Characterizations of inverse M-matrices with special zero patterns

Rong Huang ${ }^{\text {a, }, ~}{ }^{1}$, Jianzhou Liu ${ }^{\text {a,2 }}$, Nung-Sing Sze ${ }^{\text {b }}$
${ }^{\text {a }}$ School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, Hunan, China
${ }^{\text {b }}$ Department of Applied Mathematics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong

A R T I C L E I N F O

Article history:

Received 22 April 2008
Accepted 14 April 2010
Available online 13 May 2010
Submitted by M. Neumann

AMS classification:

15A18
15A42
15A57

Keywords:

Inverse M-matrices
Zero-pattern invariant
k-Diagonal matrices

Abstract

In this paper, we provide some characterizations of inverse M matrices with special zero patterns. In particular, we give necessary and sufficient conditions for k-diagonal matrices and symmetric k-diagonal matrices to be inverse M-matrices. In addition, results for triadic matrices, tridiagonal matrices and symmetric 5-diagonal matrices are presented as corollaries.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A matrix A is called an M-matrix if A has non-positive off-diagonal entries and the eigenvalues of A have positive real part. There are many equivalent characterizations of M-matrices, see [3], for instance, A is an M-matrix if A is nonsingular and A^{-1} is a nonnegative matrix. However, in general a nonnegative matrix is not necessarily the inverse of an M-matrix. A nonsingular matrix A is called an inverse M matrix if A^{-1} is an M-matrix. A first study in finding sufficient conditions for a nonnegative symmetric

[^0]matrix to be an inverse M-matrix was conducted in [11] by Markham, and it was also shown in [11] that the inverse of a type- D matrix A with positive (1,1)th entry is a tridiagonal M-matrix. Since then, many efforts have been devoted to characterize nonnegative matrices whose inverses are M-matrices [$1,6,7,13$], and certain special inverse M-matrices such as ultrametric matrices have been investigated in [8-10,12]. Researchers call this problem the inverse M-matrix problem [13]. However, until now only few sufficient conditions were developed.

The aim of this paper is to provide some characterizations for nonnegative matrices with special zero patterns to be inverse M-matrices. A necessary and sufficient condition for a matrix to be an inverse M-matrix will be given in Section 2, and this main result will be used in Section 3 to study certain special matrices, namely, k-diagonal matrices and triadic matrices.

We first fix some notation. Denote by $\langle n\rangle$ the index set $\{1, \ldots, n\}$ for positive integer n. For notation convenience, we set $\langle n\rangle=\emptyset$ if $n \leqslant 0$. Let α and β be nonempty ordered subsets of $\langle n\rangle$, both of strictly increasing integers. Then $A[\alpha, \beta]$ is the submatrix of A with rows indexed by α and columns indexed by β. For simplicity, we write $A[\alpha]=A[\alpha, \alpha]$. It is not surprising that inverse M-matrices inherit certain considerable properties from M-matrices. Here, we list some properties that will be frequently used in this paper.

Suppose A is an inverse M-matrix.
(P1) A is a nonnegative matrix with positive diagonal entries.
(P2) All principal submatrices of A are inverse M-matrices.
(P3) For any permutation matrix $P, P^{T} A P$ is an inverse M-matrix.
(P4) For any $\alpha \subseteq\langle n\rangle$, the Schur complement of $A / A[\alpha]$ is an inverse M-matrix.
To present the next property, we require the following definition. A nonnegative matrix $B=\left[b_{i j}\right]$ is called zero-pattern invariant if for any i, j, the (i, j) th entry of B equals zero if and only if

$$
b_{i j}=0 \Longleftrightarrow b_{i k} b_{k j}=0 \text { for all } k .
$$

Indeed, if B is zero-pattern invariant, then every power B^{n} of B has the same zero pattern as B. Let $A=\left[a_{i j}\right]$ be an inverse M-matrix. Then (P1) implies that A has positive diagonal entries and (P4) implies that the Schur complement $A /\left[a_{k k}\right]$ is an inverse M-matrix for all k and hence $A /\left[a_{k k}\right]$ is nonnegative. Then for any distinct i, j and k,

$$
a_{i j}-\frac{a_{i k} a_{k j}}{a_{k k}} \geqslant 0 .
$$

It follows that $a_{i j}=0$ implies $a_{i k} a_{k j}=0$ for all k. Then

$$
a_{i j}=0 \Longrightarrow \sum_{k} a_{i k} a_{k j}=0 \Longrightarrow a_{i j} a_{j j}=0 \Longrightarrow a_{i j}=0
$$

Thus, we have the following property.
(P5) Every inverse M-matrix is zero-pattern invariant.
It has to be noted that (P5) is equivalent to a well known fact that the directed graph of every inverse M-matrix is transitively closed. That is, in the directed graph of an inverse M-matrix, there exists a path form i to j if and only if there is an edge from i to j (see e.g., [7,10]). For a more detailed description of inverse M-matrices, we refer readers to [3,5].

2. Main result

We now present the main theorem of the paper.
Theorem 1. Suppose $A=\left[a_{i j}\right]$ is an $n \times n$ nonnegative matrix with positive diagonal entries. Define the ordered index sets

$$
\gamma_{i}=\left\{k \in\langle n\rangle: a_{i k}>0\right\} \text { and } \rho_{j}=\left\{k \in\langle n\rangle: a_{k j}>0\right\} \text { for all } i, j \in\langle n\rangle .
$$

Then the following are equivalent.
(a) A is an inverse M-matrix;
(b) A is zero-pattern invariant and the principal submatrix $A\left[\gamma_{i}\right]$ is an inverse M-matrix for all $i \in\langle n\rangle$;
(c) A is zero-pattern invariant and the principal submatrix $A\left[\rho_{j}\right]$ is an inverse M-matrix for all $j \in\langle n\rangle$.

Proof. The implications (a) \Rightarrow (b) and (a) \Rightarrow (c) clearly follow from (P2) and (P5). We now prove (b) \Rightarrow (a). The proof for $(c) \Rightarrow(a)$ is similar.

Assume (b) holds. Fixed any arbitrary $i \in\langle n\rangle$. We choose a sequence $i_{1}, \ldots, i_{m} \in\langle n\rangle$ with $i_{1}=i$ such that

$$
\gamma_{i_{k+1}} \backslash \gamma_{i_{k}} \neq \emptyset \text { for all } k=1, \ldots, m-1 \text { and } \bigcup_{k=1}^{m} \gamma_{i_{k}}=\langle n\rangle .
$$

Define $\alpha_{1}=\gamma_{i_{1}}$ and $\alpha_{k}=\gamma_{i_{k}} \backslash\left(\gamma_{i_{1}} \cup \cdots \cup \gamma_{i_{k-1}}\right)$ for $k=2, \ldots, m$. Then for any $k<\ell$,

$$
\alpha_{k} \cap \alpha_{\ell}=\emptyset \quad \text { and } \quad \bigcup_{k=1}^{m} \alpha_{k}=\langle n\rangle .
$$

Suppose $k<\ell$ and take any arbitrary $(r, s) \in \alpha_{k} \times \alpha_{\ell}$. Notice that $r \in \gamma_{i_{k}}$ while $s \notin \gamma_{i_{k}}$. Hence, $a_{i_{k} r} \neq$ 0 and $a_{i k s}=0$. Then zero-pattern invariant property ensures that $a_{i_{k} r} a_{r s}=0$ and thus $a_{r s}=0$. In short,

$$
a_{r s}=0 \text { for all }(r, s) \in \alpha_{k} \times \alpha_{\ell} \text { with } k<\ell .
$$

From this, there exists a permutation matrix P such that

$$
P^{T} A P=\left[\begin{array}{cccc}
A\left[\alpha_{1}\right] & 0 & \cdots & 0 \\
* & A\left[\alpha_{2}\right] & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
* & \cdots & * & A\left[\alpha_{m}\right]
\end{array}\right]
$$

Furthermore, since $\gamma_{i_{k}} \subseteq \alpha_{1} \cup \cdots \cup \alpha_{k}, A\left[\gamma_{i_{k}}\right]$ is permutationally similar to

$$
\left[\begin{array}{cc}
A\left[\gamma_{i_{k}} \backslash \alpha_{k}\right] & 0 \\
* & A\left[\alpha_{k}\right]
\end{array}\right] .
$$

Then the assumption that $A\left[\gamma_{i_{k}}\right]$ is an inverse M-matrix ensures the invertibility of $A\left[\alpha_{k}\right]$ for all k, and therefore $P^{T} A P$ is invertible. Moreover,

$$
P^{T} A^{-1} P=\left(P^{T} A P\right)^{-1}=\left[\begin{array}{cc}
\left(A\left[\alpha_{1}\right]\right)^{-1} & 0 \\
* & *
\end{array}\right]=\left[\begin{array}{cc}
\left(A\left[\gamma_{i}\right]\right)^{-1} & 0 \\
* & *
\end{array}\right] .
$$

By the assumption, $A\left[\gamma_{i}\right]$ is an inverse M-matrix and hence $\left(A\left[\gamma_{i}\right]\right)^{-1}$ has non-positive off-diagonal entries only. In particular, all off-diagonal entries in the i th row of A^{-1} are non-positive. As i is arbitrary, we conclude that A^{-1} has non-positive off-diagonal entries only. Therefore, A is an inverse M-matrix.

A few remarks on Theorem 1. By (P1) and (P5), it is natural to assume in Theorem 1 that A is zeropattern invariant and has positive diagonal entries. On the other hand, given an $n \times n$ matrix A with the above mentioned properties, to determine whether A is an inverse M-matrix, by applying Theorem 1 , one only needs to check whether the n principal submatrices $A\left[\gamma_{1}\right], \ldots, A\left[\gamma_{n}\right]$ are inverse M-matrices. In particular, if $\left|\gamma_{i}\right| \leqslant k<n$ for all $i \in\langle n\rangle$, one only has to consider n submatrices of A which are of size
at most k. It will be definitely an advantage in computation if k is much smaller than n. To illustrate this, let us consider the following simple example.

Example 1. Let

$$
A=\left[\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

First it can be checked that A is zero-pattern invariant. Since

$$
\gamma_{1}=\{1,3,5\}, \quad \gamma_{2}=\{2,3\}, \quad \gamma_{3}=\{3\}, \quad \gamma_{4}=\{2,3,4\}, \quad \text { and } \quad \gamma_{5}=\{3,5\},
$$

one suffices to check the submatrices

$$
A[\{1,3,5\}]=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right] \text { and } A[\{2,3,4\}]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right] .
$$

Observe that both these two matrices are inverse M-matrix matrices, so as A by Theorem 1. Indeed,

$$
A^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & -1 & 0 & 1 & 0 \\
0 & 0 & -1 & 0 & 1
\end{array}\right]
$$

The following corollary is immediate from Theorem 1.
Corollary 2. Suppose A is an $n \times n$ matrix with at most k nonzero entries in every row (column). Then A is an inverse M-matrix if and only if A is zero-pattern invariant and every $k \times k$ principal submatrix of A is an inverse M-matrix.

3. k-Diagonal matrices and triadic matrices

The sufficient condition in Theorem 1 can be further reformulated if certain special zero pattern is imposed. A matrix $A=\left[a_{i j}\right]$ is called k-diagonal if $a_{i j}=0$ for all $|i-j|>\frac{k-1}{2}$. Obviously, we can always assume k is odd. Now we have the following series of results for k-diagonal matrices.

Theorem 3. Suppose A is an $n \times n$ nonnegative k-diagonal matrix with $1<k<n$. Then A is an inverse M-matrix if and only if A is zero-pattern invariant and the $(k-1) \times(k-1)$ principal submatrix

$$
A[\langle r\rangle \backslash\langle r-k+1\rangle]
$$

is an inverse M-matrix for all $r=k-1, \ldots, n$.
Proof. The necessity part is trivial by (P2) and (p5). For the sufficiency part, note that for any $i \in\langle n\rangle$, there is $k \leqslant r \leqslant n$ such that $A\left[\gamma_{i}\right]$ is a principal submatrix of the $k \times k$ matrix $A[\langle r\rangle \backslash\langle r-k\rangle]$. By Theorem 1 and (P2), it suffices to show that $A[\langle r\rangle \backslash\langle r-k\rangle]$ is an inverse M-matrix for all $r=k, \ldots, n$.

Let $B=\left[b_{i j}\right]=A[\langle r\rangle \backslash\langle r-k\rangle]$ and $p=\frac{k+1}{2}$. Clearly, B is a $k \times k$ nonnegative zero-pattern invariant k-diagonal matrix. By considering ($1, k$)th entry of B^{2} with the fact that $b_{1 k}=0$, we have

$$
0 \leqslant b_{1 p} b_{p k} \leqslant \sum_{j=1}^{k} b_{1 j} b_{j k}=0 .
$$

Then either $b_{1 p}=0$ or $b_{p k}=0$. If $b_{p k}=0$, then B has at most $k-1$ nonzero entries in every row. Define $\beta_{i}=\left\{\ell: b_{i \ell}>0\right\}$ for $i \in\langle k\rangle$. Observe that $B\left[\beta_{i}\right]$ is a principal submatrix of either

$$
B[\langle k-1\rangle]=A[\langle r-1\rangle \backslash\langle r-k\rangle] \quad \text { or } B[\langle k\rangle \backslash\langle 1\rangle]=A[\langle r\rangle \backslash\langle r-k+1\rangle] .
$$

By assumption, both these two matrices are inverse M-matrices. Thus, $B\left[\beta_{i}\right]$ is an inverse M-matrix and the same conclusion occurs to B by Theorem 1. If $b_{1 p}=0$, then B has at most $k-1$ nonzero entries in every column. By a similar argument, the result follows by considering $\tau_{j}=\left\{\ell: b_{\ell j}>0\right\}$.

If A is also symmetric, then one only needs to consider submatrices with size $\frac{k+1}{2}$ as shown below.
Corollary 4. Suppose $1<k<n$ and A is an $n \times n$ nonnegative symmetric k-diagonal matrix. Then A is an inverse M-matrix if and only if A is zero-pattern invariant and the $p \times p$ principal submatrix

$$
A[\langle r\rangle \backslash\langle r-p\rangle]
$$

is an inverse M-matrix for all $r=p, \ldots, n$, where $p=\frac{k+1}{2}$.
Proof. If A is an inverse M-matrix, obviously the conclusion is true by (P2) and (P5). Conversely, to get the result, it suffices to show that every $A\left[\gamma_{i}\right]$ is a principal submatrix of $A[\langle r\rangle \backslash\langle r-p\rangle]$ for some $p \leqslant r \leqslant n$.

To see this, suppose $a_{i s}$ and $a_{i t}$ are the first and the last nonzero entries in the i th row, respectively. Notice that the (s, t) th entry of A^{2} is equal to

$$
\sum_{\ell=1}^{n} a_{s \ell} a_{\ell t} \geqslant a_{s i} a_{i t}=a_{i s} a_{i t}>0
$$

Because of the zero-pattern invariance property, A^{2} is also k-diagonal and so $|t-s| \leqslant \frac{k-1}{2}<p$. Then $\gamma_{i} \subseteq\{s, \ldots, t\} \subseteq\langle t\rangle \backslash\langle t-p\rangle$, and therefore, $A\left[\gamma_{i}\right]$ is a principal submatrix of $A[\langle t\rangle \backslash\langle t-p\rangle]$.

Notice that a 2×2 nonnegative matrix B is an inverse M-matrix if and only if the determinant of B is positive. Then Theorem 3 implies the following.

Corollary 5. Suppose A is a nonnegative tridiagonal matrix. Then A is an inverse M-matrix if and only if A is a zero-pattern invariant matrix with all its principal minors of order 2 being positive.

For 3×3 case, we have the following equivalent conditions for inverse M-matrix, which can be found in $[4,13]$.

Lemma 6. Suppose $A=\left[a_{i j}\right]$ is a 3×3 nonnegative matrix with positive diagonal entries. Then the following are equivalent.
(a) A is an inverse M-matrix;
(b) For any distinct i, j and k,

$$
a_{i j} a_{j i}<a_{i i} a_{j j} \text { and } a_{i k} a_{k j} \leqslant a_{i j} a_{k k}
$$

(c) The Schur complements $A /\left[a_{11}\right], A /\left[a_{22}\right]$, and $A /\left[a_{33}\right]$ are nonnegative with positive diagonal entries.

Now Theorem 3 and Lemma 6 give the following result.
Corollary 7. Suppose $A=\left[a_{i j}\right]$ is a nonnegative symmetric 5 -diagonal matrix with positive diagonal entries. Then A is an inverse M-matrix if and only if the Schur complement $A /\left[a_{j j}\right]$ is nonnegative with positive diagonal entries for all $j \in\langle n\rangle$.

Proof. The necessity part is clear by (P1) and (P4). For the sufficiency part, suppose the Schur complement $A /\left[a_{j j}\right]$ is nonnegative with positive diagonal entries for all $j \in\langle n\rangle$. Then for any distinct i, j and k,

$$
a_{i j} a_{j i}<a_{i i} a_{j j} \text { and } a_{i k} a_{k j} \leqslant a_{i j} a_{k k} .
$$

So $a_{i j}=0$ implies $a_{i k} a_{k j}=0$ and hence $\sum_{k=1}^{n} a_{i k} a_{k j}=0$. Thus, A is zero-pattern invariant. Also by Lemma 6, the submatrix $A[\langle r\rangle \backslash\langle r-3\rangle]$ is an inverse M-matrix for all $r=3, \ldots, n$. Then the result follows by Theorem 3.

A matrix A is called a triadic matrix if each row of A has at most two nonzero off-diagonal entries. Obviously, a tridiagonal matrix is a special case. We remark that this definition is slightly different from the one given by Fang and O'leary in [2]. By a similar argument as in the proof of Corollary 7, we have the following result for triadic matrices.

Theorem 8. Suppose $A=\left[a_{i j}\right]$ is a nonnegative triadic matrix with positive diagonal entries. Then A is an inverse M-matrix if and only if the Schur complement $A /\left[a_{j j}\right]$ is nonnegative with positive diagonal entries for all $j \in\langle n\rangle$.

Corollary 9. Suppose A is a triadic (0,1)-matrix. Then A is an inverse M-matrix if and only if A is a nonsingular zero-pattern invariant matrix.

Proof. The necessity part is clear by (P5). Suppose A is nonsingular and zero-pattern invariant. Clearly, all its diagonal entries must be positive, i.e., $a_{j j}=1$. In addition, if $a_{i k} a_{k j} \neq 0$, then zero-pattern invariant property ensures $a_{i j} \neq 0$ and by the fact that A is a $(0,1)$-matrix, we conclude $a_{i k} a_{k j} \leqslant a_{i j} a_{k k}$ for all distinct i, j and k.

We next claim that $a_{i j} a_{j i}=0$ for all $i \neq j$. Suppose not, then $a_{i j}=a_{j i}=1$. For any $k \neq i$ and j,

$$
a_{i k}=0 \Rightarrow a_{i j} a_{j k}=0 \Rightarrow a_{j k}=0 \Rightarrow a_{j i} a_{i k}=0 \Rightarrow a_{i k}=0
$$

Therefore, $a_{i k}=0$ if and only if $a_{j k}=0$. In this case, the i th and j th rows of A are the same as A is a $(0,1)$-matrix. But this contradicts that A is nonsingular. So $a_{i j} a_{j i}=0$ and hence $a_{i j} a_{j i}<a_{i i} a_{j j}$. Since the above inequalities hold for any arbitrary distinct i, j and k, it can be concluded by Lemma 6 that any 3×3 principal submatrix of A is an inverse M-matrix. Then the result follows by Theorem 3.

Back to the Example before Corollary 2. Indeed, the matrix A in the example is a triadic zero-pattern invariant (0,1)-matrix. One can conclude directly by Corollary 9 that A is an inverse M-matrix, and the examination of those principal submatrices $A\left[\gamma_{i}\right]$ is actually redundant.

However, it has to be noted that the sufficiency part of Corollary 9 is not true if one removes the triadic condition. This can be seen by considering the following counter-example.

$$
B=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] \text { and } B^{-1}=\left[\begin{array}{cccc}
1 & -1 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Notice that B is a nonsingular zero-pattern invariant (0,1)-matrix, but B is not an inverse M-matrix.

References

[1] M. Fiedler, Special ultrametric matrices and graphs, SIAM J. Matrix Anal. Appl. 22 (2000) 106-113.
[2] H.R. Fang, D.P. O'leary, Stable factorizations of symmetric tridiagonal and triadic matrices, SIAM J. Matrix Anal. Appl. 28 (2006) 576-595.
[3] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[4] C.R. Johnson, R.L. Smith, Path product matrices and eventually inverse M-matrices, SIAM J. Matrix Anal. Appl. 29 (2007) 370-376.
[5] C.R. Johnson, Inverse M-matrice, Linear Algebra Appl. 47 (1982) 159-216.
[6] I. Koltracht, M. Neumann, On the inverse M-matrix problem for real symmetric positive-definite Toeplitz matrices, SIAM J. Matrix Anal. Appl. 12 (1991) 310-320.
[7] M. Lewin, M. Neumann, On the inverse M-matrix problem for (0,1)-matrices, Linear Algebra Appl. 30 (1980) 41-50.
[8] S. Martinez, J.S. Martin, X.D. Zhang, A new class of inverse M-matrices of tree-like type, SIAM J. Matrix Anal. Appl. 24 (2003) 1136-1148.
[9] J.J. McDonald, M. Neumann, H. Schneider, M.J. Tsatsomeros, Inverse M-matrix inequalities and generalized ultrametric matrices, Linear Algebra Appl. 220 (1995) 321-341.
[10] J.J. McDonald, M. Neumann, H. Schneider, M.J. Tsatsomeros, Inverses of unipathic M-matrices, SIAM J. Matrix Anal. Appl. 11 (1996) 1025-1036.
[11] T.L. Markham, Nonnegative matrices whose inverse are M-matrices, Proc. Amer. Math. Soc. 36 (1972) 326-330.
[12] R. Nabben, R.S. Varga, Generalized ultrametric matrices class of inverse M-matrices, Linear Algebra Appl. 220 (1995) 365-390.
[13] R.A. Willoughby, The inverse M-matrix problem, Linear Algebra Appl. 18 (1977) 75-94.

[^0]: * Corresponding author.

 E-mail addresses: rough2007@yahoo.cn (R. Huang), liujz@xtu.edu.cn (J. Liu), raymond.sze@inet.polyu.edu.hk (N.-S. Sze).
 ${ }^{1}$ This work was supported by China Postdoctoral Science Foundation (No. 20090451103), the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20094301120002) and the Research Foundation of Education Bureau of Hunan Province, China (No. 09C942).
 ${ }^{2}$ This work was supported by a NSFC Grant 10971176.

