my + -+ my)

which sends the operations (p, q1, . . ., ¢») into the operation obtained by inserting each operation
g; into the ith variable of the operation p.

Theorem 2.7. The set-operad of trees is isomorphic to the duplicial operad.

Proof. Let us define a morphism « from the Dup operad to the operad of trees, by sending the
identity id € Dup(1) to the vertex tree Y, and the generating operations / +— ¢ and \ — v
Since the trees ¢ and N satisfy the three necessary relations in the operad of trees, the map
k can be extended to a unique morphism of operads. To show that the morphism « is a bijection,
it is sufficient to prove that the free Dup-monoid on one generator is isomorphic to the set of
trees, considered with the over and under products. This was proved by J.-L. Loday in [12] in the
algebraic case. O

Applying Theorem 2.1 to the duplicial operad, we obtain a group

GY(A) = {w(x) =D o' g€ A o = 1}

teY

of tree-expanded formal diffeomorphisms. The composition of two tree-expanded series ¢ (x) =
Yo ¢ xtand ¥ (x) =) s x° is given by

(poy)(x)= Z P Vs, W, -+« Yy 2l 1520810

reY
$1,52,..,S)1| €Y

If we define the power of the series ¥ (x) by atree t # | as ¥ (x)" = u, (¥ (x), ¥ (x), ..., ¥ (x)),
the composition of tree-expanded series can also be seen as a substitution, that is (¢ o ¥)(x) =

e (x) =2 ey e (X).
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Example. Let o(x) = x ¥ +ax ¥ +bx Y and v =xY +ex ¥ +dx Y witha.b.c.d e
A. Since u \<( (t,s)=t/s and \?, (t,s) =t\s, we compute

(o))=Y () +ay() T +by(x) i
=Y () +ay(x)/y¥ ) + by O\ (x)

RSP R e

+ 2acx\<<( + adx \? + (ad + bc)xv + bex t? + 2bdx \?Y

+ac2xx<<( + acdx %( —l—acdxw —|—ad2x\¢/ +bc2x\<>/
+ bedx Kgy + bedx Y§ + bd’x ?y

More interesting examples of compositions of tree-expanded diffeormorphisms are computed
by F. Chapoton, and will be presented separately.

Since Dup(2) is not empty, applying Proposition 2.3, we see that the order map = of Sec-
tion 1.2 gives also a surjective morphism of groups 7 : G‘}if(A) — GY(A), sending x’ to x!.

Vice versa, since Dup(2) = {/,\} contains two operations which are both associative, the
projection 7z has two sections, the maps °", j"nder: Gdif(4) — G‘}if(A) sending x to x“*, where
¢, denotes respectively the left and the right comb trees of order n. Therefore the two subgroups
of G‘}if (A) containing the tree-expanded diffeomorphisms expanded only on the comb trees are
isomorphic to the group of usual formal diffeomorphisms.

In summery, the relationship between formal diffeomorphisms expanded over trees and over
natural numbers can be deduced by the natural maps between the associated operads:

jover
b8

As ——Z Dup Dias As.

iunder

The aim of introducing tree-expanded formal diffeomorphisms is to describe the group law of
the group G“(A) dual to the “charge renormalization Hopf algebra” H* expressed by means of
tree-expanded series. The group G‘}l,if(A) indeed allows to generalize the composition of usual se-
ries to the tree-expanded series, but its coordinate ring is much bigger than the Hopf algebra H*.

In fact, if we denote by Y = Un>2 Y, the set of all trees but | and Y, the coordinate ring of the
group functor G4 is given by the polynomial algebra HSif = Q[¥]= Q[Y]/(Y — 1) generated
by all the trees of order at least 2, instead of only a subset of them. The interest of the algebra
H‘}‘f is that it allows a non-commutative lift.

Corollary 2.8. The free associative algebra 'H‘;if’nc =Q(Y)/(Y — 1) is a graded and connected
Hopf algebra, with respect to the shifted grading deg(t) = |t| — 1. The coproduct is defined on
the generators u € Y as
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A(Ii/if(u) = Z t®S1...8),

teY
STyeees S| €Y
U=t (S150-55)2])

and the counit is e(u) = 0 for any u € Y, u # . This Hopf algebra is neither commutative nor
cocommutative.

Note in particular that Adif(\() Y @Y, because Y = My (Y), therefore Y is a group-like
element and can be identified with the unit. Setting Y =1, the coproduct on small trees is:

NI+ Y,
YV el+le vV,

)=
)=
A = o122 @Y F1e Y,
M=V el+y ey +1e Y,
A=Y @1+ Y +Y 8% +18 Y,
A=Y @1+ YV 8% +18 Y,
ATV =V 91427 @ ¥ +10 V.
By Proposition 2.5, the map

Hdlf,nc_)H(Iijlf,nc:an}_) Z t
[t|=n+1

Adlf(

Adlf(

gives an inclusion of Hopf algebras.
3. Action of tree-expanded diffeomorphisms on tree-expanded invertible series

In this section we describe an action of the group of tree-expanded diffeomorphism on that of
invertible series which will be used in the next section to construct the group G*.

Such an action can be defined on the analogue groups of series expanded over any set-operad
which admits a canonical associated graded monoid. We begin by discussing the general case,
and then specify to the duplicial operad.

3.1. Groups of series expanded over an associative set-operad

From now on, we assume that P is a multiplicative set-operad, and we denote by p; the
associative element in P (2). This is equivalent to require that there exists an operad morphism
As — P.

Then we can naturally associate to P a graded monoid by setting Mp =P U {e}, with
Mp(n) =P(n) for n > 1 and Mp(0) = {e}, where e is a formal element which is taken as
the neutral element. The multiplication of p € Mp(m) and g € Mp(n) is defined by
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p-q:=yp(p2; p,q) € Mp(m+n).

The graded monoid Mp then determines the algebra A[[Mp]] and the group Gi/‘\‘}’tp (A).
The composition of P-expanded series given in Eq. (2.1) can be extended to a map A[[Mp]] x
A[[P]] = A[IMp]l, by setting

L) [EO) =L x4+ D Y [y gy g, X7 P,

pEP ql,--- qip| epP

Restricting this map on the one side to the group Gi/r\l/vl73 (A) of Mp-expanded invertible series

and on the other side to the group G%f(A) of P-expanded diffeomorphisms, we obtain the fol-
lowing result.

Theorem 3.1. The composition defines a graded right action GERXIP (A) x G%f(A) — Gij\‘j’lp (A)
of the group of P-expanded diffeomorphisms on the group of Mp-expanded invertible series.

Proof. The compatibility of the action with the composition in A[[P]), that is (f#)¥ = f¢°V,
is ensured by the associativity of the operadic composition y. The computations are exactly the
same as those which show that the composition o in A[[P]] is associative, cf. Theorem 2.1.

We show that the action preserves the multiplication - in A[Mp]l, thatis (f - g)¥ = f¢ - g¥.
Let us compute the two terms of this equality separately. Since the action is additive, on the one
side we have

(f ) (X) = fe8ex + 8 fP () + fo8 )+ D Fp8qPuy - Pupy X7 P )

p.q€P
Uiyt p.g| EP

and on the other side

(f(p : gw)(x) = fe8ex® + ge f¥(x) + feg? (x)

+ 2 Fp8a®Pur - Quppyyygy X7 PN )Y G tpal)
piTiq

p.qeP
ul,..‘,u|p‘€'P

U|pl+1seeestt] p|+1g| €P

Since |p - q| = |p| + |q|, the two terms coincide if the exponents coincide, and this is again
ensured by the associativity of the operadic composition.

Finally, the action is graded with respect to the two different gradings given on A[[Mp]] and
A[P]l, namely deg(p) = |p| if p is in the monoid Mp and deg(p) = |p| — 1 if p is in the
set-operad P. In fact, if p € Mp is different from e, then for any ¢y, ..., g, € P, we have

1 Ipl
deg(p) +deg(qi ...qip) =pl+ > _(lgil = 1) = _ lail
i=1

i=1

=deg(y(piqis-...qpp). O
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Example. In the case P = As, we have M 4, = N and the right action G™(A) x GYf(A) —
G™ (A) is the ordinary composition (f¥)(x) = f(¢(x)) of invertible series by formal diffeo-
morphisms.

Given a right action of G%f(A) on the group fo\l/vlp (A), we can define the semi-direct product
G%f(A) X Gij‘\’/vlp (A) in the usual way: as a set we take G%f(A) X Gi/‘\‘/vtp (A), and the group law
is given by

@, )W) =(poy, fVg),

for any ¢, ¢ € G%f(A) and f,g € Gi/’\‘/vtp (A). The order map 7 : A[P]] - A[lx]] sending x” to
x!P! then induces a projection of groups G%if(A) X Gi/\“)’lp (A) — GEE(A) x GI™V(A).

The right action of G%f(A) on Gij'\‘)’lp (A) becomes a right coaction on the coordinate rings.
It can be lifted to the non-commutative Hopf algebras, as follows. Let 817§V : Hi/r\l/vl’gc — Hif\l/vl;lc ®

H;’;f’m be the algebra morphism given on the generators u € P by

(S%v(u) = Z P®qi---qpl
peP
qlyeees q‘p‘EﬁU{id}
v(Piq1,--sq)p))=u

and on the unit by 8%2" (e) = e ®id. Note that formally 8%2" (u) = A%f(u) on the generators u € P,
but these two elements have different degrees in their proper spaces, as well as u itself.
Proposition 3.2. The map S;QV is a graded right coaction of the Hopf algebra Hgf’m on the

inv,nc inv,nc . dif,nc
algebra H Mp - Moreover, H My isan Hp " -comodule coalgebra.

In other words, the map 8%‘3“' satisfies the two following conditions:

(o @108’ = (19 @ ) 52
(AR, @135 =M@ IdemId® T @ 1d) (85" ® 5p') ARy,

where m denotes the multiplication in the algebra H;‘;f’nc, and 7 denotes the twist.

Example. The case P = As gives a right coaction §™ : 1™ — HI" ® HIUl which sends a
generator b, into

n
§™(by) = b ® > ar, ...ax, (ap=1).
m=0 kiy..., ki =0
ky+-+kpy=n—m

The non-commutative version 8" : Hinv-ne s gyinv.ne @ pydifine waq considered in [6], where it
was denoted by 84, In this paper we reserve the notation 84 for a coaction of H4f on itself,
which will be introduced in Section 4.
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The group functor G%f X Gvap is represented by the semi-direct coproduct (or smash co-
product) Hopf algebra H%f X Hi/’\‘/vlp. As an algebra, this is the tensor product H%if ® Hi/‘\‘;’lp_ As

a coalgebra, it is endowed with the twisted coproduct defined on the generators p € H%f and

q E?-li“/\/["77 by

AL (p®q) = AP (p) - [(8B' ®1d) ARG (@)]-

Applying the results found by R. Molnar in [14], we know that this Hopf algebra admits a

non-commutative lift given by the semi-direct coproduct Hopf algebra H%f X Hij'/vl’gc.

Instead, note that the semi-direct coproduct H‘;,if’“c X Hij\‘fl’;'c is at the same time an algebra

and a coalgebra, but not a Hopf algebra because the non-commutativity of the algebra H%if’nc

prevents the coproduct A% to be an algebra morphism.
3.2. Tree-expanded series and actions

In this section we briefly illustrate the above results on the example of trees, using the duplicial
operad.

The duplicial operad has two binary operations, / and \, both associative. The graded monoid
Mp,, associated to these operations are exactly the monoids of trees introduced in Section 1.2.
Therefore the group G‘}if(A) acts on the groups G°*"(A) and G"°"(A), by composition.

The action is compatible with the group structures of G°¥*"(A) and G"%"(A), therefore the
semi-direct products G3(A) x GO*T(A) and GI(A) x G (A) form two groups.

Proposition 3.2 then tells us how this action is reflected on the dual Hopf algebras on trees. Let
us denote by HIY = Q[Y]= Q[Y](| — 1) the coordinate ring of the proalgebraic set Gi;“’(A)
of tree-expanded invertible series, as introduced in Section 1.2, and by Hy"" = Q(Y) its non-
commutative lift. Then H” and H* are the two Hopf algebras with underlying algebra """
endowed with the “pruning coproducts” Ai}}“’ and Aienv.

Corollary 3.3. The algebra homomorphism 811}“’ : Hi;w’nc — Hi;w’nc ® 'H;i,if’nc defined on the gen-
erators u € Y formally as the coproduct AYE, that is

Si;lv(u) = Z I QS...8)

and which respects the units, that is 8;}“’(\ )= 1 ®Y, is a graded right coaction of the Hopf
algebra H()l,lf’nc on the algebra Hl;,w’nc.

The map induced by 8;}“’ on the abelian quotients H‘}if and Hi;‘v is dual to the right action of
the group G‘)l,if(A) on the set Gi)E‘V(A).

Note that the degrees and the units are different in the two algebras Hl;w’nc and H(}i,lf’ " There-
fore, even if the coproduct A‘}‘f and the coaction §y" are formally defined by the same expression,
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the meaning of the result is different. To see this difference, compare the value of A‘Il,if on small

trees, given at the end of Section 2.2, with the following values of Si)?v, obtained by setting Y =1
in HYf and | =1in Hi;w:

=Y ®L,

V(Y)=Y el+Ye Y,

V(Y ) =Y ®l+Y® Y,
() =Y e1+2% e +rve Y.

(
(
MY =X el+ ey +ve Y,
(
(
(

=2
=

SV =V 1+ @Y +V oy +re Y,
V(Y )=¥ @1+ Y ® % +Y® Y,
V(Y )=V @142V @V +Y® V.

Proposition 3.2 tells us that the coaction 8i}§W is compatible with the coproducts Ai;w and AN,

and with the counit ¢. Therefore ¥ and ¢ are coalgebra comodules over H?,if’nc. Then, the

semi-direct coproduct algebras H‘}if x HY and H‘}if X H¢ are non-commutative Hopf algebras,
which lift the coordinate rings of the group functors G‘}if X GV and G‘}if X GUMder respectively.

Finally, the maps b, Zm:n t and a, > Zm:n .1 t define an inclusion of the Hopf algebra
HAT ¢ HIV-0C into respectively H“}if x HY and H‘}if x HE.

4. Subgroup dual to the QED charge Hopf algebra

The renormalization of the electric charge in quantum electrodynamics was described in [5]
by a commutative Hopf algebra H* on trees which was proved in [6] to contain the Faa di Bruno
Hopf algebra, that is, the coordinate ring of G4, and which is different from H‘}if. Since this
latter is the largest Hopf algebra on trees describing the composition of tree-expanded series, it
is natural to look for a subgroup of G‘}if having H% as coordinate ring. We describe it in this
section.

To do it, we first introduce some intermediate subgroups of tree-expanded diffeomorphisms
which exist for any multiplicative set-operad. The final construction of the group G*, dual to H%,
is possible only if the set-operad has two distinct associative elements with some suitable com-
patibility relation. At this level we specify the construction to the duplicial set-operad.

4.1. Subgroups of series expanded over a graded monoid set-operad
Let P be a multiplicative set-operad and let Mp be its associated graded monoid. For any as-

sociative, commutative and unital algebra A, we consider the two linear maps A, p: A[Mp] —
A[[P1l defined on a series f(x) = fex® + 3 ,cp fpx” by
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by i=xd £ = foxd b 3 foaide,
peP

pr@x) = fx) x'= fox'4 Y faPid,
peP

These maps are injective, and we denote their images in A[[P]] by x4 A[Mp]l and by
AIMp] - x'9, respectively.

Theorem 4.1. The two sets
Gl (A) = x4 }‘Q}P(A) and G'h(A) = i}\’ﬁp (A) - x4
are subgroups of the group G%if(A).

Proof. It suffices to show that the images of A and p are stable under the composition of se-
ries. Given A f(x) = x4 f(x) and Ag(x) = x'¢ - g(x) in x'¢ - A[Mp]], we have to show that
there exists an i1 € A[[Mp]] such that (A7 o X,)(x) = x4 h(x). Using the compatibility of the
composition with the multiplication proved in Theorem 3.1, we have

(hporg@) = (x4 F@)*Y = a0 - fre) =[x g)]- fA4 @)
=xd. [g- ff\g](x),

Therefore Ay oAy =Ap if weseth =g - f*s. Similarly, if ps and p, belong to A[Mp]| x4
we have pr o pg=pp, withh = ffs.g. O

‘The map A: Gi/’\l/vt73 (A) —> G;‘D(A) is an isomorphism of sets and its inyerse Al :G)75(A) —
Glf\‘/vtp (A) sends a P-expanded diffeomorphism of the form X r(x) = x4, f(x) to the Mp-
expanded invertible series f(x). Note that A is not a morphism of groups. Instead, its inverse A ™!

inv

is a I-cocycle of G%(A) with values in GM73 (A), with respect to the right action by composition,
that is

T o] T @)Y =,
for any ¢, ¥ € G%;(A).

Example. In the case P = As, the multiplication in the graded monoid M _4; = N is commuta-
tive, therefore A = p and G% (A) = Gi\s (A). Moreover, the map A simply brings an invertible
series f(x) into A y(x) = xf (x). This map is invertible on the whole space A[[As]l = xA[x]],
and its inverse A~! brings a formal diffeomorphism ¢ into the invertible series @. Therefore
the group Gias (A) coincides with the whole group G%f(A) of formal diffeomorphisms.

In general, the two groups G;‘D(A) and Gf,)J(A) are not isomorphic, because the multiplication
by id in the monoid Mp is not commutative in general.
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Consider now the map (xid. AllMp]) x AP] — xid. A[[Mp]] defined by

AV () = A pw () = x4 7 (x)

S 2k D D AL 4.

peP
q1,--qp|€P

for f(x) = fex® + Zpep fpxP and ¥ (x) = qup Yyx4. Similarly, define a map (A[Mp]] -
xid) x A[[P]l — AlMp]l - xld, by setting

prV (x) = ppu(x) = ¥ (x) 2"

Theorem 4.2. The map (A y, V) )»f‘p = )»fw, restricted to G;‘D(A) X G%if(A) — G%‘D (A), isa
right action of G%f(A) on G%,(A). The analogue statement holds for G%(A).

Proof. In fact the series x4 € G%f(A) obviously acts as the identity, and for any i, n € G%f(A)
we have

()\.f]//)nz()\,fljj)nz)\,(fw)n Z)\.fwon =)\.f1//on. O

Note that the right action of G%f(A) on G%(A) is indeed different from the composition of
G%‘D(A) by G%if(A), where G%)(A) is seen as a subgroup of G%f(A). In other words, for any
Af € G%,(A), and any ¢ € Gf};f(A), in general we have Af‘/’ # Ay oy This is easily seen if we
restrict the action of G%f(A) to its subgroup G%‘D (A). In this case, in fact, we have

)Lf)‘g :)“f)‘g ;ﬁkg_fxg :)\.f O)\.g.

Example. In the case P = As, the action of G4f(A) on itself induced by the action of GYt(A)
on G"™ (A) has the following explicit form,

go*’f(x)=x+2<2 > gomwkz...wkm)x", (4.2)

n=2 \m=2 ky+--+ky=n—1
ka,...s km>l

for any ¢, ¥ € GYf(A). Comparing this expression with that of the composition given in
Eq. (2.2), we see that we obtain (4.2) if we set ¥, = 1 = 1 in (2.2).

As usual, the construction of the groups G’ (A) and G%(A) is functorial in A. Again, the
coordinate rings Ha\) and H% of the group functors G,AP and G% admit a straightforward non-
commutative lift, as well as the actions by G%f. In Section 4.3 we will use in particular the Hopf
algebra H%. Let us then describe explicitly only its non-commutative lift.

Consider the free associative algebra H5" = Q(Mp)/(e — 1) = Q(P), with grading given
by the order, deg(u) = |u| for u € P, and where the element ¢ € Mp(0) is identified with the
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unit 1. Define a coproduct A% :H%’nC — H%nc ® H%’nc as the algebra morphism given on the
generators u by

A%w)i=1®u+ > POGLqipl+1- (4.3)

peP
q1seenripl+1 EMP
u=y(p:q1-id,....q|p|-id)-q|p|+1

Define a counit ¢ : H%’nc — @ as the algebra morphism given on any u € P by e(u) =0.

Theorem 4.3. The algebra H%’ " is a graded and connected Hopf algebra, neither commutative
nor cocommutative.

The coordinate ring of the group G% is the abelian quotient H;; = Q[P] of the Hopf alge-
bra H%’nc.

Proof. The only difficulty of this result is the explicit form (4.3) of the coproduct.

In fact, if p; is the associative element in P(2), the coordinate ring of the group G% is gener-
ated by the elements of P of the form u -id = yp(p2; u,id), where u € P, that is H% = QI[P -id].
As a free algebra, we can identify it with Q[P] = Q[Mp]/(e — 1). The coproduct on H% which
represents the composition of the series in Gpp(A) can be found by dualizing the inclusion of

G%(A) into G%f (A). The result makes sense on the non-commutative algebras.
dif,nc

Let us then consider the surjective algebra homomorphism P:Hp " — pr’nc which sends
each generator of ’H%f’nc = Q(P) of the form u - id to its quotient u € P and all the others to
zero. If we verify that

Al ) = (P ® P)AP (u -id), (4.4)

and that e(u) = P(eHdif,nc (u -id)), the coassociativity of the coproduct A% then follows easily. In
v

fact, it holds on the commutative quotient H% because G%(A) is a group, and the passage to the
non-commutative lift is as usual straightforward. All the other assertions are then easily verified.
Therefore, it only remains to show the equality (4.4). Let us fix # € P. In the sum

AR -id) = 2 Peddp
; PeMr
1.l EMp
u-id=y (p;q1,----qp|)

the element y (p; g1, ..., )5 can be of the form u - id only if p = p -id (hence |p| = |p| + 1),
and g5 = q| - id, with g5, € Mp. The term corresponding to p =1id, thatis p = e, gives

> id®§ =id®u -id.
41 cP
u-id=y (id:q1)=q

Therefore, separating from the sum the term corresponding to p = id, we obtain
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A - id)=id@u-id + > p-id®qi-..qipl (qpi+1 - id).
peP
G1s-q1p|€EP- qpl+1€EMp
wid=y (pid;§1,.-.q)p|,q|p|+1-id)

Since for any p € P we have p -id = y (p2; p, id), using the associativity of y we obtain

u-id=y(y(p2; p.id); 41, ..., 4ip| qpj+1 - id)
=y(pu vy (i1, ... dipD, v (d; qp+1 - id))
=y(P;q1, - q1p) - qipl+1 - id.

Therefore u =y (p; 41....,qp|) - q|p|+1, and we get

A -id)=id@u-id + > p-id®4i...qpI(qipi+1 - id).
peP
G1,---q1p|€P; qpl+1€P
u=y (Piqisq)p))-q|pl+1

Now, applying the projection P, we kill all the elements g; of H(;)if’nc different from g; = ¢; - id,
therefore the sum on the right-hand side is reduced to

(P ® P)AY (u - id)

:(P®P)|:id®u-id+ > p~id®(q1-id)-~-(q|p+1~id)]
peP
G159 pl-q|pl+1 €EMP
u=y(p;q1-id,....q|p|"id)-q|p|+1

and we finally obtain

(P®P)AM (u-id)=1®u+ > PRqI-qp41. O

peP
1, qipl+1 EMp
u=y(p;q1-id,....q|p|-id)-q|p|+1

Note that the coordinate ring of the group G% has the same generators as the coordinate ring
of the group G‘/‘\‘)’lp, and the same holds for their non-commutative lifts. As algebras they are
isomorphic, but they differ for the coalgebra structure. Since the action of deif on G;’D is induced
by that on G‘“VP , it is not surprising that the dual coactions coincide.

. . dif . 44p,nC p,nc dif,nc .
In other words, if we define the algebra morphism 6% :'Hp™ — Hp ™~ ® Hp ' by setting,
on the generators u € P,

88 (u) := § PO -qip, (4.5)
PeP_
q1,---q)p| €PU{id}
vY(P:q1,.-q)p))=U

then the following result is straightforward.
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Proposition 4.4. The map S%if is a graded right coaction of the Hopf algebra H;‘;f‘nc

algebra H%’nc.

on the

4.2. Diffeomorphisms subgroups of tree-expanded series

Let us apply the results of the previous section to the duplicial operad. As observed in Sec-
tion 3.2, the operad Dup has two associative binary operations, \ and /, which lead to the two
groups G (A) and G°'*'(A) of invertible tree-expanded series. Each of the two operations
determines two linear maps A, p: A[Y] — A[Y]] and consequently two subgroups G;;(A) and
Gy (A) of GUI(A).

For our purposes, we are only interested in one of the four resulting groups: the group G'(;(A)
corresponding to the operation /. However, in order to discuss some of its properties, we also
make use of the group G)}‘,(A) corresponding to the operation \. To fix the notations, we recall
these two groups explicitly:

t
GY(A) = GO (A) /x| ={pf<x>=2fzx T, fiea, f, =1},

teY

!
G;‘,(A)::xY\Gunder(A)z{)\f(x)ZZfle , [t €A, f‘ =1}.

teY

The intersection G’;(A) N G?,(A) obviously contains only the unit id(x).

As we already observed, in the case P = As all these subgroups in fact coincide with the
whole group of formal diffeomorphisms. In the present case this surely does not hold. More-
over the two subgroups G;(A) and G@(A) are not normal in G‘}if(A), however they allow to
reconstruct the group G‘}if(A). To do this, let us fix the notation

Gy (A) 0 GY(A) = {)s o py where s € G} (A) and p, € GJ(A)}.

Lemma 4.5. Each series in G‘}i,if(A) can be written as the composition of two series in G?, (A)
and G (A), that is

GI(A) = G}y (A) 0 GH(A) = GL(A) 0 G}y (A). (4.6)

Moreover, this decomposition is unique if, on the left-hand side, we restrict the choice to the
comb-trees, that is

GYT(A) =" (G (A)) 0 G (A) =i (GM(A)) 0 G} (A). 4.7)

Proof. To show the equality (4.6), we have to show that any tree-expanded formal diffeomor-
phism n(x) = Zuef’ n(u)x" can be written as the compositions A ¢ o pg and p, o A ¢/, for some
f.g. f.g ¢ Gi;“'(A). In other words, since the coefficients lie in a commutative unital algebra
and can be chosen arbitrarily, we have to show that, in the compositions A o pg and pg 0 A ¢, the
power x“ appears for all the trees u € Y. Let us show it for the case A f © pg, the same procedure
can be adapted to the other case.
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In the composition of the two series A 7 (x) =),y fix7\ and pg(X) =3y gsx*/7, namely

(A opg)x) = Z ft8s08s1 - - gs‘”xlly\[(so/Y ..... ' M/Y),

1,50,515-+-,8]¢| €Y

there appears the power x* for u = 2y (s0/Y ..., 8)/Y), where t and s, ..., ;| are arbitrary

trees (all possibly equal to | ).
Ifr= |, weget

w= gy (so/Y) =s0/Y = .

Since sp runs over all possible trees, this u recovers all trees with nothing branched on the right
of the root.
If  # | , we use the fact that Y\r = o (Y, ), the associativity of the product u shaped by

trees, and the associativity of the over and under products, to get

u = Ml‘- \?/ (Y’t)(SO/Y’ .. .,Sm/Y)

=K \?/ (I’L\((SO/Y)’ H“I(Sl/\(a . asltl/Y))
=50/ \ur(s1/Y 55 8)01/Y). (4.8)

Since t and sp, . .., s|;| Tun over all possible trees (including the root-tree | for the s;’s), we can
recover any possible tree u € Y with something branched simultaneously on the left and on the
right of the root.

The above decomposition is clearly not unique, because different choices of t and s1, ..., sy
might give rise to the same tree u. For instance, if in Eq. (4.8) we choose t = {, any s1, and
s2 = |, we get

S1

e (s1/Y 5 52/Y) =k (”Y,Y) = Y

s1
51 S0 .
and therefore for any sg we get u = so/Y'\ \<( = . But if we choose ' =Y and

/ 51
s) = Y, we get the same result for any so because

S1 S1

we(si /)= ()= Y
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To show that the decomposition (4.7) is unique, in Eq. (4.8) it suffices to consider, for ¢, only

the right-comb trees ?/ . With this choice, we get

S)e|
S1

S0

u= .

and therefore, for arbitrary so, ..., s, € Y, with |f| > 1, we recover in a unique way all trees
u € Y with something branched simultaneously on the left and on the right of the root. Then we
apply Proposition 2.3 to identify the group GYi(A) with the subgroup of G‘}if(A) made of series
expanded only on the right-comb trees. We have therefore proved the uniqueness of decomposi-
tion /"™ (G (A)) 0 G} (A) = G (A). The same argument applies to i (GY(A)) 0 G} (A) =
Gifa). o

The order map 7 also gives two surjective group morphisms from G’;(A) and G;(A) to
GYf(A). In fact, since G§(A) and G;(A) are subgroups of G‘}if(A), and 7 is a group homomor-
phism from G‘Il/if(A) to Gdif(A), it only remains to show that = is still surjective when restricted
to G4 (A) or G} (A). This follows from the fact that G} (A) and G (A) contain G%(A) via the
inclusions of Proposition 2.3, which are sections of .

To conclude this section, we apply Theorem 4.3 to describe explicitly the Hopf structure of
the algebra Hfi, because it gives rise to another new Hopf algebra on trees, which is neither
commutative nor cocommutative.

Corollary 4.6. The free associative algebra 'H’;’nc =QY)=Q(Y)/(| — 1) is a graded and
connected algebra, with grading given by the order of trees. The coproduct A‘; is defined on any
uey by

A =1®u+ > L@ ST .. S|t S|4 1 (4.9)

te¥
SLyeens S|t +1 €Y

u=pe (S1/Y 5oees8101 /Y ) /)11
and the counit is e(u) =0 foranyu € Y.

For instance, setting | = 1, the coproduct on small trees is:

A=Y ®1+1®Y,
AV(Y )= @142y @Y +1® X,

AN )=Y ®1+1® Y,
() =Y e1+3¥er+re 2y +y)+1e .
M%) =

Neol+Yor+ryoyY +10 Y,
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A(Y) =Y e+ Yer+ye Y +10 Y,
(V) =Y el+Y ev+l1e ¥,
4(V)=V e1+10 Y.

4.3. Subgroup dual to the Hopf algebra H®

The main aim of this section is to define the subgroup G¢ represented by the “charge Hopf
algebra” H“ introduced in [5], and used in [4] to describe the renormalization of the electric
charge in quantum electrodynamics.

Let us fix an associative, commutative and unital algebra A. For any f(x) =) ,.y fi x' €

A[[Y]], the series xl = xY\ f(x) belongs to the set Gi}‘V(A), and therefore to the group
G°'(A) of tree-expanded invertible series with respect to the product /. Let us call f(x) =
(x | —xY \ f(x))~!its inverse in G°¥'(A), and set

-1
GU(A)i={ay@) =pr0) = (x| —xT\f(0)"'/xT, feAl¥n}. (4.10)
A tree-expanded diffeomorphism o ¢ (x) can be thought as the translations by the series f which

fixes zero.
For any tree r € Y, set V() =Y \t.

Lemma 4.7. The set G¥(A) coincides with the subset of Gf, (A) made of the series pg(x) =
'
Yoy & X Y such that
& =8V() &V(n) " &V, Ht=V@)/V(®)/ - /V(tn). 4.11)
Proof. For any fixed f(x) € A[Y]], the inverse of the series xl = xY\f(x) —xl -
t
Yoy fr 7 in GOT(A) is
o
feo=xl+3°
n=1 “teY n=11,..., ey

Any tree t # | can be written in a unique way as an over product of trees which have nothing
branched at the left of the root, in fact

t= =V@)/ V()] /V(t).

Therefore we have
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fo=x'+3" Y A fixt

n=1 ey
t=V(t1)//V(tn)

Then, varying f € A[[Y]], the series af(x) = f (x) /)cY give exactly all the series pg(x),
where g(x) = x 4 > iy &X' has arbitrary coefficients gy ;) = f; and constrained coefficients
V)V )/ /V(tn) = 8Vu)8V () 8V O

Theorem 4.8. The set G*(A) is a subgroup of G (A).

Proof. Since the series f(x) =0 gives o (x) = xY, it suffices to show that the subset G*(A) is
closed for the composition.

Let us exploit Lemma 4.7, and choose two generic series in G* (A) by taking two series p r and
Pg in Gﬁ (A) such that the coefficients of the series f, g € G°V*'(A) satisfy the condition (4.11).
Let h € G°¥*'(A) be the series which results from the composition pf o pg = ps. We have to
show that the coefficients of % also satisfy the condition (4.11), that is, we have to show that for
any u € Y we have h, = hv - hvw,),ifu=Vy)/---/V(u,). For this, it suffices to show
that

hy =hyhyury ifu=u'/V(u,). (4.12)

Applying the definition of the composition, for any u# € ¥ we have

hy = gu + > fi8si 8sun (4.13)
U=t (S1/Y seeesS)01 /Y ) /11141

where from now on we suppose that the sums run over all the trees in the set Y if they appear
as subindices of the tree-product w (in this case 7), and to the set Y if they appear inside the
arguments of p or anywhere else (in this case s1, ..., Sj;+1)-

In particular, we need an explicit expression the coefficient 4y (), where u € Y. Let us com-
puteit. If u = | and V(u) =Y, it is easy to see that

hy =gv + fy.

Then we suppose that u # | . In Eq. (4.13), we replace the tree u by the tree V (1) = Yu , and
obtain

hv ) = gva + > Ji8s1 - &5
V@) =p;G1/Y 057 /7) /517141

The tree pui(s1/Y,...,87/Y)/55+1 can be of the form V(u) = Yu only if Sz = I,

- t
t=V(@)=Y withteY, and 5 = | . The case t = | corresponds to u = |, that we al-
ready computed apart. For t # | , we write V(1) = u N (Y, t) and apply the associativity of u

to conclude that
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V) =pnviey(Y,82/Y s Si+1/Y)/ |
=V G2/Y . Su41/Y)),

and therefore u = s (S2/Y, ..., St|+1/Y ). By renaming the trees 5; = s;_1, we finally obtain

hyw =gvw + > Fv8si - &sy- (4.14)
U= (S1/Y .80 /Y)

Let us now prove (4.12). We start again from (4.13), for a fixed tree u = ul V.

Assume u" = | . Let us start by considering the case u = ul /Y. We already computed
hY =8y + fY' The sum in (4.13) is over all trees t € Y and sy, ..., +1 € Y such that
u= ul/\( = (s1/Y .., 8111/Y)/8)+1. Let us list the contributions to this sum coming from

different cases.

Case 1. If 5,41 = | , the equality u = ul/Y = u:(s1/Y, ..., 8/Y) is possible if and only if
t=1t'/Y and S|e| = sllt‘/\(. Then we distinguish the following two possible cases.

Case la. If ! # | , and therefore |¢| = |¢!| + 1, then u! = B (s1/Y, ...,s|,z|/Y)/s|lt1|+1. We then

rename ¢/ =: w. Since g | = 1, and fy /v = fu fv, we have the contribution

Z Sl &t &sjupar-

MIZIMU(Sl/stus\w\/Y)/s\le

Caselb. Ift! = | ,thenu =u'/)Y = Wy (s1/Y) =s1/Y, and therefore s1 = u'. We then have the
contribution

ngul'

Case 2. If s;1+1 # | , the equality

/Y = (s /Y S/ S
is possible if and only if sj;j+1 = S|ltH—l/Y and us(s1/Y, ... ,S|,|/Y)/s|1t|Jrl = u!. We then rename
the free trees t =: w and s‘lt| 1 =S+ and obtain the contribution
Z fw gS] e gS\w\+ng'
ul:ﬂw(sl/Ya---vs\wl/Y)/S\le
Summing up all the possible cases, we obtain

hul/Y = (gul + Z fw 8sy - 'gsm|+1>(gY + fY) = huth'

U'=p (S1/Y seves S /) /w41
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Assume u” # | . The sumin (4.13)is overall trees ¢ € Yandsi,... , S|t|+1 € Y such that u = ul/
V(") =i (s1/Y .-, 8111/ )/S|t1+1. Let us list all the contributions to this sum.

Case 1. If 5,41 = | , since ¢t # | , we split t = I /V(t"), and distinguish the following three
possible cases.

Case la. Ifr/ # | and " = | , then || = |!| + 1 and the equality becomes
W IV (") = Ry SUY s St /Y = 1Y 0 O Syt /Y
=g S1/Y s s /Y8141 /V (),

which is impossible because u” # | .

Case 1b. If /' = | and 1" # |, then =V (") =pu v (Y, t") with |t| = |t"]| + 1. Using the
associativity of the p product we get

vy (SU/Y s oo S /Y ) =851/ \er 82/ oo Sper 1 /YY)
This tree can be equal to u = u’/Y\u’ if and only if 51 = u' and Wer ($2/Y 5o S+ /Y ) =u'.

Let us rename the free trees as follows: t" =:y, s; =: z;—1 for i =2,...,|t"| + 1. Then the
contribution to the whole sum for this case is

Z Fvy) 8ul&z R -tNE

u'=py(z1/Y 2y /Y)

Case lc. Ift/ £ | and " # | , using again the properties of the 1 product we have

ul/V(Mr) = /J/II(S]/Y, . ..,Sltl|/Y)/IJ/V(1V)(S‘IIH_1/Y, ,S‘ll|+|tr|+1/\()
= (s1/Y, ---7S|z’|/Y)/s|zI|+1/V(Mtr(s|;1|+2/\(»--'vs\z’\+|t"\+1/Y))-

We rename the free trees as ' =: w, si=:v;fori=1,..., |tl| +1,and t" =: y, Siil|4j =" Zj—1
for j=2,...,|t"| + 1. Since fyv(y) = fw fv(y), we obtain the contribution
Z Sw v 8&v © 8opw+18z1 T 8z

”[:MIAJ(vl/quuv\w\/Y)/U\le
u =gy (21/Y o2y /Y)

Case 2. If 5741 # | , then it can be decomposed as s|;|+1 = S|lt\+1/V(s|rt|+1)’ and therefore the
equality

MI/V(”r) = (s1/Y 5. Slt\/Y)/S\l;|+1/V(S|rt\+1)

is possible if and only if wu;(s1/Y, ..., s‘tl/Y)/Sft\+l —u! and S|rt|+1 = u". We then rename the

/

free treesas t =: w, s; =:v; fori =1,..., |t] and S|+

| =: Vjw|+1, and obtain the contribution
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Z fw 8v; "'gv\wH]gV(u’)'

U =py (V1 /Y 1o V] /) Vw41

Summing up all the possible cases, and rearranging them using (4.13) and (4.14), we finally
obtain

Pty ury = 8u + Z Ji&si &8s
U=t (S1/Y seres 101 /Y ) /St 41

= (gul + Z fw gv] o 'gv|w+1>

w =y (V1 /Y oo V] /) Vw41

X <8V(u’> + Z fvnga "'gZy)

u'=py(z1 /Y2y /1Y)
=hhyur. O

The construction of the group G*(A) is clearly functorial in A.
Theorem 4.9. The group functor G* is represented by the Hopf algebra H”.

Proof. The functoriality of the group G* (A), with respect to the algebra A, is obvious, as well as
the fact that G* is a proalgebraic group. In fact, after Lemma 4.7, the coordinate ring of G¢ is the
quotient of HY, by the ideal generated by the relation t = V (t1)/V (t2)/ -+ /V (t,), forall t € ¥,
and therefore it is freely spanned by the trees of the form V (¢)/Y, for any ¢ € Y. In other words,
the coordinate ring of G* is the polynomial algebra Q[V (¢)/Y,t € Y], which is isomorphic, as
an algebra, to the polynomial algebra Q[V (¢),t € Y].

Let us recall, from [5], that H“ is the abelian quotient of the algebra QY of all trees endowed
with the over product. Thus the root tree | is the unit, and the algebra H? is in fact isomorphic to
the polynomial algebra Q[V (¢), ¢t € Y]. In [5] it was shown that H? is a connected graded Hopf
algebra, with the grading given by the order of the trees. The coproduct A% : HY — H* @ HY is
the algebra morphism defined on the generators by the assignment

A (V) =1@ V() +8*(V (D)), (4.15)

where §% : H* — H* @ H® is a right coaction of H* on itself (w.r.t. the coproduct A%), defined
recursively as

(V) = (v Id[a*(e) /s*(V (1))]. (4.16)

where r =t/ /V (¢"). The counit & : H* — Q is the algebra morphism with value £(V (r)) = 0 on
the generators.

It is clear that the coordinate ring of G is isomorphic to H%, as an algebra. It remains to
show that the coproduct dual to the composition is indeed A%. To do this, we prove that the
projection R:Hj = Q[Y] — H* = Q[V(¢), € Y], dual to the inclusion of G*(A) into G} (A),
is a morphism of Hopf algebras, that is
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A*(Rw)) = (RQ R) A} (u) 4.17)

for all u € Y. The map R is the algebra morphism which sends the generators u € ¥ of H§ into
themselves, seen as over products of its components, that is

Rw)y=u=V(u')/ - /V(u"),

and of course, being an algebra morphism, it sends the free products of Hf, into the over products
of H%, that is

R(ui--tm)=u1/ - [ttm.

To show the identity (4.17), it suffices to show that (R ® R)A@ satisfies the same recursive
relation (4.15) which defines A“. For this purpose, we introduce a coaction 81’; of H’; on itself.

Let us restrict the right action of G‘}if(A) on G@(A) of Theorem 4.2 to the map G[;(A) X
G4 (A) = GY(A) given by (py)Ps = ppee. We obtain a right action of G4 (A) on itself. Its dual
map on the coordinate rings can be found from the coaction 5‘3,”, given by Eq. (4.5) for P = Dup
and which in fact coincides with the coaction (Si;“’, by applying the projection P : H‘}if — H’;
described in the proof of Theorem 4.3. In conclusion, we obtain the map 81’; :H’; — H@ ® H’;
given on the generators u € Y by

8 )= (1d® P)sy (u) = Z t® st S|, (4.18)
U= (S1/Y5-s8081/Y)

where, again, from now on we suppose that the sums run over all the trees in the set Y if they
appear as subindices of the tree-product u (in this case ¢), and to the set Y if they appear inside
the arguments of p or anywhere else (in this case s1,...,s)). Now we compute an explicit
formula for Aﬁ(V(u)) and for 8)€(V(u)), and show that relations (4.15) and (4.16) are satisfied
after projecting by R.

Ifu=|,and V(u) =Y, we can easily compute

A =Y®l+1®Y,
) =Y QL

Therefore Af,(Y) =1®Y + (Sﬁ (Y). The relation (4.15) is satisfied in H%, and therefore it is
satisfied after applying the algebra morphism R. Since 51’;( [)=1 ® |,andY = V(]| ), relation
(4.16) is also satisfied in H}.

Now suppose that u 7 | . In Eq. (4.9), we replace the tree u by the tree V (1), and obtain

Ap(Vw)=1®@ V) + Z 1351/ /57/541-
V@) =i G1/Y 87/ /5141

Since 7 # | , the tree 117(51/Y ..., 57/Y) /5741 can be of the form V (u) only if 57, = |,
f=V({) withteY,and 5y = | . The case t = | corresponds to u = | , and we exclude it. For
t# | ,wewrite V(1) = \?, (Y, t) and apply the associativity of u to conclude that
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V(M) = /"LV(Z)(Ya 52/\(, e ’§|l|+1/Y)/ ‘
=V (e G2/Y . Su1/Y)),

and therefore u = s (S2/Y, ..., St|+1/Y ). By renaming the trees 5; = s;_, we finally obtain

AL(Vw) =10 V@) + > V(t)®s1-5p. (4.19)
U= (S1/Y 5811 /Y)

Similarly, if we replace the tree u by the tree V (1) in Eq. (4.18), we obtain

80 (V@) = > V() ®s1--Sp- (4.20)
U=ps(S1/Y 558121 /Y)

Therefore we have A'(;(V(u)) =1® V) + 8§(V(u)), and consequently the relation (4.15) is
fulfilled already in H}.
Using (4.18), Eq. (4.20) can be written as

80(V(w) =(V®Id)< > t® s ...s,”)

U=t ($1/Y 80 /Y)
= (V®Id)s) ().

Let us develop 8}’3 (u), foru = ul/V(u’).

Assume u” = | . Let us start by considering the case u = u' /Y . We already computed 8;’(\() =
Y ® | . The sum in (4.18) is over all trees ¢ € ¥ and $1,..., 8 € Y such that u = ul/\( =
we(s1/Y 5 ..., 8):/Y). This equality is possible if and only if t = tl/\( and s, = slltl/Y' Then we
distinguish two possible cases, let us list the contributions to the whole sum coming from each
of them.

Case 1. If 1/ # |, and therefore |¢| = || + 1, then u! = /,L,z(sl/\(,...,s‘,z|/Y)/s|ltl|+l. If we

rename ! =: w, the contribution can be written as

Z W/Y @51 8w

U = (51/Y 1ees Sl /)

Case2. If ! = | , thenu = ul/Y =y (51/Y) = s1/Y, and therefore s1 = u'. We then have the
contribution

Y Qul.

Summing up the two contributions, we obtain

Sy(u' /) =Y ®u' + > w/Y @51 S,
Ut =gy (51/Y 1o sSjw] /)
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and therefore

(RO R)S)(u'/Y) =Y ®u' + > w/Y @51/ /Sw|
U =gy (51/Y s eeesSp) /)

=(1®ul+ Z w®S1/"'/Sw>/(Y®1)

=gy ($1/Y seesS|w] /)
=[(R® R A (u)]/[(R® RS (V)]
Therefore Eq. (4.16) holds for u = ul/V( [).
Assume u” # | . The sum in (4.18) is over all trees ¢ € Y and $1, .-+, 8}t|+1 € Y such that
u=u'/VW") = (s1/Y,...,511/Y). Since t # | , we split t = ¢! /V(¢"), and distinguish three

possible cases. Let us list the contributions to the sum coming from each of them.

Casel. If ! # | and " = | ,thent =¢')Y =p o (¢!, ) with |¢| = |¢!| + 1. Using the prop-
erties of the u product, the equality becomes

ul /v (u") = Lyt p Y oo Syt /) = Rt (1Y sy /Y /81141 /Y
=W (SU/Y oSy /Y /St 151/ V (),
which is impossible because u" # | .

Case 2. If ! = | and t" # |, thent = V(") = ,u\?, (Y, t") with [t| = |¢t"| + 1. Using the
associativity of the u product we get

vy (SL/Y oS /Y ) =51/ \er 82/ oo Sper 1 /Y).
This tree can be equal to u = u! /Y \u" if and only if s = u! and p;r (s2/Y, ..., Sjer+1/Y)=u".

Let us rename the free trees as follows: " =:y, s; =: z;—1 for i =2,...,|t"| 4+ 1. Then the
contribution to the whole sum for this case is

Z V(y) @u'z “ 2yl

u'=py (21 /Y2y /1Y)
Case 3. If r/ % | and 1" # | , using again the properties of the u product we have
V(") = g1 1/ 81 Oy (o) St 1 /Y 5o St a1/
=pua(s1/Y, ..., S|,1|/Y)/S|zl|+1/V(,U«t"(S|;1|+2/Y7 s S\;l\+|,r\+1/\())~

Renaming the free trees as t=w, s;=v; fori=1,..., |tl| +1,and t" =y, Sil4j =1 Zj—1
for j =2,...,|t"| + 1, we obtain the following contribution to the sum:



412 A. Frabetti / Journal of Algebra 319 (2008) 377-413

> w/V(y) @ V1 -+ V| +121* - Zy|-
MIZMw(Ul/Y»~-~-,U|u/\/\()/v|w‘+1
W=y @1/Y 2yl /Y)

Summing up the two contributions, we obtain

8y (u' )V (u")) = Z V) ®u'zi-zy
U=y (z1/Y -2y /Y)
+ Z w/V(y) @i Vjw|+121 - 2|y
u' =g 1 /Y., Viw| /) /Vjw|+1
u'=py @1/, 2py /1Y)

Therefore

(R® RS (u! )V (u"))
- 3 V) @u'jzi/ - [z

U=y (@1/Y o2y /)

+ > w/VE) @ v/ [Vpwi1/21/ - /2y

U = (V1 /Y e V)] /) V|1
u"=py(21/Y 21y /Y)

=[1®ul+ Z w®v1/~-~/v‘w‘+1]/ Z V) ®z1/--+ /21y

U =gy (V1 /Y e V) /) [V 41 =y (z1/Y 50521y /Y)

=[(R@ R)AY()]/[(R® RS (V())].
Therefore the recursive relation (4.16) holds for any u = u!/V(u"). O

In [5], it was proved that there exists a non-commutative lift of H®, let us denote it by H*"¢.
As a corollary to the previous result, we obtain a non-recursive formula for the coproduct A%,
which is still valid on H*".

Corollary 4.10. The free associative algebra H*"* = Q(V (u),u € Y) and its abelian quotient
HY =Q[V (1), u € Y] are graded and connected Hopf algebras with coproduct defined on the
generators by

A (V) =10 V) + > V@) @s1/-+ /5.

tey
51 ,..4,S|,|€Y

u=pt(s1/Y 5,811 /Y)

To conclude, we apply the results of Section 3 on the semi-direct coproduct Hopf algebras to
the Hopf algebras H* and H°. The “QED renormalization Hopf algebra” H* x H¢, introduced
in [5], is then the non-commutative lift of the coordinate ring of the group functor G* x G°.

Then, note that the order map 7 gives a surjective group morphism from G%(A) to G4f(A).
In fact, since G*(A) is a subgroup of Gﬁ(A), and 7 is a group homomorphism from G'(; (A)
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to Gdif(A), it suffices to verify that 7 is still surjective when restricted to G*(A). This follows
from the fact that G¥(A) contains G4(A) via the inclusion {"™" of Proposition 2.3, which is a
section of 7.

Therefore, for any fixed algebra A, the “QED renormalization group” G%(A) x G¢(A) is
projected to the semi-direct product of usual series GYT(A) x G'™(A).
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