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Abstract

In [Ch. Brouder, A. Frabetti, Renormalization of QED with planar binary trees, Eur. Phys. J. C 19 (2001)
715–741; Ch. Brouder, A. Frabetti, QED Hopf algebras on planar binary trees, J. Algebra 267 (2003) 298–
322] we introduced three Hopf algebras on planar binary trees related to the renormalization of quantum
electrodynamics. One of them, the algebra Hα , is commutative, and is therefore the ring of coordinate
functions of a proalgebraic group Gα . The other two algebras, He and Hγ , are free non-commutative.
Therefore their abelian quotients are the coordinate rings of two proalgebraic groups Ge and Gγ . In this
paper we describe explicitly these groups.

Using two monoidal structures and a set-operad structure on planar binary trees, we show that these
groups can be realized on formal series expanded over trees, and that the group laws are generalizations
of the multiplication and the composition of usual series in one variable. Therefore we obtain some new
groups of invertible tree-expanded series and of tree-expanded formal diffeomorphisms respectively.

The Hopf algebra describing the renormalization of the electric charge corresponds to the subgroup of
tree-expanded formal diffeomorphisms formed of the translations, which fix the zero, by some particular
tree-expanded series which remind the proper correlation functions in quantum field theory. In turn, the
group of tree-expanded formal diffeomorphisms and some of its subgroups give rise to new Hopf algebras
on trees.

All the constructions are done in a general operad-theoretic setting, and then applied to the specific
duplicial operad on trees.
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Introduction

In [5], C. Brouder and the author introduced three Hopf algebras He , Hγ and Hα related to
the renormalization of perturbative quantum electrodynamics. They are constructed on planar
binary trees, where each tree represents a suitable sum of QED Feynman graphs. The abelian
quotients He

ab , Hγ

ab , and the algebra Hα , are commutative Hopf algebras, and therefore they are
coordinate rings for some proalgebraic groups, that we denote respectively by Ge , Gγ and Gα .
By proalgebraic group, we mean a functor G which associates a group G(A) to any associative,
unital and commutative algebra A, and which is represented by a commutative Hopf algebra
H which is not necessarily finitely generated. In other words, the group G(A) is isomorphic to
the group HomAlg(H,A) of algebra homomorphisms, considered with the convolution product
inherited from the coalgebra structure of H, cf. [1,3].

In this paper, we describe explicitly these groups as group functors, and show that they can
be considered as generalizations of the groups of formal series in one variable, endowed with the
multiplication and the composition. To do this, we introduce the notion of tree-expanded series.

Let A be an associative, unital and commutative algebra over the field Q. Denote by Y the set
of all trees, and by A[[Y ]] the vector space of sequences (at )t∈Y where at ∈ A. For our purpose,
it is convenient to write a sequence (at ) as a formal series a(x) = ∑

t∈Y atx
t , where x is a

formal variable. Here the word “series” is an abuse of language, since xt is just a symbol, for

instance x . We call such sequences tree-expanded series in a variable x, with coefficients in A.
These series behave like usual ones. We can multiply them, and compose those which have zero

constant term. Here, the constant term is the coefficient of the symbol x , where is the tree
given by the sole root.

As affine varieties, we can identify the groups as follows. If we denote by Y the set of trees

different from , the groups Ge(A) and Gγ (A) are both isomorphic to the subset x + A[[Y ]].
On the other side, if we denote by Y the set of trees different from and , the group Gα(A) is

isomorphic to the subset of x + A[[Y ]] containing the tree-expanded series of the form
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ϕ(x) = x +
∑
t∈Y

ϕt x

t

,

where the coefficients satisfy the condition

ϕt = ϕ t1 ϕ t2 · · ·ϕ tn if t =
...

t1
t2

tn

.

In this paper we describe the group laws of Ge(A), Gγ (A) and Gα(A) presented as sets of
tree-expanded series, and their relationship with their analogue groups of usual formal series.

Seen as representable group functors, the isomorphisms G(A) ∼= HomAlg(H,A) bring a tree-
expanded formal series f (x) = ∑

t∈Y ft xt into the algebra homomorphism from H to A which
associates to the tree t ∈H the coefficient ft ∈ A.

This situation is in fact not peculiar to trees. We show that the same kind of constructions can
be done on the set A[[P]] of P-expanded series, if P is a graded collection of finite sets with
suitable properties. These turn out to be: a set-operad structure on P , and two associative binary
operations in P(2). The results on trees are then obtained by considering the duplicial operad
generated by the over and under grafting operations on trees. Similar results could be obtained
for other operads, and in particular for the diassociative operad describing dialgebras, however
we do not investigate the resulting groups of series in this paper.

One of the key resulting groups, that of formal diffeomorphisms, requires only an operad
structure. For algebraic operads, essentially the same construction was considered by F. Chapoton
in [7] and by P. van der Laan in [16] with different motivations and applications. Chapoton spec-
ifies to the pre-Lie operad of rooted trees, and uses the rooted tree-expanded series to describe
the flow of a linear vector field on an affine space. Van der Laan describes the non-symmetric
case and introduces the non-commutative lift of the coordinate rings. We will comment briefly
the relationship between the different constructions in Section 2.1.

Notations. All vector spaces and algebras are defined over the field Q of rational numbers,
although the algebras He , Hγ and Hα were originally defined over the field of complex numbers.
In fact, this restriction was not necessary.

For any set X, we denote by QX the vector space spanned by X, by Q〈X〉 the tensor algebra
on X (non-commutative polynomials), and by Q[X] the symmetric algebra on X (commutative
polynomials).

1. Group of invertible tree-expanded series

In this section, we recall how to associate a group of series to a graded monoid, and discuss
the relationship with the group of invertible usual series in one variable.

Then we consider two graded monoids built on trees, with the over and under grafting oper-
ations, and describe the resulting groups of tree-expanded series. We show that the coordinate
rings of these groups coincide with the “QED propagator” Hopf algebras introduced in [5].
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1.1. Group of series expanded over a graded monoid

Let M(n) be a collection of finite sets indexed by non-negative integers, and set M =⊔
n�0 M(n). Then M is a graded monoid if it is endowed with an associative graded opera-

tion · :M×M → M and a neutral element e ∈M(0).
Let A be an associative, commutative and unital algebra over Q, and denote by A[[M]] the

vector space of M-expanded series f (x) = ∑
p∈M fp xp , with fp ∈ A. We define a multiplica-

tion in A[[M]] by setting

(f · g)(x) :=
∑

p∈M

∑
q∈M

fpgqxp·q . (1.1)

This series is well defined because for a given u ∈ M there exist finitely many elements p,q ∈
M such that p · q = u. Then A[[M]] forms a unital algebra, with unit xe.

Theorem 1.1 (Obvious). Set M = ⊔
n�1 M(n). The subset Ginv

M(A) := xe + A[[M]] forms a
group.

We call Ginv
M(A) the group of invertible M-series, with coefficients in A.

Example. The first example of such a group is constructed from the graded monoid N of non-
negative integers, with N(n) = {n} and the addition. We then obtain the group Ginv(A) = 1 +
xA[[x]] of usual invertible formal series.

The construction of the group Ginv
M(A) is functorial in M. Since the grading π :M → N is

a canonical morphism of graded monoids, and any p ∈ M(1) gives a section ip : N → M by
n �→ pn, we can compare the series expanded over M with the usual formal series.

Proposition 1.2. For any graded monoid M, there is a canonical morphism of groups
π :Ginv

M(A) → Ginv(A). Moreover, any element p ∈ M(1) gives a section ip :Ginv(A) →
Ginv

M(A).

The construction of the group Ginv
M(A) is also functorial in A. Indeed, the group functor Ginv

M
can be represented by a commutative Hopf algebra Hinv

M, i.e., for any associative, commutative
and unital algebra A, we have

Ginv
M(A) ∼= HomAlg

(
Hinv

M,A
)
.

As an algebra, Hinv
M is a polynomial algebra with generators indexed by M. It is remarkable that

it admits a straightforward lift to a non-commutative polynomial algebra.
Given a commutative Hopf algebra H, by non-commutative lift of H we mean a non-

commutative Hopf algebra Hnc such that H is the abelian quotient of Hnc. The abelian quotient
of a Hopf algebra Hnc is the commutative algebra Hnc

ab obtained as the quotient of Hnc on the
ideal generated by the commutator [Hnc,Hnc]. It is automatically a Hopf algebra.

In the case of Hinv
M, we consider the free associative algebra Hinv,nc

M = Q〈M〉, with generators
graded by the grading of M. The neutral element e ∈ M(0) is identified with the unit 1. Define
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a coproduct Δinv
M :Hinv,nc

M → Hinv,nc
M ⊗Hinv,nc

M as the algebra morphism given on the generators
u by

Δinv
M(u) :=

∑
u=p·q

p ⊗ q.

Define also a counit ε :Hinv,nc
M → Q as the algebra morphism given on all u 	= e by ε(u) = 0.

Proposition 1.3. The algebra Hinv,nc
M is a (non-commutative) graded and connected Hopf alge-

bra. It is cocommutative if and only if the monoid is abelian.
The coordinate ring of Ginv

M is the abelian quotient Hinv
M = Q[M] of the Hopf algebra Hinv,nc

M .

Example. In particular, the coordinate ring of the group functor Ginv is the polynomial algebra
Hinv = Q[b1, b2, . . .] on one generator bn in each degree n � 1. The coproduct on the generators
of Hinv is

Δinvbn =
n∑

k=0

bk ⊗ bn−k (b0 = 1),

and the counit is ε(bn) = 0 for n � 1. This Hopf algebra is the unique free commutative and co-
commutative Hopf algebra on infinitely many generators spanned by natural numbers, commonly
known as the Hopf algebra of symmetric functions. It is well known to admit a non-commutative
lift to the tensor algebra Hinv,nc = Q〈b1, b2, . . .〉 which is still cocommutative.

Since the correspondence between proalgebraic groups and their representative Hopf algebras
is contravariant, the relationship between the Hopf algebras Hinv,nc

M and Hinv,nc can be find by
reversing the morphisms of Proposition 1.2.

Proposition 1.4. There is a canonical morphism of Hopf algebras Hinv,nc → Hinv,nc
M . Moreover,

each element p ∈M(1) determines a section Hinv,nc
M → Hinv,nc.

Proof. The morphism Hinv,nc →Hinv,nc
M is explicitly given by

bn �→
∑

p∈M(n)

p,

and it is injective if there is an element p ∈ M(1). Then, its section Hinv,nc
M → Hinv,nc is given

by the map

u ∈M(n) �→
{

bn if u = pn,

0 otherwise.

The verification that these two maps are morphisms of Hopf algebras is straightforward. �
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1.2. Graded monoid of trees and invertible tree-expanded series

In this paper, by a “tree” we will always mean a planar binary rooted tree, that is, a connected
planar graph without loops, having internal vertices of valence 3 and a preferred external vertex
called the root. For any tree t , we call order of t the number |t | of its internal vertices. For any
n � 0, we then denote by Yn the set of trees of order n. In particular, there is only one tree with
no internal vertex, called the root tree, and there is only one tree with 1 internal vertex, called
the vertex tree. The sets Y2 and Y3 are the following:

Y2 = {
,

}
,

Y3 =
{

, , , ,
}
.

On the set Y = ⋃
n�0 Yn of all trees, let us consider the over and under products introduced

by J.-L. Loday in [11, Section 1.5]. We recall that for any planar binary trees t and s, the tree
t over s is the grafting

t/s = s
t

of the root of t on the leftmost leaf of s, while the tree t under s is the grafting

t\s = t
s

of the root of s on the rightmost leaf of t . Of course, the operations over and under are isomorphic,
and the isomorphism is given by the axial symmetry of the trees along their roots.

The over and under products on trees are associative, non-commutative, with unit given by
the root tree . Moreover they are graded with respect to the order of trees, in the sense that

|t/s| = |t | + |s| and |t\s| = |t | + |s|. (1.2)

Therefore (Y, /) and (Y,\) are two graded monoids. Applying Theorem 1.1, we then obtain two
non-abelian group laws on the set of tree-expanded series

Ginv
Y (A) :=

{
f (x) =

∑
t∈Y

ft xt , ft ∈ A, f = 1

}
,

with multiplications denoted by / and \, and with unit x . Denote these groups as

Gover(A) := (
Ginv

Y (A), /
)

and Gunder(A) := (
Ginv

Y (A),\).
Theorem 1.5. The non-commutative lift of the coordinate rings of the two group functors Gover

and Gunder coincide with the QED propagator Hopf algebras Hγ and He .
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In other words, if we denote by Gγ and Ge the group functors represented respectively by the
Hopf algebras Hγ

ab and He
ab , then the groups are exactly Gγ = Gover and Ge = Gunder.

Proof of Theorem 1.5. Let us recall, from [5], the definition of the “QED propagator Hopf
algebras” Hγ and He on planar binary trees. As algebras, they are both isomorphic to the free
non-commutative algebra generated by all trees different from , that is Hγ = He = Q〈Y 〉,
where Y = ⋃

n�1 Yn. Since Y0 = { }, we also identify the root-tree to the unit 1 and write
Hγ = He ∼= Q〈Y 〉/( − 1).

The coalgebra structures are given by the “pruning coproducts” Δinv
γ :Hγ → Hγ ⊗ Hγ and

Δinv
e :He → He ⊗He defined as the dual operations respectively to the over and under products

of trees. That is, they are defined on the generators u ∈ Y by

Δinv
γ (u) =

∑
t/s=u

t ⊗ s and Δinv
e (u) =

∑
t\s=u

t ⊗ s. (1.3)

The counits ε :Hγ → Q and ε :He → Q are dual to the unit , that is ε( ) = 1 and ε(t) = 0 if
t 	= , and the antipodes are then defined in a standard recursive way.

Comparing the pruning coproducts in Hγ and He given by Eq. (1.3) with the over and under
multiplications in Gγ (A) and Ge(A) obtained from Eq. (1.1) for the over and under products, it
is clear that the abelian quotients Hγ

ab and He
ab of the two non-commutative Hopf algebras Hγ

and He are respectively the coordinate rings of the two group functors Gover and Gunder. �
Let us call order map the map | | :Y → N which sends each tree t ∈ Y to its order |t | ∈ N.

Formulas (1.2) say that it is a morphism of graded monoids, and in fact it coincides with the
projection π of Proposition 1.2. Since Y1 = { }, we conclude that the order map induces two
surjective morphisms of groups from Gover(A) and Gunder(A) respectively to Ginv(A).

The vertex tree then determines a section for each of the two projections, namely the maps
iover, iunder :Ginv(A) → Ginv

Y (A) such that

iover(xn
) = x

/n

= x

...

and iunder(xn
) = x

\n
= x

...

.

Let us call these trees respectively the left and the right comb trees. Therefore the inclusions iunder

and iover identify the group Ginv(A) of invertible series with the two subgroups of Gunder(A) and
Gover(A) made of tree-expanded series expanded only on the comb trees.

The result of Proposition 1.4 on the dual Hopf algebras He and Hγ , namely that they contain
Hinv,nc as a Hopf subalgebra, was already shown in [6].

2. Tree-expanded formal diffeomorphisms

In this section we introduce a group of series associated to any non-symmetric operad in the
category of sets, and discuss the relationship with the group of usual formal diffeomorphisms in
one variable.

Then we apply the results to the duplicial operad, generated by the over and under operations
on trees. The resulting group of tree-expanded diffeomorphisms is bigger than the group Gα that



384 A. Frabetti / Journal of Algebra 319 (2008) 377–413
we are looking for. However we describe it explicitly, because its coordinate ring admits a non-
commutative lift which gives rise to a new graded and connected Hopf algebra on trees, which is
neither commutative nor cocommutative.

2.1. Group of series expanded over a set-operad

Let us recall the definition of a (non-symmetric) operad in the category of sets. Let P(n) be
a collection of finite sets, indexed by positive integers, and set P = ⊔

n�1 P(n). Then P is a
set-operad if there exist compositions maps

γ ≡ γn;m1,...,mn
:P(n) ×P(m1) × · · · ×P(mn) → P(m1 + · · · + mn),

(p;q1, . . . , qn) �→ γ (p;q1, . . . , qn)

satisfying the associative condition

γ
(
γ (p;q1, . . . , qn);u1

1, . . . , u
1
m1

, u2
1, . . . , u

2
m2

, . . . , un
1, . . . , un

mn

)
= γ

(
p;γ (

q1;u1
1, . . . , u

1
m1

)
, . . . , γ

(
qn;un

1, . . . , un
mn

))
and an operation id ∈P(1) acting as the identity, that is

γ (id;q) = q and γ (p; id, . . . , id) = p.

For any p ∈ P(n), set |p| = n and call it the order of p.
The canonical example of a set-operad is the endomorphism operad EndS of a set S, given by

the collection of set-maps EndS(n) = Hom(Sn, S), together with the usual composition of maps.
If P is a set-operad, a morphism from P to the endomorphism operad EndS defines on the set S

the structure of a P-monoid.
Let A be an associative, commutative and unital algebra over Q, and denote by A[[P]] the

vector space of P-expanded series ϕ(x) = ∑
p∈P fpxp , with fp ∈ A. We define the composition

in A[[P]] by

(ϕ ◦ ψ)(x) :=
∑
p∈P

∑
q1,...,q|p|∈P

ϕpψq1 . . .ψqnx
γ (p;q1,...,q|p|). (2.1)

Theorem 2.1. Set P = ⊔
n�2 P(n). The subset Gdif

P (A) := xid + A[[P]] forms a group, with

unit xid. Moreover the composition respects the shifted grading deg(p) = |p| − 1.

We call Gdif
P (A) the group of P-expanded formal diffeomorphisms.

Proof of Theorem 2.1. The series xid ∈ Gdif
P (A) is obviously a unit. The subset Gdif

P (A) is
obviously closed under ◦. To show that it is a group, it suffices to show that the composition in
A[[P]] is associative and respects the shifted grading. In fact, its series ϕ have invertible constant
term ϕid = 1, and therefore their compositional inverse can be found recursively.

The associativity of the composition ◦ is ensured by the associativity of the operadic compo-
sition γ . In fact, given three P-expanded series ϕ,ψ,η, we have
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[
(ϕ ◦ ψ) ◦ η

]
(x) =

∑
p∈P

q1,...,qn∈P
u1,...,um∈P

ϕpψq1 . . .ψqnηu1 . . . ηum xγ (γ (p;q1,...,qn);u1,u2,...,um),

where n = |p| and m = |γ (p;q1, . . . , qn)| = ∑n
i=1 |qi |. On the other side, we have

[
ϕ ◦ (ψ ◦ η)

]
(x) =

∑
p∈P

q1,...,qn∈P

∑
v1

1 ,...,v1|q1|∈P
...

vn
1 ,...,vn|qn|∈P

ϕpψq1 . . .ψqnηv1
1
. . . ηv1|q1|

. . . ηvn
1
. . . ηvn|qn|

× x
γ (p;γ (q1;v1

1 ,...,v1|q1|),...,γ
(
qn;vn

1 ,...,vn|qn|)),

where the total number of operations vi
j is |q1| + · · · + |qn| = m. If we call v1

k1
:= uk1 , and

vi
ki

:= u|q1|+···+|qi−1|+ki
, for i = 2, . . . , n, all the factors ηvi

ki

of the second term have a corre-

sponding factor ηuj
in the first term, and the associativity of the composition γ guarantees that

the exponents coincide.
The shifted grading ensures that the composition ◦ is graded. In fact, for any operations p and

q1, . . . , q|p|, we have

deg(p) + deg(q1 . . . q|p|) = (|p| − 1
) +

|p|∑
i=1

(|qi | − 1
) =

|p|∑
i=1

|qi | − 1

= deg
(
γ (p;q1, . . . , q|p|)

)
. �

Example. The simplest example of such a group is that of usual formal diffeomorphisms. To
see how it arises from a set-operad, consider the set-operad N∗ = ⊔

n�1{n} of positive integers,
with the compositions γ (n;m1, . . . ,mn) = m1 + · · · + mn and identity id = 1. It is the quadratic
set-operad generated by one associative operation in degree 2. An N∗-monoid is a usual asso-
ciative monoid. From a set-operad P one can define an algebraic operad QP by considering the
collection of Q-vector spaces QP(n) spanned by the finite sets, and extending linearly the com-
positions γ to maps QP(n) ⊗ QP(m1) ⊗ · · · ⊗ QP(mn) → QP(m1 + · · · + mn). The algebraic
operad associated to the set-operad N∗ is the operad As of associative algebras. Therefore we
will use the symbol As also to denote the set-operad.

For P = As we have A[[As]] = xA[[x]] and A[[Ās]] = x2A[[x]]. Therefore the group Gdif
As

(A)

is the group Gdif(A) = x + x2A[[x]] of usual formal diffeomorphisms ϕ(x) = x + ∑
n�2 ϕn xn

(tangent to the identity), with coefficients in A, considered with the composition (or substitution)

(ϕ ◦ ψ)(x) = ϕ
(
ψ(x)

) =
∞∑

n=1

ϕnψ(x)n =
∞∑

n=1

(
n∑

m=1

∑
k1+···+km=n
k1,...,km�1

ϕmψk1 . . .ψkm

)
xn, (2.2)

and with unit given by the series x.

Another example can be constructed from the diassociative set-operad Dias, whose algebraic
extension was introduced by J.-L. Loday in [10] and gives rise to dialgebras. It is given by the
collection of sets Dias(n) = {1, . . . , n}, with compositions
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Dias(n) ×Dias(m1) × · · · ×Dias(mn) → Dias(m1 + · · · + mn),

(i; j1, . . . , jn) �→ ji .

However we do not investigate here the associated group of formal diffeomorphisms. A non-
trivial example of such a group is explained in details in the next section.

Remark 2.2. In [7] and [16], F. Chapoton and P. van der Laan independently defined essentially
the same group GQ of formal series for any algebraic operad Q over Q. We point out here the
relationship between their construction and ours.

The group GQ is formed of formal sums
∑

μ∈Q μ with μ1 = id, endowed with the operation

( ∑
μ∈Q

μ

)
◦

( ∑
η∈Q

η

)
=

∑
μ∈Q

∑
η1,...,η|μ|∈Q

γ (μ;η1, . . . , η|μ|), (2.3)

where γ denotes the operadic compositions in Q.
In the case where Q = QP comes from a set-operad P , the two constructions are essentially

the same. Each vector space Q(n) = QP(n) has a canonical basis given by the elements of
P(n), therefore any μ ∈ Q(n) can be written as a linear combination of these elements, that
is μ = ∑

p∈P(n) μpp, where μp ∈ Q are scalar coefficients. Then the composition given by
Eq. (2.3) is just the linear extension of the composition given by Eq. (2.1). In other words, the
group GQ coincides with the group Gdif

P (Q) of P-expanded diffeomorphisms with coefficients
in the ground field.

The advantage of Chapoton–van der Laan’s construction is that the group GQ can be defined
for algebraic operads which are not set-operads. The advantage of our construction is that for
set-operads we can distinguish between operadic elements and coefficients. These can then be
chosen in any associative, commutative and unital algebra.

The construction of the group Gdif
P (A) is functorial in P . The order map | | :P → As is a

canonical morphism of operads. A section is simply an operad morphism As → P . Let us call
associative an element p2 ∈ P(2) such that γ (p2;p2, id) = γ (p2; id,p2), and multiplicative an
operad P equipped with an associative element. Then any associative p2 ∈ P(2) gives a section
n �→ pn = γ (p2;pn−1, id). Therefore we can easily compare the series expanded over P with
the usual ones.

Proposition 2.3. For any set-operad P , there is a canonical morphism of groups π :Gdif
P (A) →

Gdif(A), induced by the order map | |. Moreover, if P is multiplicative, any associative p2 ∈P(2)

gives a section ip2 :Gdif(A) → Gdif
P (A).

Again, the construction of the group Gdif
P (A) is functorial also in A, and the group functor Gdif

P
is represented by a commutative Hopf algebra Hdif

P . As an algebra, Hdif
P is a polynomial algebra

with generators indexed by P and graded by the shifted degree. As shown by van der Laan for
algebraic operads, the coordinate ring Hdif

P admits a non-commutative lift.

Consider the free associative algebra Hdif,nc
P = Q〈P〉, graded by the shifted grading deg(u) =

|u| − 1 for u ∈ P , and where the element id ∈ P(0) is identified with the formal unit 1. Define
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a coproduct Δdif
P :Hdif,nc

P → Hdif,nc
P ⊗Hdif,nc

P as the algebra morphism given on the generators u

by

Δdif
P (u) :=

∑
p,q1,...,q|p|∈P∪{id}
γ (p;q1,...,q|p|)=u

p ⊗ q1 . . . q|p|.

Define also a counit ε :Hdif,nc
P → Q as the algebra morphism given on all p 	= id by ε(p) = 0.

Proposition 2.4. The algebra Hdif,nc
P is a graded and connected Hopf algebra, neither commu-

tative nor cocommutative.
The coordinate ring of the group Gdif

P is the abelian quotient Hdif
P = Q[P] of the Hopf algebra

Hdif,nc
P .

Proof. The fact that Hdif
P is the coordinate ring of the group Gdif

P (A) is obvious. The existence
of a non-commutative lift is ensured by the assumption that the operad P is non-symmetric. In
this case, in fact, the operadic composition fixes the order of the operations, and this guarantees
the coassociativity of the coproduct lifted to tensor products. �
Example. The coordinate ring of the group functor Gdif is the polynomial algebra Q[a1, a2, . . .]
on the graded generators an, one in each degree n � 1. It is a Hopf algebra, with coproduct given
by

Δdif(an) =
n∑

m=0

am ⊗
n−m∑
l=0

(
m + 1

l

) ∑
p1,...,pn−m�0

p1+p2+···+pn−m=l
p1+2p2+···+(n−m)pn−m=n−m

l!
p1! . . . pn−m!a

p1
1 . . . a

pn−m

n−m ,

counit ε(an) = 0 for n � 1, and antipode defined recursively. Up to a rescaling of the generators,
this Hopf algebra is known as the Faà di Bruno Hopf algebra, cf. [8,9] or [13].

The non-commutative version of this Hopf algebra is exactly the one defined in [6], with
coproduct lifted as

Δdif(an) =
n∑

m=0

am ⊗
∑

k0,k1,...,km�0
k0+k1+···+km=n−m

ak0ak1 . . . akm (a0 = 1).

The non-commutative version of Proposition 2.3 gives the following result.

Proposition 2.5. There is a canonical morphism of Hopf algebras Hdif,nc → Hdif,nc
P . Moreover,

if P is multiplicative, each associative p2 ∈ P(2) gives a section Hdif,nc
P → Hdif,nc.

Proof. The map Hdif,nc →Hdif,nc
P is explicitly given by

an �→
∑

p.
p∈P(n+1)
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It is an inclusion if P(2) is not empty, and its section Hdif,nc
P →Hdif,nc is given by the map

u ∈P(n) �→
{

an−1 if u = pn = γ (pn−1;p2, id, . . . , id),

0 otherwise.

The verification that these two maps are morphisms of Hopf algebras is trivial on the abelian
quotients, and the passage to the non-commutative algebras is straightforward. �
2.2. Set-operad of trees and tree-expanded formal diffeomorphisms

Any tree t ∈ Y can be written as a monomial in the vertex tree , using the over and under
products and suitable parentheses. For instance,

= / , = \ ,

= ( \ )/ , = ( / )\ = /( \ ).

This decomposition is not unique in general, as shown by the last example.
For any tree t ∈ Y , we call t-product the map μt :Y×|t | → Y which describes the tree t as

an over and under product of by itself.1 More precisely, μt reproduces the tree t when eval-
uated on |t | copies of , that is μt( , , . . . , ) = t , and computes the product defined by the
shape of t on all the other trees s1, s2, . . . , s|t | ∈ Y . Graphically, this means that, for any trees
s1, s2, . . . , s|t | 	= , the tree μt(s1, s2, . . . , s|t |) is obtained by replacing each internal vertex of t ,
which has shape , by the tree si , in the order given by the parentheses arising in the decompo-
sition of t by . The tree thus obtained clearly has order

∣∣μt(s1, s2, . . . , s|t |)
∣∣ = |s1| + |s2| + · · · + |s|t ||. (2.4)

In particular, if t = , the map μ :Y → Y acts as the identity, that is μ (s) = s for any
s 	= . Other examples are:

= ( \ )/ hence μ (s1, s2, s3) = (s1\s2)/s3 = s3

s1

s2

,

= / \ hence μ (s1, s2, s3) = s1/s2\s3 = s2

s3s1
.

We call tree-product the collection of the t-products given by

μ :
⋃
t∈Y

Y×|t | → Y .

Lemma 2.6. The collection of trees Y = ⋃
n�1 Yn forms a set-operad, with operadic composition

given by the tree-product μ.

1 A similar monomial is considered by J.-L. Loday in [11], based on the decomposition of a tree into some left and
right products different from the over and under products considered here.
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Proof. Since Y = ⋃∞
m=1 Ym, we have

⋃
t∈Y

Y×|t | =
∞⋃

n=1

Yn × Y×n =
⋃
n�1

m1,...,mn�1

Yn × Ym1 × · · · × Ymn,

and we see in particular that for any choice n � 1 and m1, . . . ,mn � 1, the map μ restricted
to Yn × Ym1 × · · · × Ymn takes value in the homogeneous component Ym1+···+mn of Y . In other
words, the tree-product can be seen as the collection of the maps

μn,m1,...,mn :Yn × Ym1 × · · · × Ymn → Ym1+···+mn

given on the trees t ∈ Yn, s1 ∈ Ym1 , . . . , sn ∈ Ymn by

μn,m1,...,mn(t; s1, . . . , sn) = μt(s1, . . . , sn).

The graphical interpretation of the tree-product given above ensures that the maps μn,m1,...,mn

act by substitution of the variables (internal vertices) in t by the operations s1, . . . , sn.
Then it suffices to show that the tree-product μ is associative, in the sense that for any tree

t ∈ Y with |t | = n, any choice of n trees s1, . . . , sn ∈ Y with |μt(s1, . . . , sn)| = ∑n
i=1 |si | = m,

and any choice of m trees u1, . . . , um ∈ Y , the two trees

μμt (s1,...,sn)(u1, . . . , um) (2.5)

and

μt

(
μs1(u1, . . . , u|s1|),μs2(u|s1|+1, . . . , u|s1|+|s2|), . . . ,μsn(u|s1|+···+|sn−1|+1, . . . , um)

)
(2.6)

coincide.
To obtain the tree (2.5), we first construct the tree μt(s1, . . . , sn) by replacing each vertex

of t with each of the trees s1, . . . , sn, in the order given by μt as a monomial w.r.t. the over
and under products. By Eq. (2.4), the tree thus obtained has exactly

∑n
i=1 |si | = m vertices.

Therefore, we can apply the μt(s1, . . . , sn)-product to the m trees uj , and get the final tree
μμt (s1,...,sn)(u1, . . . , um).

Since the μt(s1, . . . , sn)-product of m trees contains all the sub-products of shapes si delimited
by parenthesis, and moreover they are all ordered by the shape of t , the final result is the same that
we obtain if we first apply each μsi -product to the suitable package of trees uj , and then apply
the t-product to the n new trees thus obtained. In summary, the resulting tree yields exactly
(2.6). �

The over and under operations on trees are associative operations which also satisfy one extra
property: for any s, t, u ∈ Y (in fact s and u could be equal to ), we have

(s/t)\u = s/(t\u).

A set endowed with two associative operations verifying this extra property was already con-
sidered by T. Pirashvili in [15], where it is called duplex. The operad which characterizes such
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operations was considered by M. Aguiar and M. Livernet in [2], and by J.-L. Loday in [12], from
whom we adopt the terminology.

For our purpose, we then call duplicial operad, Dup, the set-operad generated by the opera-
tions over, /, and under, \. More precisely, Dup is the quadratic operad obtained as the quotient
of the free set-operad (with identity) F = F(/,\) on two binary operations, satisfying the three
relations

(a/b)/c = a/(b/c),

(a/b)\c = a/(b\c),
(a\b)\c = a\(b\c),

whenever the operations are applied to three elements a, b, c. The operadic composition on Dup
is induced by that on F , given, for any n,m1, . . . ,mn � 1, by the map

F(n) ×F(m1) × · · · ×F(mn) →F(m1 + · · · + mn)

which sends the operations (p, q1, . . . , qn) into the operation obtained by inserting each operation
qi into the ith variable of the operation p.

Theorem 2.7. The set-operad of trees is isomorphic to the duplicial operad.

Proof. Let us define a morphism κ from the Dup operad to the operad of trees, by sending the
identity id ∈ Dup(1) to the vertex tree , and the generating operations / �→ and \ �→ .
Since the trees and satisfy the three necessary relations in the operad of trees, the map
κ can be extended to a unique morphism of operads. To show that the morphism κ is a bijection,
it is sufficient to prove that the free Dup-monoid on one generator is isomorphic to the set of
trees, considered with the over and under products. This was proved by J.-L. Loday in [12] in the
algebraic case. �

Applying Theorem 2.1 to the duplicial operad, we obtain a group

Gdif
Y (A) :=

{
ϕ(x) =

∑
t∈Y

ϕtx
t , ϕt ∈ A, ϕ = 1

}

of tree-expanded formal diffeomorphisms. The composition of two tree-expanded series ϕ(x) =∑
t ϕt xt and ψ(x) = ∑

s ψs xs is given by

(ϕ ◦ ψ)(x) =
∑
t∈Y

s1,s2,...,s|t |∈Y

ϕtψs1ψs2 . . .ψs|t |x
μt (s1,s2,...,s|t |).

If we define the power of the series ψ(x) by a tree t 	= as ψ(x)t = μt(ψ(x),ψ(x), . . . ,ψ(x)),
the composition of tree-expanded series can also be seen as a substitution, that is (ϕ ◦ ψ)(x) =
ϕ(ψ(x)) = ∑

t∈Y ϕtψ(x)t .
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Example. Let ϕ(x) = x +ax +bx and ψ(x) = x + cx +dx , with a, b, c, d ∈
A. Since μ (t, s) = t/s and μ (t, s) = t\s, we compute

(ϕ ◦ ψ)(x) = ψ(x) + aψ(x) + bψ(x)

= ψ(x) + aψ(x)/ψ(x) + bψ(x)\ψ(x)

= x + (a + c)x + (b + d)x

+ 2acx + adx + (ad + bc)x + bcx + 2bdx

+ ac2x + acdx + acdx + ad2x + bc2x

+ bcdx + bcdx + bd2x .

More interesting examples of compositions of tree-expanded diffeormorphisms are computed
by F. Chapoton, and will be presented separately.

Since Dup(2) is not empty, applying Proposition 2.3, we see that the order map π of Sec-
tion 1.2 gives also a surjective morphism of groups π :Gdif

Y (A) → Gdif(A), sending xt to x|t |.
Vice versa, since Dup(2) = {/,\} contains two operations which are both associative, the

projection π has two sections, the maps iover, iunder :Gdif(A) → Gdif
Y (A) sending x to xcn , where

cn denotes respectively the left and the right comb trees of order n. Therefore the two subgroups
of Gdif

Y (A) containing the tree-expanded diffeomorphisms expanded only on the comb trees are
isomorphic to the group of usual formal diffeomorphisms.

In summery, the relationship between formal diffeomorphisms expanded over trees and over
natural numbers can be deduced by the natural maps between the associated operads:

As
iover

iunder

Dup Dias
π

As.

The aim of introducing tree-expanded formal diffeomorphisms is to describe the group law of
the group Gα(A) dual to the “charge renormalization Hopf algebra” Hα expressed by means of
tree-expanded series. The group Gdif

Y (A) indeed allows to generalize the composition of usual se-
ries to the tree-expanded series, but its coordinate ring is much bigger than the Hopf algebra Hα .

In fact, if we denote by Y = ⋃
n�2 Yn the set of all trees but and , the coordinate ring of the

group functor Gdif
Y is given by the polynomial algebra Hdif

Y = Q[Y ] ∼= Q[Y ]/( − 1) generated
by all the trees of order at least 2, instead of only a subset of them. The interest of the algebra
Hdif

Y is that it allows a non-commutative lift.

Corollary 2.8. The free associative algebra Hdif,nc
Y = Q〈Y 〉/( − 1) is a graded and connected

Hopf algebra, with respect to the shifted grading deg(t) = |t | − 1. The coproduct is defined on
the generators u ∈ Y as
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Δdif
Y (u) :=

∑
t∈Y

s1,...,s|t |∈Y

u=μt (s1,...,s|t |)

t ⊗ s1 . . . s|t |,

and the counit is ε(u) = 0 for any u ∈ Y , u 	= . This Hopf algebra is neither commutative nor
cocommutative.

Note in particular that Δdif
Y ( ) = ⊗ , because = μ ( ), therefore is a group-like

element and can be identified with the unit. Setting = 1, the coproduct on small trees is:

Δdif
Y

( ) = ⊗ 1 + 1 ⊗ ,

Δdif
Y

( ) = ⊗ 1 + 1 ⊗ ,

Δdif
Y

( ) = ⊗ 1 + 2 ⊗ + 1 ⊗ ,

Δdif
Y

( ) = ⊗ 1 + ⊗ + 1 ⊗ ,

Δdif
Y

( ) = ⊗ 1 + ⊗ + ⊗ + 1 ⊗ ,

Δdif
Y

( ) = ⊗ 1 + ⊗ + 1 ⊗ ,

Δdif
Y

( ) = ⊗ 1 + 2 ⊗ + 1 ⊗ .

By Proposition 2.5, the map

Hdif,nc → Hdif,nc
Y :an �→

∑
|t |=n+1

t

gives an inclusion of Hopf algebras.

3. Action of tree-expanded diffeomorphisms on tree-expanded invertible series

In this section we describe an action of the group of tree-expanded diffeomorphism on that of
invertible series which will be used in the next section to construct the group Gα .

Such an action can be defined on the analogue groups of series expanded over any set-operad
which admits a canonical associated graded monoid. We begin by discussing the general case,
and then specify to the duplicial operad.

3.1. Groups of series expanded over an associative set-operad

From now on, we assume that P is a multiplicative set-operad, and we denote by p2 the
associative element in P(2). This is equivalent to require that there exists an operad morphism
As →P .

Then we can naturally associate to P a graded monoid by setting MP = P ∪ {e}, with
MP (n) = P(n) for n � 1 and MP (0) = {e}, where e is a formal element which is taken as
the neutral element. The multiplication of p ∈ MP (m) and q ∈MP (n) is defined by
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p · q := γP (p2;p,q) ∈MP (m + n).

The graded monoid MP then determines the algebra A[[MP ]] and the group Ginv
MP

(A).
The composition of P-expanded series given in Eq. (2.1) can be extended to a map A[[MP ]] ×
A[[P]] → A[[MP ]], by setting

(f,ϕ) �→ f ϕ(x) := fe xe +
∑
p∈P

∑
q1,...,q|p|∈P

fp ϕq1 . . . ϕqn xγ (p;q1,...,q|p|).

Restricting this map on the one side to the group Ginv
MP

(A) of MP -expanded invertible series

and on the other side to the group Gdif
P (A) of P-expanded diffeomorphisms, we obtain the fol-

lowing result.

Theorem 3.1. The composition defines a graded right action Ginv
MP

(A) × Gdif
P (A) → Ginv

MP
(A)

of the group of P-expanded diffeomorphisms on the group of MP -expanded invertible series.

Proof. The compatibility of the action with the composition in A[[P]], that is (f ϕ)ψ = f ϕ◦ψ ,
is ensured by the associativity of the operadic composition γ . The computations are exactly the
same as those which show that the composition ◦ in A[[P]] is associative, cf. Theorem 2.1.

We show that the action preserves the multiplication · in A[[MP ]], that is (f · g)ϕ = f ϕ · gϕ .
Let us compute the two terms of this equality separately. Since the action is additive, on the one
side we have

(f · g)ϕ(x) = fegex
e + gef

ϕ(x) + feg
ϕ(x) +

∑
p,q∈P

u1,...,u|p·q|∈P

fpgqϕu1 . . . ϕu|p·q| xγ (p·q;u1,...,u|p·q|),

and on the other side

(
f ϕ · gϕ

)
(x) = fegex

e + gef
ϕ(x) + feg

ϕ(x)

+
∑

p,q∈P
u1,...,u|p|∈P

u|p|+1,...,u|p|+|q|∈P

fpgqϕu1 . . . ϕu|p|+|q| xγ (p;u1,...,u|p|)·γ (q;u|p|+1,...,u|p|+|q|).

Since |p · q| = |p| + |q|, the two terms coincide if the exponents coincide, and this is again
ensured by the associativity of the operadic composition.

Finally, the action is graded with respect to the two different gradings given on A[[MP ]] and
A[[P]], namely deg(p) = |p| if p is in the monoid MP and deg(p) = |p| − 1 if p is in the
set-operad P . In fact, if p ∈MP is different from e, then for any q1, . . . , q|p| ∈ P , we have

deg(p) + deg(q1 . . . q|p|) = |p| +
|p|∑
i=1

(|qi | − 1
) =

|p|∑
i=1

|qi |

= deg
(
γ (p;q1, . . . , q|p|)

)
. �
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Example. In the case P = As, we have MAs = N and the right action Ginv(A) × Gdif(A) →
Ginv(A) is the ordinary composition (f ϕ)(x) = f (ϕ(x)) of invertible series by formal diffeo-
morphisms.

Given a right action of Gdif
P (A) on the group Ginv

MP
(A), we can define the semi-direct product

Gdif
P (A) � Ginv

MP
(A) in the usual way: as a set we take Gdif

P (A) × Ginv
MP

(A), and the group law
is given by

(ϕ,f ) · (ψ,g) = (
ϕ ◦ ψ,f ψ · g)

,

for any ϕ,ψ ∈ Gdif
P (A) and f,g ∈ Ginv

MP
(A). The order map π :A[[P]] → A[[x]] sending xp to

x|p| then induces a projection of groups Gdif
P (A) � Ginv

MP
(A) → Gdif(A) � Ginv(A).

The right action of Gdif
P (A) on Ginv

MP
(A) becomes a right coaction on the coordinate rings.

It can be lifted to the non-commutative Hopf algebras, as follows. Let δinv
P :Hinv,nc

MP
→ Hinv,nc

MP
⊗

Hdif,nc
P be the algebra morphism given on the generators u ∈ P by

δinv
P (u) :=

∑
p∈P

q1,...,q|p|∈P∪{id}
γ (p;q1,...,q|p|)=u

p ⊗ q1 . . . q|p|,

and on the unit by δinv
P (e) = e⊗ id. Note that formally δinv

P (u) = Δdif
P (u) on the generators u ∈P ,

but these two elements have different degrees in their proper spaces, as well as u itself.

Proposition 3.2. The map δinv
P is a graded right coaction of the Hopf algebra Hdif,nc

P on the

algebra Hinv,nc
MP

. Moreover, Hinv,nc
MP

is an Hdif,nc
P -comodule coalgebra.

In other words, the map δinv
P satisfies the two following conditions:

(
δinv
P ⊗ Id

)
δinv
P = (

Id ⊗ Δdif
P

)
δinv
P ,(

Δinv
MP

⊗ Id
)
δinv
P = (Id ⊗ Id ⊗ m)(Id ⊗ τ ⊗ Id)

(
δinv
P ⊗ δinv

P
)
Δinv
MP

,

where m denotes the multiplication in the algebra Hdif,nc
P , and τ denotes the twist.

Example. The case P = As gives a right coaction δinv :Hinv → Hinv ⊗ Hdif which sends a
generator bn into

δinv(bn) =
n∑

m=0

bm ⊗
∑

k1,...,km�0
k1+···+km=n−m

ak1 . . . akm (a0 = 1).

The non-commutative version δinv :Hinv,nc → Hinv,nc ⊗ Hdif,nc was considered in [6], where it
was denoted by δdif. In this paper we reserve the notation δdif for a coaction of Hdif on itself,
which will be introduced in Section 4.
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The group functor Gdif
P � Ginv

MP
is represented by the semi-direct coproduct (or smash co-

product) Hopf algebra Hdif
P �Hinv

MP
. As an algebra, this is the tensor product Hdif

P ⊗Hinv
MP

. As

a coalgebra, it is endowed with the twisted coproduct defined on the generators p ∈ Hdif
P and

q ∈ Hinv
MP

by

Δ
�

P (p ⊗ q) = Δdif
P (p) · [(δinv

P ⊗ Id
)
Δinv
MP

(q)
]
.

Applying the results found by R. Molnar in [14], we know that this Hopf algebra admits a
non-commutative lift given by the semi-direct coproduct Hopf algebra Hdif

P �Hinv,nc
MP

.

Instead, note that the semi-direct coproduct Hdif,nc
P � Hinv,nc

MP
is at the same time an algebra

and a coalgebra, but not a Hopf algebra because the non-commutativity of the algebra Hdif,nc
P

prevents the coproduct Δ
�

P to be an algebra morphism.

3.2. Tree-expanded series and actions

In this section we briefly illustrate the above results on the example of trees, using the duplicial
operad.

The duplicial operad has two binary operations, / and \, both associative. The graded monoid
MDup associated to these operations are exactly the monoids of trees introduced in Section 1.2.
Therefore the group Gdif

Y (A) acts on the groups Gover(A) and Gunder(A), by composition.
The action is compatible with the group structures of Gover(A) and Gunder(A), therefore the

semi-direct products Gdif
Y (A) � Gover(A) and Gdif

Y (A) � Gunder(A) form two groups.
Proposition 3.2 then tells us how this action is reflected on the dual Hopf algebras on trees. Let

us denote by Hinv
Y = Q[Y ] ∼= Q[Y ]( − 1) the coordinate ring of the proalgebraic set Ginv

Y (A)

of tree-expanded invertible series, as introduced in Section 1.2, and by Hinv,nc
Y = Q〈Y 〉 its non-

commutative lift. Then Hγ and He are the two Hopf algebras with underlying algebra Hinv,nc
Y

endowed with the “pruning coproducts” Δinv
γ and Δinv

e .

Corollary 3.3. The algebra homomorphism δinv
Y :Hinv,nc

Y → Hinv,nc
Y ⊗Hdif,nc

Y defined on the gen-
erators u ∈ Y formally as the coproduct Δdif

Y , that is

δinv
Y (u) :=

∑
t∈Y

s1,...,s|t |∈Y

u=μt (s1,...,s|t |)

t ⊗ s1 . . . s|t |

and which respects the units, that is δinv
Y ( ) = ⊗ , is a graded right coaction of the Hopf

algebra Hdif,nc
Y on the algebra Hinv,nc

Y .

The map induced by δinv
Y on the abelian quotients Hdif

Y and Hinv
Y is dual to the right action of

the group Gdif
Y (A) on the set Ginv

Y (A).

Note that the degrees and the units are different in the two algebras Hinv,nc
Y and Hdif,nc

Y . There-
fore, even if the coproduct Δdif and the coaction δinv are formally defined by the same expression,
Y Y
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the meaning of the result is different. To see this difference, compare the value of Δdif
Y on small

trees, given at the end of Section 2.2, with the following values of δinv
Y , obtained by setting = 1

in Hdif
Y , and = 1 in Hinv

Y :

δinv
Y ( ) = ⊗ 1,

δinv
Y

( ) = ⊗ 1 + ⊗ ,

δinv
Y

( ) = ⊗ 1 + ⊗ ,

δinv
Y

( ) = ⊗ 1 + 2 ⊗ + ⊗ ,

δinv
Y

( ) = ⊗ 1 + ⊗ + ⊗ ,

δinv
Y

( ) = ⊗ 1 + ⊗ + ⊗ + ⊗ ,

δinv
Y

( ) = ⊗ 1 + ⊗ + ⊗ ,

δinv
Y

( ) = ⊗ 1 + 2 ⊗ + ⊗ .

Proposition 3.2 tells us that the coaction δinv
Y is compatible with the coproducts Δinv

γ and Δinv
e ,

and with the counit ε. Therefore Hγ and He are coalgebra comodules over Hdif,nc
Y . Then, the

semi-direct coproduct algebras Hdif
Y � Hγ and Hdif

Y � He are non-commutative Hopf algebras,
which lift the coordinate rings of the group functors Gdif

Y � Gover and Gdif
Y � Gunder respectively.

Finally, the maps bn �→ ∑
|t |=n t and an �→ ∑

|t |=n+1 t define an inclusion of the Hopf algebra

Hdif �Hinv,nc into respectively Hdif
Y �Hγ and Hdif

Y �He .

4. Subgroup dual to the QED charge Hopf algebra

The renormalization of the electric charge in quantum electrodynamics was described in [5]
by a commutative Hopf algebra Hα on trees which was proved in [6] to contain the Faà di Bruno
Hopf algebra, that is, the coordinate ring of Gdif, and which is different from Hdif

Y . Since this
latter is the largest Hopf algebra on trees describing the composition of tree-expanded series, it
is natural to look for a subgroup of Gdif

Y having Hα as coordinate ring. We describe it in this
section.

To do it, we first introduce some intermediate subgroups of tree-expanded diffeomorphisms
which exist for any multiplicative set-operad. The final construction of the group Gα , dual to Hα ,
is possible only if the set-operad has two distinct associative elements with some suitable com-
patibility relation. At this level we specify the construction to the duplicial set-operad.

4.1. Subgroups of series expanded over a graded monoid set-operad

Let P be a multiplicative set-operad and let MP be its associated graded monoid. For any as-
sociative, commutative and unital algebra A, we consider the two linear maps λ,ρ :A[[MP ]] →
A[[P]] defined on a series f (x) = fex

e + ∑
p∈P fpxp by
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λf (x) := xid · f (x) = fex
id +

∑
p∈P

fpxid·p,

ρf (x) := f (x) · xid = fex
id +

∑
p∈P

fpxp·id.

These maps are injective, and we denote their images in A[[P]] by xid · A[[MP ]] and by
A[[MP ]] · xid, respectively.

Theorem 4.1. The two sets

Gλ
P (A) := xid · Ginv

MP
(A) and G

ρ

P (A) := Ginv
MP

(A) · xid

are subgroups of the group Gdif
P (A).

Proof. It suffices to show that the images of λ and ρ are stable under the composition of se-
ries. Given λf (x) = xid · f (x) and λg(x) = xid · g(x) in xid · A[[MP ]], we have to show that
there exists an h ∈ A[[MP ]] such that (λf ◦ λg)(x) = xid · h(x). Using the compatibility of the
composition with the multiplication proved in Theorem 3.1, we have

(λf ◦ λg)(x) = (
xid · f (x)

)λg(x) = λg(x) · f λg (x) = [
xid · g(x)

] · f λg (x)

= xid · [g · f λg
]
(x).

Therefore λf ◦ λg = λh if we set h = g · f λg . Similarly, if ρf and ρg belong to A[[MP ]] · xid,
we have ρf ◦ ρg = ρh, with h = f ρg · g. �

The map λ :Ginv
MP

(A) → Gλ
P (A) is an isomorphism of sets and its inverse λ−1 :Gλ

P (A) →
Ginv

MP
(A) sends a P-expanded diffeomorphism of the form λf (x) = xid · f (x) to the MP -

expanded invertible series f (x). Note that λ is not a morphism of groups. Instead, its inverse λ−1

is a 1-cocycle of Gλ
P (A) with values in Ginv

MP
(A), with respect to the right action by composition,

that is

λ−1(ψ)
[
λ−1(ϕ ◦ ψ)

]−1
λ−1(ϕ)ψ = xe,

for any ϕ,ψ ∈ Gλ
P (A).

Example. In the case P = As, the multiplication in the graded monoid MAs = N is commuta-
tive, therefore λ = ρ and Gλ

As
(A) = G

ρ

As
(A). Moreover, the map λ simply brings an invertible

series f (x) into λf (x) = xf (x). This map is invertible on the whole space A[[As]] = xA[[x]],
and its inverse λ−1 brings a formal diffeomorphism ϕ into the invertible series ϕ(x)

x
. Therefore

the group Gλ
As

(A) coincides with the whole group Gdif(A) of formal diffeomorphisms.

In general, the two groups Gλ
P (A) and G

ρ

P (A) are not isomorphic, because the multiplication
by id in the monoid MP is not commutative in general.
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Consider now the map (xid · A[[MP ]]) × A[[P]] → xid · A[[MP ]] defined by

λf
ψ(x) := λf ψ (x) = xid · f ψ(x)

= fex
id +

∑
p∈P

q1,...,q|p|∈P

fpψq1 . . .ψqnx
id·γ (p;q1,...,q|p|), (4.1)

for f (x) = fex
e + ∑

p∈P fpxp and ψ(x) = ∑
q∈P ψqxq . Similarly, define a map (A[[MP ]] ·

xid) × A[[P]] → A[[MP ]] · xid, by setting

ρf
ψ(x) := ρf ψ (x) = f ψ(x) · xid.

Theorem 4.2. The map (λf ,ψ) �→ λf
ψ = λf ψ , restricted to Gλ

P (A) × Gdif
P (A) → Gλ

P (A), is a

right action of Gdif
P (A) on Gλ

P (A). The analogue statement holds for G
ρ

P (A).

Proof. In fact the series xid ∈ Gdif
P (A) obviously acts as the identity, and for any ψ,η ∈ Gdif

P (A)

we have

(
λf

ψ
)η = (λf ψ )η = λ(f ψ)η = λf ψ◦η = λf

ψ◦η. �
Note that the right action of Gdif

P (A) on Gλ
P (A) is indeed different from the composition of

Gλ
P (A) by Gdif

P (A), where Gλ
P (A) is seen as a subgroup of Gdif

P (A). In other words, for any

λf ∈ Gλ
P (A), and any ψ ∈ Gdif

P (A), in general we have λf
ψ 	= λf ◦ ψ . This is easily seen if we

restrict the action of Gdif
P (A) to its subgroup Gλ

P (A). In this case, in fact, we have

λf
λg = λf λg 	= λg·f λg = λf ◦ λg.

Example. In the case P = As, the action of Gdif(A) on itself induced by the action of Gdif(A)

on Ginv(A) has the following explicit form,

ϕψ(x) = x +
∞∑

n=2

(
n∑

m=2

∑
k2+···+km=n−1

k2,...,km�1

ϕmψk2 . . .ψkm

)
xn, (4.2)

for any ϕ,ψ ∈ Gdif(A). Comparing this expression with that of the composition given in
Eq. (2.2), we see that we obtain (4.2) if we set ψk1 = ψ1 = 1 in (2.2).

As usual, the construction of the groups Gλ
P (A) and G

ρ

P (A) is functorial in A. Again, the
coordinate rings Hλ

P and Hρ

P of the group functors Gλ
P and G

ρ

P admit a straightforward non-
commutative lift, as well as the actions by Gdif

P . In Section 4.3 we will use in particular the Hopf
algebra Hρ

P . Let us then describe explicitly only its non-commutative lift.
Consider the free associative algebra Hρ,nc

P = Q〈MP 〉/(e − 1) ∼= Q〈P〉, with grading given
by the order, deg(u) = |u| for u ∈ P , and where the element e ∈ MP (0) is identified with the



A. Frabetti / Journal of Algebra 319 (2008) 377–413 399
unit 1. Define a coproduct Δ
ρ

P :Hρ,nc
P → Hρ,nc

P ⊗ Hρ,nc
P as the algebra morphism given on the

generators u by

Δ
ρ

P (u) := 1 ⊗ u +
∑
p∈P

q1,...,q|p|+1∈MP
u=γ (p;q1·id,...,q|p|·id)·q|p|+1

p ⊗ q1 · · ·q|p|+1. (4.3)

Define a counit ε :Hρ,nc
P → Q as the algebra morphism given on any u ∈ P by ε(u) = 0.

Theorem 4.3. The algebra Hρ,nc
P is a graded and connected Hopf algebra, neither commutative

nor cocommutative.
The coordinate ring of the group G

ρ

P is the abelian quotient Hρ

P = Q[P] of the Hopf alge-
bra Hρ,nc

P .

Proof. The only difficulty of this result is the explicit form (4.3) of the coproduct.
In fact, if p2 is the associative element in P(2), the coordinate ring of the group G

ρ

P is gener-
ated by the elements of P of the form u · id = γP (p2;u, id), where u ∈ P , that is Hρ

P = Q[P · id].
As a free algebra, we can identify it with Q[P] ∼= Q[MP ]/(e − 1). The coproduct on Hρ

P which
represents the composition of the series in G

ρ

P (A) can be found by dualizing the inclusion of
G

ρ

P (A) into Gdif
P (A). The result makes sense on the non-commutative algebras.

Let us then consider the surjective algebra homomorphism P :Hdif,nc
P → Hρ,nc

P which sends

each generator of Hdif,nc
P = Q〈P〉 of the form u · id to its quotient u ∈ P and all the others to

zero. If we verify that

Δ
ρ

P (u) = (P ⊗ P)Δdif
P (u · id), (4.4)

and that ε(u) = P(εHdif,nc
P

(u · id)), the coassociativity of the coproduct Δ
ρ

P then follows easily. In

fact, it holds on the commutative quotient Hρ

P because G
ρ

P (A) is a group, and the passage to the
non-commutative lift is as usual straightforward. All the other assertions are then easily verified.

Therefore, it only remains to show the equality (4.4). Let us fix u ∈ P . In the sum

Δdif
P (u · id) =

∑
p̃∈MP

q̃1,...,q̃|p̃|∈MP
u·id=γ (p̃;q̃1,...,q̃|p̃|)

p̃ ⊗ q̃1 . . . q̃|p̃|,

the element γ (p̃; q̃1, . . . , q̃|p̃|) can be of the form u · id only if p̃ = p · id (hence |p̃| = |p| + 1),
and q̃|p̃| = q|p̃| · id, with q|p̃| ∈MP . The term corresponding to p̃ = id, that is p = e, gives

∑
q̃1∈P

u·id=γ (id;q̃1)=q̃1

id ⊗ q̃1 = id ⊗ u · id.

Therefore, separating from the sum the term corresponding to p̃ = id, we obtain
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Δdif
P (u · id) = id ⊗ u · id +

∑
p∈P

q̃1,...,q̃|p|∈P, q|p|+1∈MP
u·id=γ (p·id;q̃1,...,q̃|p|,q|p|+1·id)

p · id ⊗ q̃1 . . . q̃|p| (q|p|+1 · id).

Since for any p ∈P we have p · id = γ (p2;p, id), using the associativity of γ we obtain

u · id = γ
(
γ (p2;p, id); q̃1, . . . , q̃|p|, q|p|+1 · id

)
= γ

(
p2;γ (p; q̃1, . . . , q̃|p|), γ (id;q|p|+1 · id)

)
= γ (p; q̃1, . . . , q̃|p|) · q|p|+1 · id.

Therefore u = γ (p; q̃1, . . . , q̃|p|) · q|p|+1, and we get

Δdif
P (u · id) = id ⊗ u · id +

∑
p∈P

q̃1,...,q̃|p|∈P, q|p|+1∈P
u=γ (p;q̃1,...,q̃|p|)·q|p|+1

p · id ⊗ q̃1 . . . q̃|p|(q|p|+1 · id).

Now, applying the projection P , we kill all the elements q̃i of Hdif,nc
P different from q̃i = qi · id,

therefore the sum on the right-hand side is reduced to

(P ⊗ P)Δdif
P (u · id)

= (P ⊗ P)

[
id ⊗ u · id +

∑
p∈P

q1,...,q|p|,q|p|+1∈MP
u=γ (p;q1·id,...,q|p|·id)·q|p|+1

p · id ⊗ (q1 · id) · · · (q|p|+1 · id)

]

and we finally obtain

(P ⊗ P)Δdif
P (u · id) = 1 ⊗ u +

∑
p∈P

q1,...,q|p|+1∈MP
u=γ (p;q1·id,...,q|p|·id)·q|p|+1

p ⊗ q1 · · ·q|p|+1. �

Note that the coordinate ring of the group G
ρ

P has the same generators as the coordinate ring
of the group Ginv

MP
, and the same holds for their non-commutative lifts. As algebras they are

isomorphic, but they differ for the coalgebra structure. Since the action of Gdif
P on G

ρ

P is induced
by that on Ginv

MP
, it is not surprising that the dual coactions coincide.

In other words, if we define the algebra morphism δdif
P :Hρ,nc

P → Hρ,nc
P ⊗ Hdif,nc

P by setting,
on the generators u ∈P ,

δdif
P (u) :=

∑
p∈P

q1,...,q|p|∈P∪{id}
γ (p;q1,...,q|p|)=u

p ⊗ q1 . . . q|p|, (4.5)

then the following result is straightforward.
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Proposition 4.4. The map δdif
P is a graded right coaction of the Hopf algebra Hdif,nc

P on the
algebra Hρ,nc

P .

4.2. Diffeomorphisms subgroups of tree-expanded series

Let us apply the results of the previous section to the duplicial operad. As observed in Sec-
tion 3.2, the operad Dup has two associative binary operations, \ and /, which lead to the two
groups Gunder(A) and Gover(A) of invertible tree-expanded series. Each of the two operations
determines two linear maps λ,ρ :A[[Y ]] → A[[Y ]] and consequently two subgroups Gλ

Y (A) and
G

ρ
Y (A) of Gdif

Y (A).
For our purposes, we are only interested in one of the four resulting groups: the group G

ρ
Y (A)

corresponding to the operation /. However, in order to discuss some of its properties, we also
make use of the group Gλ

Y (A) corresponding to the operation \. To fix the notations, we recall
these two groups explicitly:

G
ρ
Y (A) := Gover(A)/x =

{
ρf (x) =

∑
t∈Y

ftx

t

, ft ∈ A, f = 1

}
,

Gλ
Y (A) := x \Gunder(A) =

{
λf (x) =

∑
t∈Y

ftx

t

, ft ∈ A, f = 1

}
.

The intersection G
ρ
Y (A) ∩ Gλ

Y (A) obviously contains only the unit id(x).
As we already observed, in the case P = As all these subgroups in fact coincide with the

whole group of formal diffeomorphisms. In the present case this surely does not hold. More-
over the two subgroups G

ρ
Y (A) and Gλ

Y (A) are not normal in Gdif
Y (A), however they allow to

reconstruct the group Gdif
Y (A). To do this, let us fix the notation

Gλ
Y (A) ◦ G

ρ
Y (A) := {

λf ◦ ρg where λf ∈ Gλ
Y (A) and ρg ∈ G

ρ
Y (A)

}
.

Lemma 4.5. Each series in Gdif
Y (A) can be written as the composition of two series in Gλ

Y (A)

and G
ρ
Y (A), that is

Gdif
Y (A) = Gλ

Y (A) ◦ G
ρ
Y (A) = G

ρ
Y (A) ◦ Gλ

Y (A). (4.6)

Moreover, this decomposition is unique if, on the left-hand side, we restrict the choice to the
comb-trees, that is

Gdif
Y (A) = iunder(Gdif(A)

) ◦ G
ρ
Y (A) = iover(Gdif(A)

) ◦ Gλ
Y (A). (4.7)

Proof. To show the equality (4.6), we have to show that any tree-expanded formal diffeomor-
phism η(x) = ∑

u∈Y η(u)xu can be written as the compositions λf ◦ ρg and ρg′ ◦ λf ′ , for some
f,g,f ′, g′ ∈ Ginv

Y (A). In other words, since the coefficients lie in a commutative unital algebra
and can be chosen arbitrarily, we have to show that, in the compositions λf ◦ρg and ρg′ ◦λf ′ , the
power xu appears for all the trees u ∈ Y . Let us show it for the case λf ◦ ρg , the same procedure
can be adapted to the other case.
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In the composition of the two series λf (x) = ∑
t∈Y ftx

\t and ρg(x) = ∑
s∈Y gsx

s/ , namely

(λf ◦ ρg)(x) =
∑

t,s0,s1,...,s|t |∈Y

ftgs0gs1 . . . gs|t |x
μ \t (s0/ ,...,s|t |/ )

,

there appears the power xu for u = μ \t (s0/ , . . . , s|t |/ ), where t and s0, . . . , s|t | are arbitrary
trees (all possibly equal to ).

If t = , we get

u = μ (s0/ ) = s0/ = s0
.

Since s0 runs over all possible trees, this u recovers all trees with nothing branched on the right
of the root.

If t 	= , we use the fact that \t = μ ( , t), the associativity of the product μ shaped by

trees, and the associativity of the over and under products, to get

u = μ
μ ( ,t)

(s0/ , . . . , s|t |/ )

= μ
(
μ (s0/ ),μt (s1/ , . . . , s|t |/ )

)
= s0/ \μt(s1/ , . . . , s|t |/ ). (4.8)

Since t and s0, . . . , s|t | run over all possible trees (including the root-tree for the si ’s), we can
recover any possible tree u ∈ Y with something branched simultaneously on the left and on the
right of the root.

The above decomposition is clearly not unique, because different choices of t and s1, . . . , s|t |
might give rise to the same tree u. For instance, if in Eq. (4.8) we choose t = , any s1, and
s2 = , we get

μt(s1/ , s2/ ) = μ
( s1

,
) =

s1

and therefore for any s0 we get u = s0/ \
s1

= s0

s1

. But if we choose t ′ = and

s′
1 = s1

, we get the same result for any s0 because

μt ′
(
s′

1/
) = μ

( s1 ) =
s1

.
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To show that the decomposition (4.7) is unique, in Eq. (4.8) it suffices to consider, for t , only

the right-comb trees
...

. With this choice, we get

u =

. . .

s0

s1

s|t |

,

and therefore, for arbitrary s0, . . . , s|t | ∈ Y , with |t | � 1, we recover in a unique way all trees
u ∈ Y with something branched simultaneously on the left and on the right of the root. Then we
apply Proposition 2.3 to identify the group Gdif(A) with the subgroup of Gdif

Y (A) made of series
expanded only on the right-comb trees. We have therefore proved the uniqueness of decomposi-
tion iunder(Gdif(A))◦G

ρ
Y (A) = Gdif

Y (A). The same argument applies to iover(Gdif(A))◦Gλ
Y (A) =

Gdif
Y (A). �
The order map π also gives two surjective group morphisms from G

ρ
Y (A) and Gλ

Y (A) to
Gdif(A). In fact, since G

ρ
Y (A) and Gλ

Y (A) are subgroups of Gdif
Y (A), and π is a group homomor-

phism from Gdif
Y (A) to Gdif(A), it only remains to show that π is still surjective when restricted

to G
ρ
Y (A) or Gλ

Y (A). This follows from the fact that G
ρ
Y (A) and Gλ

Y (A) contain Gdif(A) via the
inclusions of Proposition 2.3, which are sections of π .

To conclude this section, we apply Theorem 4.3 to describe explicitly the Hopf structure of
the algebra Hρ

Y , because it gives rise to another new Hopf algebra on trees, which is neither
commutative nor cocommutative.

Corollary 4.6. The free associative algebra Hρ,nc
Y = Q〈Y 〉 ∼= Q〈Y 〉/( − 1) is a graded and

connected algebra, with grading given by the order of trees. The coproduct Δ
ρ
Y is defined on any

u ∈ Y by

Δ
ρ
Y (u) := 1 ⊗ u +

∑
t∈Y

s1,...,s|t |+1∈Y

u=μt (s1/ ,...,s|t |/ )/s|t |+1

t ⊗ s1 . . . s|t |s|t |+1 (4.9)

and the counit is ε(u) = 0 for any u ∈ Y .

For instance, setting = 1, the coproduct on small trees is:

Δ
ρ
Y ( ) = ⊗ 1 + 1 ⊗ ,

Δ
ρ
Y

( ) = ⊗ 1 + 2 ⊗ + 1 ⊗ ,

Δ
ρ
Y

( ) = ⊗ 1 + 1 ⊗ ,

Δ
ρ
Y

( ) = ⊗ 1 + 3 ⊗ + ⊗ (
2 + 2) + 1 ⊗ ,

Δ
ρ ( ) = ⊗ 1 + ⊗ + ⊗ + 1 ⊗ ,
Y
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Δ
ρ
Y

( ) = ⊗ 1 + ⊗ + ⊗ + 1 ⊗ ,

Δ
ρ
Y

( ) = ⊗ 1 + ⊗ + 1 ⊗ ,

Δ
ρ
Y

( ) = ⊗ 1 + 1 ⊗ .

4.3. Subgroup dual to the Hopf algebra Hα

The main aim of this section is to define the subgroup Gα represented by the “charge Hopf
algebra” Hα introduced in [5], and used in [4] to describe the renormalization of the electric
charge in quantum electrodynamics.

Let us fix an associative, commutative and unital algebra A. For any f (x) = ∑
t∈Y ft xt ∈

A[[Y ]], the series x − x \f (x) belongs to the set Ginv
Y (A), and therefore to the group

Gover(A) of tree-expanded invertible series with respect to the product /. Let us call f̃ (x) =
(x − x \f (x))−1 its inverse in Gover(A), and set

Gα(A) := {
αf (x) = ρ

f̃
(x) = (

x − x \f (x)
)−1

/x , f ∈ A[[Y ]]}. (4.10)

A tree-expanded diffeomorphism αf (x) can be thought as the translations by the series f which
fixes zero.

For any tree t ∈ Y , set V (t) = \t .

Lemma 4.7. The set Gα(A) coincides with the subset of G
ρ
Y (A) made of the series ρg(x) =

∑
t∈Y gt x

t

such that

gt = gV (t1) gV (t2) · · ·gV (tn), if t = V (t1)/V (t2)/ · · ·/V (tn). (4.11)

Proof. For any fixed f (x) ∈ A[[Y ]], the inverse of the series x − x \f (x) = x −∑
t∈Y ft x

t

in Gover(A) is

f̃ (x) = x +
∞∑

n=1

(∑
t∈Y

ftx

t )/n

= x +
∞∑

n=1

∑
t1,...,tn∈Y

ft1 · · ·ftn xV (t1)/···/V (tn).

Any tree t 	= can be written in a unique way as an over product of trees which have nothing
branched at the left of the root, in fact

t =
...

t1
t2

tn

= V (t1)/V (t2)/ · · ·/V (tn).

Therefore we have
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f̃ (x) = x +
∞∑

n=1

∑
∈Y

t=V (t1)/···/V (tn)

ft1 · · ·ftnx
t .

Then, varying f ∈ A[[Y ]], the series αf (x) = f̃ (x)/x give exactly all the series ρg(x),

where g(x) = x + ∑
t∈Y gtx

t has arbitrary coefficients gV (t) = ft and constrained coefficients
gV (t1)/V (t2)/···/V (tn) = gV (t1)gV (t2) · · ·gV (tn). �
Theorem 4.8. The set Gα(A) is a subgroup of G

ρ
Y (A).

Proof. Since the series f (x) = 0 gives αf (x) = x , it suffices to show that the subset Gα(A) is
closed for the composition.

Let us exploit Lemma 4.7, and choose two generic series in Gα(A) by taking two series ρf and
ρg in G

ρ
Y (A) such that the coefficients of the series f,g ∈ Gover(A) satisfy the condition (4.11).

Let h ∈ Gover(A) be the series which results from the composition ρf ◦ ρg = ρh. We have to
show that the coefficients of h also satisfy the condition (4.11), that is, we have to show that for
any u ∈ Y we have hu = hV (u1) · · ·hV (un), if u = V (u1)/ · · ·/V (un). For this, it suffices to show
that

hu = hulhV (ur ) if u = ul/V (ur). (4.12)

Applying the definition of the composition, for any u ∈ Y we have

hu = gu +
∑

u=μt (s1/ ,...,s|t |/ )/s|t |+1

ftgs1 · · ·gs|t |+1, (4.13)

where from now on we suppose that the sums run over all the trees in the set Y if they appear
as subindices of the tree-product μ (in this case t), and to the set Y if they appear inside the
arguments of μ or anywhere else (in this case s1, . . . , s|t |+1).

In particular, we need an explicit expression the coefficient hV (u), where u ∈ Y . Let us com-
pute it. If u = and V (u) = , it is easy to see that

h = g + f .

Then we suppose that u 	= . In Eq. (4.13), we replace the tree u by the tree V (u) = u
, and

obtain

hV (u) = gV (u) +
∑

V (u)=μt̃ (s̃1/ ,...,s̃|t̃ |/ )/s̃|t̃ |+1

ft̃gs̃1 · · ·gs̃|t̃ |+1
.

The tree μt̃ (s̃1/ , . . . , s̃|t̃ |/ )/s̃|t̃ |+1 can be of the form V (u) = u
only if s̃|t̃ |+1 = ,

t̃ = V (t) = t
with t ∈ Y , and s̃1 = . The case t = corresponds to u = , that we al-

ready computed apart. For t 	= , we write V (t) = μ ( , t) and apply the associativity of μ

to conclude that
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V (u) = μV (t)( , s̃2/ , . . . , s̃|t |+1/ )/

= V
(
μt(s̃2/ , . . . , s̃|t |+1/ )

)
,

and therefore u = μt(s̃2/ , . . . , s̃|t |+1/ ). By renaming the trees s̃i = si−1, we finally obtain

hV (u) = gV (u) +
∑

u=μt (s1/ ,...,s|t |/ )

fV (t)gs1 · · ·gs|t | . (4.14)

Let us now prove (4.12). We start again from (4.13), for a fixed tree u = ul/V (ur).

Assume ur = . Let us start by considering the case u = ul/ . We already computed
h = g + f . The sum in (4.13) is over all trees t ∈ Y and s1, . . . , s|t |+1 ∈ Y such that
u = ul/ = μt(s1/ , . . . , s|t |/ )/s|t |+1. Let us list the contributions to this sum coming from
different cases.

Case 1. If s|t |+1 = , the equality u = ul/ = μt(s1/ , . . . , s|t |/ ) is possible if and only if
t = t l/ and s|t | = sl|t |/ . Then we distinguish the following two possible cases.

Case 1a. If t l 	= , and therefore |t | = |t l |+ 1, then ul = μtl (s1/ , . . . , s|t l |/ )/sl
|t l |+1

. We then

rename t l =: w. Since g = 1, and fw/ = fwf , we have the contribution

∑
ul=μw(s1/ ,...,s|w|/ )/s|w|+1

fwf gs1 · · ·gs|w|+1 .

Case 1b. If t l = , then u = ul/ = μ (s1/ ) = s1/ , and therefore s1 = ul . We then have the
contribution

f gul .

Case 2. If s|t |+1 	= , the equality

ul/ = μt(s1/ , . . . , s|t |/ )/s|t |+1

is possible if and only if s|t |+1 = sl
|t |+1/ and μt(s1/ , . . . , s|t |/ )/sl

|t |+1 = ul . We then rename

the free trees t =: w and sl
|t |+1 =: s|t |+1, and obtain the contribution

∑
ul=μw(s1/ ,...,s|w|/ )/s|w|+1

fw gs1 · · ·gs|w|+1g .

Summing up all the possible cases, we obtain

hul/ =
(

gul +
∑

ul=μ (s / ,...,s / )/s

fw gs1 · · ·gs|w|+1

)
(g + f ) = hulh .
w 1 |w| |w|+1
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Assume ur �= . The sum in (4.13) is over all trees t ∈ Y and s1, . . . , s|t |+1 ∈ Y such that u = ul/

V (ur) = μt(s1/ , . . . , s|t |/ )/s|t |+1. Let us list all the contributions to this sum.

Case 1. If s|t |+1 = , since t 	= , we split t = t l/V (tr ), and distinguish the following three
possible cases.

Case 1a. If t l 	= and t r = , then |t | = |t l | + 1 and the equality becomes

ul/V
(
ur

) = μ
tl/

(s1/ , . . . , s|t l |+1/ ) = μtl (s1/ , . . . , s|t l |/ )/s|t l |+1/

= μtl (s1/ , . . . , s|t l |/ )/s|t l |+1/V ( ),

which is impossible because ur 	= .

Case 1b. If t l = and t r 	= , then t = V (tr ) = μ ( , tr ) with |t | = |t r | + 1. Using the

associativity of the μ product we get

μV (tr )(s1/ , . . . , s|t r |+1/ ) = s1/ \μtr (s2/ , . . . , s|t r |+1/ ).

This tree can be equal to u = ul/ \ur if and only if s1 = ul and μtr (s2/ , . . . , s|t r |+1/ ) = ur .
Let us rename the free trees as follows: t r =: y, si =: zi−1 for i = 2, . . . , |t r | + 1. Then the
contribution to the whole sum for this case is

∑
ur=μy(z1/ ,...,z|y|/ )

fV (y) gul gz1 · · ·gz|y| .

Case 1c. If t l 	= and t r 	= , using again the properties of the μ product we have

ul/V
(
ur

) = μtl (s1/ , . . . , s|t l |/ )/μV (tr )(s|t l |+1/ , . . . , s|t l |+|t r |+1/ )

= μtl (s1/ , . . . , s|t l |/ )/s|t l |+1/V
(
μtr (s|t l |+2/ , . . . , s|t l |+|t r |+1/ )

)
.

We rename the free trees as t l =: w, si =: vi for i = 1, . . . , |t l | + 1, and t r =: y, s|t l |+j =: zj−1
for j = 2, . . . , |t r | + 1. Since fw/V (y) = fw fV (y), we obtain the contribution

∑
ul=μw(v1/ ,...,v|w|/ )/v|w|+1

ur=μy(z1/ ,...,z|y|/ )

fwfV (y)gv1 · · ·gv|w|+1gz1 · · ·gz|y| .

Case 2. If s|t |+1 	= , then it can be decomposed as s|t |+1 = sl
|t |+1/V (sr|t |+1), and therefore the

equality

ul/V
(
ur

) = μt(s1/ , . . . , s|t |/ )/sl
|t |+1/V

(
sr|t |+1

)
is possible if and only if μt(s1/ , . . . , s|t |/ )/sl

|t |+1 = ul and sr|t |+1 = ur . We then rename the

free trees as t =: w, si =: vi for i = 1, . . . , |t | and sl =: v|w|+1, and obtain the contribution
|t |+1
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∑
ul=μw(v1/ ,...,v|w|/ )/v|w|+1

fw gv1 · · ·gv|w|+1gV (ur ).

Summing up all the possible cases, and rearranging them using (4.13) and (4.14), we finally
obtain

hul/V (ur ) = gu +
∑

u=μt (s1/ ,...,s|t |/ )/s|t |+1

ftgs1 · · ·gs|t |+1

=
(

gul +
∑

ul=μw(v1/ ,...,v|w|/ )/v|w|+1

fw gv1 · · ·gv|w|+1

)

×
(

gV (ur ) +
∑

ur=μy(z1/ ,...,z|y|/ )

fV (y)gz1 · · ·gz|y|

)

= hulhV (ur ). �
The construction of the group Gα(A) is clearly functorial in A.

Theorem 4.9. The group functor Gα is represented by the Hopf algebra Hα .

Proof. The functoriality of the group Gα(A), with respect to the algebra A, is obvious, as well as
the fact that Gα is a proalgebraic group. In fact, after Lemma 4.7, the coordinate ring of Gα is the
quotient of Hρ

Y by the ideal generated by the relation t = V (t1)/V (t2)/ · · ·/V (tn), for all t ∈ Y ,
and therefore it is freely spanned by the trees of the form V (t)/ , for any t ∈ Y . In other words,
the coordinate ring of Gα is the polynomial algebra Q[V (t)/ , t ∈ Y ], which is isomorphic, as
an algebra, to the polynomial algebra Q[V (t), t ∈ Y ].

Let us recall, from [5], that Hα is the abelian quotient of the algebra QY of all trees endowed
with the over product. Thus the root tree is the unit, and the algebra Hα is in fact isomorphic to
the polynomial algebra Q[V (t), t ∈ Y ]. In [5] it was shown that Hα is a connected graded Hopf
algebra, with the grading given by the order of the trees. The coproduct Δα :Hα → Hα ⊗Hα is
the algebra morphism defined on the generators by the assignment

Δα
(
V (t)

) = 1 ⊗ V (t) + δα
(
V (t)

)
, (4.15)

where δα :Hα → Hα ⊗Hα is a right coaction of Hα on itself (w.r.t. the coproduct Δα), defined
recursively as

δα
(
V (t)

) = (V ⊗ Id)
[
Δα

(
t l

)
/δα

(
V

(
t r

))]
, (4.16)

where t = t l/V (tr ). The counit ε :Hα → Q is the algebra morphism with value ε(V (t)) = 0 on
the generators.

It is clear that the coordinate ring of Gα is isomorphic to Hα , as an algebra. It remains to
show that the coproduct dual to the composition is indeed Δα . To do this, we prove that the
projection R :Hρ

Y = Q[Y ] → Hα ∼= Q[V (t), t ∈ Y ], dual to the inclusion of Gα(A) into G
ρ
Y (A),

is a morphism of Hopf algebras, that is
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Δα
(
R(u)

) = (R ⊗ R)Δ
ρ
Y (u) (4.17)

for all u ∈ Y . The map R is the algebra morphism which sends the generators u ∈ Y of Hρ
Y into

themselves, seen as over products of its components, that is

R(u) = u = V
(
u1)/ · · ·/V (

un
)
,

and of course, being an algebra morphism, it sends the free products of Hρ
Y into the over products

of Hα , that is

R(u1 · · ·um) = u1/ · · ·/um.

To show the identity (4.17), it suffices to show that (R ⊗ R)Δ
ρ
Y satisfies the same recursive

relation (4.15) which defines Δα . For this purpose, we introduce a coaction δ
ρ
Y of Hρ

Y on itself.
Let us restrict the right action of Gdif

Y (A) on G
ρ
Y (A) of Theorem 4.2 to the map G

ρ
Y (A) ×

G
ρ
Y (A) → G

ρ
Y (A) given by (ρf )ρg = ρf ρg . We obtain a right action of G

ρ
Y (A) on itself. Its dual

map on the coordinate rings can be found from the coaction δdif
Y , given by Eq. (4.5) for P = Dup

and which in fact coincides with the coaction δinv
Y , by applying the projection P :Hdif

Y → Hρ
Y

described in the proof of Theorem 4.3. In conclusion, we obtain the map δ
ρ
Y :Hρ

Y → Hρ
Y ⊗ Hρ

Y

given on the generators u ∈ Y by

δ
ρ
Y (u) = (Id ⊗ P)δdif

Y (u) =
∑

u=μt (s1/ ,...,s|t |/ )

t ⊗ s1 · · · s|t |, (4.18)

where, again, from now on we suppose that the sums run over all the trees in the set Y if they
appear as subindices of the tree-product μ (in this case t), and to the set Y if they appear inside
the arguments of μ or anywhere else (in this case s1, . . . , s|t |). Now we compute an explicit
formula for Δ

ρ
Y (V (u)) and for δ

ρ
Y (V (u)), and show that relations (4.15) and (4.16) are satisfied

after projecting by R.
If u = , and V (u) = , we can easily compute

Δ
ρ
Y ( ) = ⊗ 1 + 1 ⊗ ,

δ
ρ
Y ( ) = ⊗ 1.

Therefore Δ
ρ
Y ( ) = 1 ⊗ + δ

ρ
Y ( ). The relation (4.15) is satisfied in Hρ

Y , and therefore it is
satisfied after applying the algebra morphism R. Since δ

ρ
Y ( ) = ⊗ , and = V ( ), relation

(4.16) is also satisfied in Hρ
Y .

Now suppose that u 	= . In Eq. (4.9), we replace the tree u by the tree V (u), and obtain

Δ
ρ
Y

(
V (u)

) = 1 ⊗ V (u) +
∑

V (u)=μt̃ (s̃1/ ,...,s̃|t̃ |/ )/s̃|t̃ |+1

t̃ ⊗ s̃1/ · · ·/s̃|t̃ |/s̃|t̃ |+1.

Since t̃ 	= , the tree μt̃ (s̃1/ , . . . , s̃|t̃ |/ )/s̃|t̃ |+1 can be of the form V (u) only if s̃|t̃ |+1 = ,
t̃ = V (t) with t ∈ Y , and s̃1 = . The case t = corresponds to u = , and we exclude it. For
t 	= , we write V (t) = μ ( , t) and apply the associativity of μ to conclude that
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V (u) = μV (t)( , s̃2/ , . . . , s̃|t |+1/ )/

= V
(
μt(s̃2/ , . . . , s̃|t |+1/ )

)
,

and therefore u = μt(s̃2/ , . . . , s̃|t |+1/ ). By renaming the trees s̃i = si−1, we finally obtain

Δ
ρ
Y

(
V (u)

) = 1 ⊗ V (u) +
∑

u=μt (s1/ ,...,s|t |/ )

V (t) ⊗ s1 · · · s|t |. (4.19)

Similarly, if we replace the tree u by the tree V (u) in Eq. (4.18), we obtain

δ
ρ
Y

(
V (u)

) =
∑

u=μt (s1/ ,...,s|t |/ )

V (t) ⊗ s1 · · · s|t |. (4.20)

Therefore we have Δ
ρ
Y (V (u)) = 1 ⊗ V (u) + δ

ρ
Y (V (u)), and consequently the relation (4.15) is

fulfilled already in Hρ
Y .

Using (4.18), Eq. (4.20) can be written as

δ
ρ
Y

(
V (u)

) = (V ⊗ Id)

( ∑
u=μt (s1/ ,...,s|t |/ )

t ⊗ s1 . . . s|t |
)

= (V ⊗ Id)δ
ρ
Y (u).

Let us develop δ
ρ
Y (u), for u = ul/V (ur).

Assume ur = . Let us start by considering the case u = ul/ . We already computed δ
ρ
Y ( ) =

⊗ . The sum in (4.18) is over all trees t ∈ Y and s1, . . . , s|t | ∈ Y such that u = ul/ =
μt(s1/ , . . . , s|t |/ ). This equality is possible if and only if t = t l/ and s|t | = sl|t |/ . Then we
distinguish two possible cases, let us list the contributions to the whole sum coming from each
of them.

Case 1. If t l 	= , and therefore |t | = |t l | + 1, then ul = μtl (s1/ , . . . , s|t l |/ )/sl
|t l |+1

. If we

rename t l =: w, the contribution can be written as

∑
ul=μw(s1/ ,...,s|w|/ )

w/ ⊗ s1 · · · s|w|.

Case 2. If t l = , then u = ul/ = μ (s1/ ) = s1/ , and therefore s1 = ul . We then have the
contribution

⊗ ul.

Summing up the two contributions, we obtain

δ
ρ
Y

(
ul/

) = ⊗ ul +
∑

ul=μ (s / ,...,s / )

w/ ⊗ s1 · · · s|w|,

w 1 |w|
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and therefore

(R ⊗ R)δ
ρ
Y

(
ul/

) = ⊗ ul +
∑

ul=μw(s1/ ,...,s|w|/ )

w/ ⊗ s1/ · · ·/s|w|

=
(

1 ⊗ ul +
∑

ul=μw(s1/ ,...,s|w|/ )

w ⊗ s1/ · · ·/s|w|
)

/( ⊗ 1)

= [
(R ⊗ R)Δ

ρ
Y

(
ul

)]
/
[
(R ⊗ R)δ

ρ
Y ( )

]
.

Therefore Eq. (4.16) holds for u = ul/V ( ).

Assume ur �= . The sum in (4.18) is over all trees t ∈ Y and s1, . . . , s|t |+1 ∈ Y such that
u = ul/V (ur) = μt(s1/ , . . . , s|t |/ ). Since t 	= , we split t = t l/V (tr ), and distinguish three
possible cases. Let us list the contributions to the sum coming from each of them.

Case 1. If t l 	= and t r = , then t = t l/ = μ (tl, ) with |t | = |t l | + 1. Using the prop-
erties of the μ product, the equality becomes

ul/V
(
ur

) = μ
tl/

(s1/ , . . . , s|t l |+1/ ) = μtl (s1/ , . . . , s|t l |/ )/s|t l |+1/

= μtl (s1/ , . . . , s|t l |/ )/s|t l |+1/V ( ),

which is impossible because ur 	= .

Case 2. If t l = and t r 	= , then t = V (tr ) = μ ( , tr ) with |t | = |t r | + 1. Using the

associativity of the μ product we get

μV (tr )(s1/ , . . . , s|t r |+1/ ) = s1/ \μtr (s2/ , . . . , s|t r |+1/ ).

This tree can be equal to u = ul/ \ur if and only if s1 = ul and μtr (s2/ , . . . , s|t r |+1/ ) = ur .
Let us rename the free trees as follows: t r =: y, si =: zi−1 for i = 2, . . . , |t r | + 1. Then the
contribution to the whole sum for this case is

∑
ur=μy(z1/ ,...,z|y|/ )

V (y) ⊗ ulz1 · · · z|y|.

Case 3. If t l 	= and t r 	= , using again the properties of the μ product we have

ul/V
(
ur

) = μtl (s1/ , . . . , s|t l |/ )/μV
(
t r

)(s|t l |+1/ , . . . , s|t l |+|t r |+1/ )

= μtl (s1/ , . . . , s|t l |/ )/s|t l |+1/V
(
μtr (s|t l |+2/ , . . . , s|t l |+|t r |+1/ )

)
.

Renaming the free trees as t l =: w, si =: vi for i = 1, . . . , |t l | + 1, and t r =: y, s|t l |+j =: zj−1
for j = 2, . . . , |t r | + 1, we obtain the following contribution to the sum:
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∑
ul=μw(v1/ ,...,v|w|/ )/v|w|+1

ur=μy(z1/ ,...,z|y|/ )

w/V (y) ⊗ v1 · · ·v|w|+1z1 · · · z|y|.

Summing up the two contributions, we obtain

δ
ρ
Y

(
ul/V

(
ur

)) =
∑

ur=μy(z1/ ,...,z|y|/ )

V (y) ⊗ ulz1 · · · z|y|

+
∑

ul=μw(v1/ ,...,v|w|/ )/v|w|+1
ur=μy(z1/ ,...,z|y|/ )

w/V (y) ⊗ v1 · · ·v|w|+1z1 · · · z|y|.

Therefore

(R ⊗ R)δ
ρ
Y

(
ul/V

(
ur

))
=

∑
ur=μy(z1/ ,...,z|y|/ )

V (y) ⊗ ul/z1/ · · ·/z|y|

+
∑

ul=μw(v1/ ,...,v|w|/ )/v|w|+1
ur=μy(z1/ ,...,z|y|/ )

w/V (y) ⊗ v1/ · · ·/v|w|+1/z1/ · · ·/z|y|

=
[

1 ⊗ ul +
∑

ul=μw(v1/ ,...,v|w|/ )/v|w|+1

w ⊗ v1/ · · · /v|w|+1

]/ ∑
ur=μy(z1/ ,...,z|y|/ )

V (y) ⊗ z1/ · · ·/z|y|

= [
(R ⊗ R)Δ

ρ
Y

(
ul

)]/[
(R ⊗ R)δ

ρ
Y

(
V

(
ul

))]
.

Therefore the recursive relation (4.16) holds for any u = ul/V (ur). �
In [5], it was proved that there exists a non-commutative lift of Hα , let us denote it by Hα,nc .

As a corollary to the previous result, we obtain a non-recursive formula for the coproduct Δα ,
which is still valid on Hα,nc .

Corollary 4.10. The free associative algebra Hα,nc = Q〈V (u),u ∈ Y 〉 and its abelian quotient
Hα = Q[V (u),u ∈ Y ] are graded and connected Hopf algebras with coproduct defined on the
generators by

Δα
(
V (u)

) = 1 ⊗ V (u) +
∑
t∈Y

s1,...,s|t |∈Y

u=μt (s1/ ,...,s|t |/ )

V (t) ⊗ s1/ · · ·/s|t |.

To conclude, we apply the results of Section 3 on the semi-direct coproduct Hopf algebras to
the Hopf algebras Hα and He . The “QED renormalization Hopf algebra” Hα � He , introduced
in [5], is then the non-commutative lift of the coordinate ring of the group functor Gα � Ge .

Then, note that the order map π gives a surjective group morphism from Gα(A) to Gdif(A).
In fact, since Gα(A) is a subgroup of G

ρ
(A), and π is a group homomorphism from G

ρ
(A)
Y Y
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to Gdif(A), it suffices to verify that π is still surjective when restricted to Gα(A). This follows
from the fact that Gα(A) contains Gdif(A) via the inclusion iunder of Proposition 2.3, which is a
section of π .

Therefore, for any fixed algebra A, the “QED renormalization group” Gα(A) � Ge(A) is
projected to the semi-direct product of usual series Gdif(A) � Ginv(A).
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