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Abstract

We present a description of the equation of state of strongly interacting matter within a quasi-particle model. The
adjusted to lattice QCD data near the deconfinement temperatureTc. We compare in detail the excess pressure at non-vanis
chemical potential and its Taylor expansion coefficients with two-flavor lattice QCD calculations and outline prospect
extrapolation to large baryon density.
 2005 Elsevier B.V.
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Due to the recent progress of first principle l
tice QCD calculations, the equation of state (EoS
strongly interacting matter is now at our disposal
some region of temperatureT and chemical poten
tial µ. Either the overlap improving multi-paramet
reweighting technique[1] or the Taylor expansion o
hybrids of them[2,3] deliver the pressure, entrop
density, quark density, susceptibilities, etc. The kno
edge of these quantities is of primary importance
a hydrodynamical description of relativistic heavy-i
collisions, the confinement transition in the early u
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verse and possible quark cores in compact neu
stars. Knowing the phase boundary[2] and the end
point of the first-order deconfinement transition[4] in
the region of non-vanishing chemical potential is p
ticularly interesting for the envisaged CBM project
the future accelerator facility FAIR at Darmstadt[5].
In the planned experiments a systematic investiga
of phenomena of maximum baryon density reacha
in heavy-ion collisions will be attempted.

Apart from lattice QCD calculations as pure
numerical technique to obtain the EoS, also ana
ical approaches have been invented to unders
the basic features. We mention dimensional red
tion, resummed HTL scheme,Φ functional approach
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Polyakov loop model, etc. (cf.[6] for a recent sur-
vey). A controlled chain of approximations from fu
QCD to analytical expressions without adjustable
rameters describing the lattice data would be of des
Success has been achieved[7] for T > 2Tc. In con-
trast, the rangeT � Tc, in particular close toTc, is
covered by phenomenological models[8,9] with pa-
rameters adjusted to lattice QCD data atµ = 0. It is
the aim of the present Letter to compare in detail
quasi-particle model[8] with the recent lattice QCD
data[3] in the region aroundTc with the focus on finite
baryon density. We present a quasi-particle descrip
of the Taylor expansion coefficients of the excess p
sure for the strongly coupled quark–gluon fluid. On
in such a way an adequate and direct comparison
the lattice QCD results[3,10] is possible.

One way to decompose the EoS is writing for t
pressure[2,3]

p(T ,µ) = p(T ,µ = 0) + �p(T ,µ),

(1)
�p(T ,µ)

T 4
=

∞∑
i=2

ci

(
µ

T

)i

.

p(T ,µ = 0) was subject of previous lattice QC
calculations (cf.[11] for the two-flavor case), while
�p(T ,µ) became accessible only recently[3,4].
�p(T ,µ) is easier calculable, therefore, lattice QC
calculations focus on this quantity, instead of focus
onp(T ,µ). In contrast, our model coversp(T ,µ = 0)

and �p(T ,µ) on equal footing. Therefore, we hav
p(T ,µ) at our disposal.

The quasi-particle model of light quarks (q) and
gluons (g) is based on the expression for the press

p =
∑

a=q,g

pa − B(T ,µ),

(2)pa = da

6π2

∫
dk

k4

Ea(k)

(
f +

a (k) + f −
a (k)

)
,

whereB(T ,µ) ensures thermodynamic self-consiste
cy [8], s = ∂p/∂T , nq = ∂p/∂µ, together with the
stationarity conditionδp/δm2

a = 0 [12]. The k inte-
grals here and below run from 0 to∞. Explicitly, the
entropy density readss = ∑
a=q,g sa with1

sa = da

2π2T

∫
dk k2

(
(4

3k2 + m2
a)

Ea(k)

(
f +

a (k) + f −
a (k)

)
(3)− µ

(
f +

a (k) − f −
a (k)

))

and the net quark number density is

(4)nq = dq

2π2

∫
dk k2(f +

q (k) − f −
q (k)

)
with degeneraciesdq = 12 anddg = 8 as for free par-
tons and distribution functions

f ±
a (k) = (

exp
([

Ea(k) ∓ µ
]
/T

) + S
)−1

with S = +1 (−1) for quarks (gluons). The chemic
potential isµ for light quarks, while for gluons it is
zero.

The quasi-particle dispersion relation is appro
mated by the asymptotic mass shell expression
the light cone

E2
a(k) = k2 + m2

a,

(5)m2
a(T ,µ) = Πa(k;T ,µ) + (xaT )2.

The essential part is the self-energyΠa ; the last term
accounts for the masses used in the lattice calcula
[3], i.e., xq = 0.4 andxg = 0. First direct measure
ments of the dispersion relation have been reporte
[18] and let argue the authors of[19] that additional
degrees of freedom are required to saturate the
tice pressure. It should be noticed, however, that
the EoS the excitations at momentak ∼ T matter, for
which more accurate measurements are needed
suitable parametrization ofΠa , we employ here the

1 In masslessϕ4 theory such a structure of the entropy dens
emerges by resumming the super-daisy diagrams in tadpole t
ogy [13], and[14] argues that such an ansatz is also valid for QC
[7] point to more complex structures, but we find(2)–(4) flexible
enough to accommodate the lattice data. Finite width effects
studied in[15]. In theΦ functional approach the following chain o
approximations leads to the given ansatz[16]: (i) two-loop approx-
imation for theΦ functional; (ii) neglect longitudinal gluon mode
and the plasmino branch, both being exponentially damped; (iii
store gauge invariance and ultra-violet finiteness by arming the
energies with HTL resummed expressions; (iv) neglect imagin
parts in self-energies and Landau damping and approximate su
the self-energies in the thermodynamically relevant regionk ∼ T ,µ.
The pressure follows by an integration.
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HTL self-energies with given explicitT and µ de-
pendencies as in[8]. The crucial point is to replac
the running coupling inΠa by an effective coupling
G2(T ,µ).2 In doing so, non-perturbative effects a
thought to be accommodated in this effective coupli
This assumption needs detailed tests which are
sented below. Note that Eqs.(2)–(4) themselves are
highly non-perturbative expressions. Expanding th
in powers of the coupling strength one recovers
first perturbative terms.

The first expansion coefficients in Eq.(1) follow

from (2) asci = T i−4

i!
∂ip

∂µi |µ=0:

(6)c2 = 3Nf

π2T 3

∫
dk k2 eω

(eω + 1)2
,

(7)

c4 = Nf

4π2T 3

∫
dk k2 eω

(eω + 1)4

×
(

e2ω − 4eω + 1− A2

ω

(
e2ω − 1

))
,

(8)

c6 = 3Nf

385π2T 3

∫
dk k2 eω

(eω + 1)6

×
{
e4ω − 26e3ω + 66e2ω − 26eω + 1

− 10

3

A2

ω

(
e4ω − 10e3ω + 10eω − 1

)
+ 4

3

A2
2

ω2

(
e4ω − 2e3ω − 6e2ω − 2eω + 1

)
+

(
5

3

A2
2

ω3
− 10

T 2A4

ω

)

× (
e4ω + 2e3ω − 2eω − 1

)}
,

whereω = (k2 + 1
3T 2G2|µ=0)

1/2/T , A2 = (G2/π2 +
1
2T 2∂2G2/∂µ2)|µ=0, A4 = ( 1

π2 ∂2G2/∂µ2+ T 2

12∂4G2/

∂µ4)|µ=0. (We have not displayed the terms∝ xq

stemming from the lattice masses; in the calculati
presented below, however, these terms are include
make the model as analog as possible to the la
performance.)cj with oddj vanish. In deriving these

2 As shown in[17], it is the introducedG2(T ,µ) which allows
to describe lattice QCD data nearTc , while the use of the pure
1-loop or 2-loop perturbative coupling together with a more co
plete description of the plasmon term and Landau damping res
the approach toT > 2T .
c
equations we have used the flow equation[8]

(9)aµ

∂G2

∂µ
+ aT

∂G2

∂T
= aµT ,

where the lengthy coefficientsaµ,T ,µT (T ,µ) [16]
obeyaT (T ,µ = 0) = 0 andaµT (T ,µ = 0) = 0. This
flow equation follows from a thermodynamic cons
tency condition. The meaning of Eq.(9) is to mapG2,
given on some curveT (µ), e.g., onT (µ = 0), into the
µ plane to getG2(T ,µ) which is needed to calculat
p, s, n from Eqs.(2)–(4)at non-vanishing values ofµ.
The terms needed in Eqs.(7), (8)follow from the flow
equation and its derivatives yielding

(10)
∂2G2

∂µ2

∣∣∣∣
µ=0

= 1

aµ

(
∂aµT

∂µ
− ∂aT

∂µ

∂G2

∂T

)∣∣∣∣
µ=0

,

(11)

∂4G2

∂µ4

∣∣∣∣
µ=0

= 1

aµ

(
∂3aµT

∂µ3
− ∂3aT

∂µ3

∂G2

∂T

− 3
∂2aµ

∂µ2

∂2G2

∂µ2

− 3

aµ

∂aT

∂µ

[
∂2aµT

∂µ∂T
− ∂2aT

∂µ∂T

∂G2

∂T

− ∂aT

∂µ

∂2G2

∂T 2
− ∂aµ

∂T

∂2G2

∂µ2

])∣∣∣∣
µ=0

.

We adjustG2(T ) through Eq.(6) to c2(T ) from [3] for
Nf = 2. We find as convenient parametrization

(12)

G2(T ) =
{

G2
2-loop(T ), T � Tc,

G2
2-loop(Tc) + b(1− T/Tc), T < Tc,

whereG2
2-loop is the relevant part of the 2-loop co

pling

(13)G2
2-loop(T ) = 16π2

β0 logξ2

[
1− 2β1

β2
0

log(logξ2)

logξ2

]

with β0 = (11Nc −2Nf )/3,β1 = (34N2
c −13Nf Nc +

3Nf /Nc)/6, and the argumentξ = λ(T − Ts)/Tc. Ts

acts as regulator atTc, andλ sets the scale. The pa
rameters forNc = 3 are λ = 12, Ts = 0.87Tc, and
b = 426.1. Fig. 1 exhibits the comparison of�p and
n calculated via Eqs.(2), (4) (dashed curves) or b
using the expansion coefficients Eqs.(6), (7), (solid
curves) with the lattice QCD data[3] based on the
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rves)

e.
Fig. 1. Comparison of the quasi-particle model with lattice QCD results[3] for the excess pressure (left panel, for constantµ/T ) and net
quark number density (right panel, for constantµ/Tc). As for the lattice QCD data (symbols) the quasi-particle model results (solid cu
are based on the expansion coefficientsc2,4, i.e.,�p/T 4 = c2(T )(µ/T )2 + c4(T )(µ/T )4 andnq/T 3 = 2c2(T )(µ/T ) + 4c4(T )(µ/T )3. For
comparison, the full quasi-particle model results (dashed curves) are exhibited.

Fig. 2. The expansion coefficientsc2,4 (left panel, data from[3]) and the ratioc6/c4 (right panel, data from[10]) as a function of the temperatur
sh-
ow

m
mal
n-

htly

r

ect
ffi-
.

It
coefficientsc2,4 (symbols). One observes an astoni
ingly good description of the data, even slightly bel
Tc, where the resonance gas model[20] is appropri-
ate.3 Interesting is the deviation of the full model fro
the results based on the truncated expansion in a s
interval aroundTc. It should be noted that conceptio
ally different models[21] reproduce fairly well the

3 Some reasoning why the model may be applicable also slig
belowTc emerges from duality[22], similar to the application of a
hadronic model slightly aboveT [23].
c
l

lattice data for�p andn aboveTc, however, since fo
small values ofµ the higher order coefficientsc4 and
in particularc6 are less important for�p andn, a more
stringent test of the model is accomplished by a dir
comparison of the individual Taylor expansion coe
cientsci with the corresponding lattice QCD results

Straightforward evaluation of Eqs.(6)–(8) deliv-
ers the results exhibited inFig. 2. SinceG2(T ) was
already adjusted toc2(T ) the agreement is good.
should be emphasized that all coefficientsci(T ) are
determined byG2(T ). That means the sameG2(T )

describes also the features ofc and c . Particularly
4 6
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interesting are the peak ofc4 (left panel ofFig. 2) and
the double-peak ofc6/c4 (right panel ofFig. 2) or c6
(not exhibited) atTc. Numerically, these pronounce
structures stem from the change of the curvature
havior of G2(T ) at Tc which determines the term
∂2G2/∂µ2|µ=0 and∂4G2/∂µ4|µ=0 via Eqs.(9)–(11).
Neglecting these terms would completely alter
shape ofc4,6. That means, viac4,6 the flow equa-
tion (9) is probed, which is the key for extrapolatin
to large values ofµ. Similar to [3], we interpret the
peak inc4 as indicator of some critical behavior, whi
the pressure itself is smoothly but rapidly varying
Tc. Note that the results exhibited inFig. 2 are robust
with respect to the chosen form of the effective co
pling (12). Testing the 1-loop coupling ofG2 above
Tc or a quadratic function inT/Tc belowTc or both,
e.g., the higher order coefficients and in particular th
pronounced behavior aboutTc are quantitatively re
produced when adjustingG2 to describec2.

In summary we present a quasi-particle mo
which describes the recent lattice QCD data for n
vanishing chemical potential remarkably well. Besid
the excess pressure�p(T ,µ) and densityn above and
even slightly belowTc at small values of the chemic
potential, the individual Taylor expansion coefficien
agree well with the data and turn out to depend
each other. OnceG2(T ) is adjusted, alsop(T ,µ = 0)

follows up to an integration constant. We find a sm
deviation (maximum 15%) from an optimized descr
tion of the data[11] which might be attributed to
differences in calculatingp(T ,µ = 0) and the Tay-
lor coefficients of�p(T ,µ) on the lattice. Conse
quently, adjustingG2(T ) directly to p(T ,µ = 0) a
mean quadratic deviation of 0.0027 betweenc2 data
[3] and our model is observed[16], while our direct fit
to c2 delivers 0.0010. Nevertheless, the shape an
particular the structures of the higher order Taylor
efficients are well reproduced. We findχ2/d.o.f. = 8.8
for c4 andχ2/d.o.f. = 0.24 for c6/c4, while the above
adjustment toc2 delivered 8.7 and 0.39, respective
(the small values ofχ2/d.o.f. for c6/c4 are due to the
large error bars).

Having tested these details of the quasi-part
model, we can directly apply the found parametri
tion and calculate the total pressure at arbitrary bar
densities, while lattice QCD calculations are yet co
straint to small baryon densities. This application is
interest for the CBM project at FAIR and for stud
ing hot proto-neutron stars and cold neutron stars w
quark cores and will be reported elsewhere. Anot
application to cosmic confinement dynamics is
ported in[24]. These applications need a controll
chiral extrapolation which must base on improved
tice QCD data.
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