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The one-dimensional dynamics of a classical ideal ‘exotic’ fluid with equation of state p = p(ε) < 0
violating the weak energy condition is discussed. Under certain assumptions it is shown that the well-
known Hwa–Bjorken exact solution of one-dimensional relativistic hydrodynamics is confined within the
future/past light cone. It is also demonstrated that the total energy of such a solution is equal to zero
and that there are regions within the light cone with negative (−) and positive (+) total energies. For
certain equations of state there is a continuous energy transfer from the (−)-regions to the (+)-regions
resulting in indefinite growth of energy in the (+)-regions with time, which may be interpreted as action
of a specific ‘Perpetuum Mobile’ (Perpetuum Motion). It is speculated that if it is possible to construct a
three-dimensional non-stationary flow of an exotic fluid having a finite negative value of energy such a
situation would also occur. Such a flow may continuously transfer positive energy to gravitational waves,
resulting in a runaway. It is conjectured that theories plagued by such solutions should be discarded as
inherently unstable.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

If physical laws do not prohibit the presence of exotic mat-
ter violating the weak energy condition1 and having some other
certain properties many exciting possibilities arise. For example,
solutions of the Einstein equations coupled to an exotic matter in-
clude wormholes, time machines (e.g. [1]) and cosmological mod-
els with energy density of the Universe growing with time (see,
e.g. [2] for a review and discussion of cosmological consequences)
leading to the so-called cosmological Doomsday, see e.g. [3]. Since
theories incorporating an exotic matter may lead to counterintu-
itive and, possibly, physically inconsistent effects it appears to be
important to invoke different thought experiments, which could
clarify self-consistency of such theories. Here we discuss such an
experiment and explicitly show that in a class of models con-
taining an exotic matter of a certain kind there could be ever

* Address for correspondence: Astro Space Centre of PN Lebedev Physical Insti-
tute, 84/32 Profsoyuznaya Street, Moscow 117810, Russia.

E-mail address: pbi20@cam.ac.uk.
1 Let us remind that the weak energy condition is said to be violated for a matter

having the stress–energy tensor Tμν if there is such a time-like future directed
vector field tμ that the inequality Tμν tμtν < 0 holds in some region of space–time.
0370-2693 © 2009 Elsevier B.V.
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expanding with time separated regions of space having positive
and negative total energies and that absolute values of the ener-
gies in these regions could grow indefinitely with time while the
energy of the whole physical system is conserved. This is based on
the property of the exotic matter to have negative energy den-
sity measured by observers being at rest with respect to some
Lorentz frame and, accordingly, given by the (tt)-component of
the stress–energy tensor, T tt , provided that there are sufficiently
large fluid velocities with respect to this frame. We also specu-
late that in a more advanced variant of our model there could be
an isolated region of space filled by an exotic matter with its to-
tal energy indefinitely decreasing with time due to processes of
interaction with some other conventional physical fields carrying
positive energy. One of such processes could be emission of grav-
itational waves. If conditions for emission of gravitational waves
are always fulfilled in the course of evolution positive energy is
continually carried away from the region, which results in a run-
away. In this respect it is appropriate to mention that the known
results on positiveness of mass in General Relativity are not valid
for the matter violating the weak energy condition, see e.g. [4]
and the energy of an isolated region could evolve from positive to
negative values. Although such a situation resembles the action of
a Perpetuum Mobile of second kind, where heat transfer from a
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colder part of an isolated system to a hotter part occurs, the no-
tion of ‘temperature’ looks ambiguous in our case and, therefore,
because of the lack of notation, we refer to this hypothetical ef-
fect as a ‘Perpetuum Mobile of third kind’. In many applications
a phenomenological description of the exotic matter assumes that
the matter dynamics can be described by a hydrodynamical model
with the stress–energy tensor of an ideal Pascal fluid, which can
be fully specified by its equation of state, p = p(ε), where p is the
pressure and ε is the comoving energy density, which is assumed
to be positive below. In this case, violation of the weak energy
condition can be reformulated as a requirement that the pressure
is negative with its modulus exceeding the value of the comoving
energy density. We deal hereafter only with simplest models of
hydrodynamical type and neglect the effects of General Relativity
and interactions with other physical fields. Therefore, in the model
explicitly considered in the text the transfer of energy from one
region of space to another, in particular, between the regions hav-
ing total energies of different signs, is provided by hydrodynamical
effects. However, as we have mentioned above, it seems reason-
able to suppose that an analogous runaway effect may happen in
a more realistic situation, where e.g. energy is continually carried
away from a spacial region having negative total energy by gravita-
tional waves.2 Taking into account that gravitational interaction is
universal, the proposed ‘Perpetuum Mobile of third kind’ may rep-
resent a difficulty in theories, where it emerges. We believe that
such theories are inherently unstable and must, therefore, be dis-
carded.

It is important to note, however, that in a general scenario the
region emitting gravitational waves could have a non-linear three-
dimensional dynamics. Explicit solutions of this kind may be quite
difficult to obtain due to severe technical problems.

2. Basic definitions and equations

Let us discuss a one-dimensional planar relativistic flow of an
ideal fluid with a baratropic equation of state

p = p(ε), (1)

where p is the pressure and ε is the comoving energy density. As
has been mentioned in Introduction, we are going to consider later
in the text the case of an exotic fluid, where the pressure is neg-
ative and the weak energy condition is violated. For a baratropic
fluid this leads to:

σ ≡ −p > ε, (2)

where we introduce the negative of pressure p, σ = −p. Since
only one-dimensional flows will be considered, we can also ap-
ply our analysis to a situation, where a fluid has an anisotropic
stress tensor. Say, we can assume only one of its components to
be non-negative and proportional to δ(y, z), where y and z are the

2 Note that one should distinguish between the standard hydrodynamical insta-
bilities e.g. the ones operating in a fluid having a negative square of speed of sound
and the instability related to violation of the weak energy condition. While the for-
mer could lead to a highly irregular non-linear dynamics of the system they cannot
themselves result in formation of spacial regions having a negative total energy,
and, a runaway of the kind discussed in this Letter, see also the footnote in the
next section.

Let us also stress that the runaway effect is different from the well-known in-
stabilities of linear modes of stationary hydrodynamical flows having a negative
energy difference with respect to a stationary configuration like the Chandrasekhar–
Friedman–Schutz instability [5,6] or the instability operating in shear flows, see e.g.
[7] and references therein. Although the linear instabilities can lead to a decrease
of energy of the main flow they cannot bring a system non-violating the weak en-
ergy condition to a state with a negative total energy. Therefore, in the latter case
the runaway effect of the type we consider in this Letter is not possible.
Minkowski spacial coordinates corresponding to directions perpen-
dicular to the direction of motion. In this case, equations of motion
will describe dynamics of a straight string consisting of exotic mat-
ter.

Equations of motion may be written in a divergent form reflect-
ing the laws of conservation of energy and momentum

T tt
,t + T tx

,x = 0, T tx
,t + T xx

,x = 0, (3)

where (t, x) are the standard Minkowski coordinates, comma
stands for differentiation, and T ij are the corresponding compo-
nents of the stress–energy tensor:

T tt = γ 2(ε + v2 p
)
, T tx = γ 2 v(ε + p),

T xx = γ 2(p + v2ε
)
, (4)

where v is the three-velocity and γ = 1√
1−v2

.

3. The Hwa–Bjorken solution and the Milne coordinates

As has been first shown by Hwa [8] and later by Bjorken [9],
the set of Eqs. (3) has an especially simple ‘acceleration-free’ solu-
tion valid for a fluid having an arbitrary equation of state. In this
solution velocity of any fluid element conserves along the path of
the fluid element and the velocity field has a very simple form

v = x/t ≡ ξ. (5)

For a baratropic fluid the distribution of energy is given by another
simple implicit relation

τ = exp

{
−

ε∫
ε∗

dε′

ε′ + p(ε′)

}
= exp

{
−

ε∗∫
ε

dε′

σ(ε′) − ε′

}
, (6)

where

τ =
√

t2 − x2, (7)

and ε∗ is a constant of integration.
Obviously, Eqs. (6)–(7) are defined only inside the future/past

light cone, |t| > |x|, in an effective two-dimensional Minkowski
space described by the metric

ds2 = dt2 − dx2. (8)

The analytic continuation of the solution on the right/left Rindler
wedge |t| < |x| is straightforward.

Although the two-dimensional Minkowski space appears natu-
rally due to one-dimensional character of the problem let us re-
mind that the problem is defined in four-dimensional Minkowski
space. Therefore, for the problem with Pascal pressure, where it
is assumed that all variables do not depend on the coordinates
(y, z) perpendicular to x, it is better to say that from the four-
dimensional point of view the condition |t| = |x| determines four-
dimensional “light wedges” since it does not depend on directions
perpendicular to the direction of motion.

The energy density ε is equal to zero on the light cone |t| = |x|
if and only if the integrals in the exponents in Eq. (6) are positive
and diverge when ε → 0. Accordingly, in this case, the condition
(2) must be satisfied. Additionally, in order to make the integrals
divergent we must have

σ − ε �
∣∣O (ε)

∣∣ (9)

when ε → 0. Provided that condition (9) is valid the solution may
be considered as confined within the future/past light cone with
no flows of energy and momentum through the cone boundary. For
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simplicity we are going to consider only this case in our analytical
calculations later on.3

The solution (5)–(6) has a self-evident form in the Milne co-
ordinates (τ , y), where the time τ is defined by Eq. (7) and we
introduce the rapidity

y = ln

√
1 + ξ

1 − ξ
(10)

as a new spacial coordinate. In these coordinates the metric (8)
has the form

ds2 = dτ 2 − τ 2 dy2. (11)

Although the metric (11) may be understood as describing an
expanding one-dimensional spatially-uniform universe with the
scale factor a(τ ) = τ , obviously it corresponds to the same flat
Minkowski space since it is obtained from the metric (8) by the
coordinate transformation (7), (10), see e.g. [10] for an additional
discussion of the Milne coordinates. Taking into account that the
transformation law between the velocity v defined with respect to
Minkowski coordinates (t, x) and the peculiar velocity v̄ defined
with respect to the orthonormal frame associated with the Milne
coordinates is determined by the relation

v = ξ + v̄

1 + ξ v̄
, (12)

it is clear that the solution (5)–(6) is simply the spatially-uniform
solution in the Milne coordinates with the peculiar velocity v̄ = 0.
In particular, Eq. (6) immediately follows from the first law of ther-
modynamics written for an adiabatic expansion of a fluid having
distribution of its thermodynamical variables uniform with respect
to the coordinate y:

dV

V
= − dε

ε + p
, (13)

where V ∝ τ is a comoving volume.

4. Properties of the solution

4.1. The energy integral

Provided that the condition (9) is valid we can assume that
the energy density and, accordingly, the components of the stress–
energy tensor are different from zero only within the future/past
light cone. For simplicity, let us consider only the future light cone
implying that t > 0 from now on. In this case, Eqs. (3) yield that
the total energy of the flow

E =
t∫

−t

dx T tt = t

1∫
−1

dξ T tt (14)

does not depend on time t .
Let us show that this integral is precisely equal to zero for an

exotic baratropic fluid satisfying the condition (9). Taking into ac-
count that the distribution of energy density and pressure are even
functions and the velocity distribution is an odd function of the

3 In this case, the corresponding hydrodynamical models are unstable with re-
spect to growth of small perturbations. One may proceed, however, either assuming
that these models are valid only for the considered types of hydrodynamical flows
or considering them as effective models invalid for sufficiently large perturbation
wavenumbers. In any case, we expect that our main conclusions do not depend on
whether the considered models are hydrodynamically unstable or not.
spacial coordinate x, respectively, it suffices to prove that the quan-
tity

E =
1∫

0

dξ T tt =
1∫

0

dξ

(1 − ξ2)

(
ε − ξ2σ

)
(15)

is equal to zero. From Eq. (6) it follows that

σ = τ
dε

dτ
+ ε (16)

and, therefore, we have

E =
1∫

0

dξ

(
ε − ξ2τ

(1 − ξ2)

dε

dτ

)
. (17)

Now we change the integration variable from ξ to τ keeping
the value of t fixed. Taking into account that

dξ = − τ

t
√

t2 − τ 2
dτ , (18)

ξ = 1

t

√
t2 − τ 2,

√
1 − ξ2 = τ

t
, (19)

we obtain

E = 1

t

∫ √
t2 − τ 2 dε − 1

t

∫
ετ dτ√
t2 − τ 2

, (20)

where the values of τ and ε corresponding to ξ = 0,1 are omit-
ted. Integrating by parts the first integral in (20) and taking into
account that the boundary terms are equal to zero for the solution
(5)–(6) satisfying the condition (9), we obtain

E = −1

t

∫ (
τ√

t2 − τ 2
+ d

dτ

√
t2 − τ 2

)
ε dτ = 0. (21)

4.2. Lorentz invariance and vacuum-like nature

It is easy to see that solution (5)–(6) has the same form in
all coordinate systems connected by the Lorentz transformations:
(t, x) → (t′, x′). Indeed, as follows from Eq. (7) the time τ is invari-
ant under the Lorentz transformations. Therefore, Eq. (6) contains
only invariant quantities and is the same in all Lorentz frames. It
is also evident that when the Lorentz transformations are consid-
ered the quantity ξ = x/t and the three-velocity v are transformed
in the same way. Therefore, from Eq. (5) it follows that the same
equation is valid for the transformed quantities.

It is clear that the total energy and momentum of the flow are
equal to zero in all Lorentz frames. This is frequently considered
as being the definition of vacuum solutions in different theoretical
schemes. Thus, one may state that solution (5)–(6) plays a role of
a non-trivial vacuum solution for the exotic fluids satisfying (9).

4.3. A hypothetical model of Perpetuum Mobile

As has been mentioned in Introduction, the very possibility of
existence of solutions having negative/zero total energy is deter-
mined by the fact that for equations of state violating the weak
energy condition the energy density determined with respect to a
fixed Lorentz frame

T tt ∝ ε − v2σ (22)

can be negative provided that the fluid velocity is sufficiently large,

v > vcrit =
√

ε
. (23)
σ
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In the case of our solution the space bounded by the light cone
condition |x| < t is divided into a set of regions having opposite
signs of T tt and, accordingly, different signs of the total energy. In
what follows let us refer to the regions with T tt > 0 (T tt < 0) as
(+)-regions ((−)-regions). The coordinates of boundaries between
the (+) and (−)-regions, xcrit, can be found from the condition
v = vcrit and, respectively, from the implicit equation

xcrit = t

√
ε(τcrit)

σ (τcrit)
, (24)

where τcrit =
√

t2 − x2
crit. In general, Eq. (24) could have several

roots on the interval 0 < x < t with values depending on equation
of state. However, for a reasonable equation of state with suffi-
ciently smooth dependence of σ on ε there must be a (−)-region
adjacent to the light cone boundary x = t and a (+)-region close
to the point x = 0. The total energy of the region adjacent to the
light cone, E− , can be easily calculated from Eqs. (14), (15), and
(20), where we take into account that after integration by parts
of Eq. (20) only the boundary term at x = xcrit contributes to the
integral:

E− =
t∫

xcrit

T tt dx = −xcritε, (25)

where xcrit denotes the largest root of Eq. (24) in the interval
0 < x < t from now on. Taking into account the fact that the to-
tal energy is zero and using the symmetry of the problem, we see
that the energy in the interval 0 < x < xcrit, E+ = −E− , and there-
fore

E+ =
xcrit∫
0

T tt dx = tε3/2

σ 1/2
= ε3/2

√
σ − ε

exp

( ε∫
dε′

σ ′ − ε′

)
, (26)

where we use Eqs. (6), (24), (25) and all quantities are assumed
to be evaluated along the world line determined by Eq. (24). It is
instructive to calculate the time derivative of E+ differentiating the
integral in (26) on time and using Eqs. (3) and (23) to obtain:

Ė+ = σ v = √
σε. (27)

From Eq. (27) it follows that the energy of the region 0 < x < xcrit
constantly grows with time due to energy flow from the (−)-re-
gion xcrit < x < t . In principal, there could be two possibilities for
the asymptotic behaviour of E+ in the limit t → ∞ depending on
form of the equation of state: (1) there could be a finite asymp-
totic value of E+ , and (2) a finite asymptotic value could be absent
and the energy E+ could infinitely grow with time. The latter case
represents a specific instability, where there is infinite growth of
energy in one region of space and infinite decrease of energy in
the other region. Let us suppose that physical laws do not pro-
hibit existence of the hydrodynamical systems violating the weak
energy condition and having solutions of this type. Assuming that
such a system could be made by an advanced civilization, which
could also ensure that utilization of energy released in the region
0 < x < xcrit does not significantly perturb the solution this could
provide an infinite source of energy. Therefore, this type of solu-
tion may be classified as a hypothetical ‘Perpetuum Mobile’. Such
a solution is discussed below.

4.4. An explicit example

Let us specify the equation of state and consider the simplest
possible case of linear dependence of σ on ε:

σ = (1 + α)ε, (28)
where the parameter α > 0.4 In this case integration of Eq. (6)
gives

ε = Cτα, (29)

where the parameter C > 0. The critical velocity vcrit = 1√
1+α

and,

accordingly,5

xcrit = t√
1 + α

. (30)

From Eqs. (7), (24), (27), (28) and (29) we obtain

E+ = Cαα/2

(1 + α)(1+α)/2
t1+α. (31)

From Eq. (31) it follows that in the case of the linear equation of
state there is one (+)-region and one (−)-region in the range 0 <

x < t . The energy of the (+)-region ((−)-region) grows (decreases)
indefinitely. Therefore, the simplest linear equation of state deter-
mines solution, which may be classified as the ‘Perpetuum Mobile’.

5. Discussion

When the weak energy condition is violated the Hwa–Bjorken
solution is likely to be not the unique one having the total energy
E equal to zero. Say, in the model with the linear equation of state
(28) it is easy to find a family of self-similar solutions, where the
velocity v is a function of the self-similar variable ξ , v = f1(ξ),
and the energy density ε has the form:

ε = tβ f2(ξ). (32)

Substituting these expressions in Eqs. (3) and assuming that the
equation of state is given by (28) one can easily get two ordinary
differential equations for the functions f1 and f2. In this case we
have

E =
+∞∫

−∞
dx T tt = tβ+1

+∞∫
−∞

dξ f3(ξ), (33)

where f3 is expressed through f1 and f2. It is assumed that the
energy density is either equal to zero when ξ is sufficiently large
or tends to zero with increase of ξ fast enough to make the in-
tegral convergent. When this condition is fulfilled and β 	= −1 the
energy E is equal to zero. Indeed, the energy must not depend on
time. On the other hand it is seen from (33) that the energy is pro-
portional to tβ+1. This means that the integral

∫ +∞
−∞ dξ f3(ξ) must

be equal to zero provided that β 	= −1.
A more difficult and interesting problem would be to construct

an explicit solution having a negative value of the total energy. In
this case one should invoke more sophisticated methods of one-
dimensional relativistic hydrodynamics such as e.g. the hodograph
method introduced by Khalatnikov [11] (see also [12,13]). In the
case of the linear equation of state (28) it would also be interesting
to exploit the formalism developed in Ref. [14], where the set of
Eqs. (3) is reduced to a single equation, which can be analysed for
new solutions.

Another approach to the problem consists in use of numerical
methods. It seems that numerical methods are more suitable for
hydrodynamically stable models e.g. based on the ‘Chaplygin type’

4 Let us stress that there is no well defined limit to the case of the ‘standard’
vacuum equation of state α = 0 (i.e. p = −ε) and that all our conclusions are not
applicable to this case.

5 Note that in this case it is obvious that the hypersurfaces separating the (+)

and (−)-regions are time-like.
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equation of state p = −ε2∗/ε , where ε∗ is a constant. In frame-
work of numerical methods one can consider a hydrodynamical
motion with fixed boundary conditions on a fixed spacial interval,
e.g. v = 0 when x = 0 and when x = x1, where x1 is fixed. The to-
tal energy of the motion determined by initial conditions can, in
principal, be either negative or zero for fluids violating the weak
energy condition.

An interesting development of these studies would be to con-
sider a model, where the exotic matter having anisotropic ten-
sion is concentrated on a straight one-dimensional line in three-
dimensional space. One-dimensional motion excited on the line
could produce gravitational waves carrying away positive energy
from the system. Accordingly, the energy of the motion could de-
crease indefinitely provided that generation of gravitational waves
persists in the course of evolution of the system. Being extrap-
olated on realistic three-dimensional motions this effect could be
dangerous for models of exotic matter, which can be effectively de-
scribed in the hydrodynamical approximation. The energy of such
motions could decrease indefinitely, resulting in a runaway. In this
case, the corresponding models should be discarded.

It would be also interesting to look for a quantum model hav-
ing the properties discussed in the Letter. Note that in quantum
case some exotic properties of behaviour of field systems may be
expected even when they have a “normal” classical limit. Say, as
was discussed e.g. in Ref. [15], in the Milne universe vacuum ex-
pectation value of the comoving energy density be negative even
for the simplest model of a non-interacting scalar field with suffi-
ciently small mass, in a certain vacuum state.

At the end we would like to point out that although the run-
away process related to emission of gravitational waves may be
technically difficult to construct for the exotic matter with posi-
tive comoving energy density, it can be easily constructed for even
more exotic ‘ghost’ matter having a negative value of the energy
density in all frames implemented by physical bodies and clocks.
For example, we can make use of the model of rotating relativistic
string with two monopoles at its ends emitting weak gravitational
waves, see Ref. [16]. It is sufficient to change the sign of the La-
grangians describing the string and the monopoles while keeping
the sign of the gravitation part of the action fixed to convert this
model to a model of a ‘ghost’ matter interacting with gravity. It is
clear that neither the string dynamics nor conditions of emission
of gravitational waves are significantly affected by this procedure.
Such a model describes a finite length string with its length ever
increasing with time thus making the total energy of the string-
monopoles system ever decreasing. The positive energy carried
away by gravitational waves may be exploited by an advanced civ-
ilization able to construct such a device.
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