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for triadicmatrices, tridiagonalmatrices and symmetric 5-diagonal

matrices are presented as corollaries.
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1. Introduction

Amatrix A is called anM-matrix if A has non-positive off-diagonal entries and the eigenvalues of A

havepositive real part. There aremanyequivalent characterizations ofM-matrices, see [3], for instance,

A is anM-matrix ifA is nonsingular andA−1 is a nonnegativematrix. However, in general a nonnegative

matrix is not necessarily the inverse of an M-matrix. A nonsingular matrix A is called an inverse M-

matrix if A−1 is anM-matrix. A first study in finding sufficient conditions for a nonnegative symmetric
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matrix to be an inverse M-matrix was conducted in [11] by Markham, and it was also shown in [11]

that the inverse of a type-Dmatrix Awith positive (1,1)th entry is a tridiagonalM-matrix. Since then,

many efforts have been devoted to characterize nonnegative matrices whose inverses areM-matrices

[1,6,7,13], and certain special inverseM-matrices such as ultrametric matrices have been investigated

in [8–10,12]. Researchers call this problem the inverse M-matrix problem [13]. However, until now only

few sufficient conditions were developed.

The aim of this paper is to provide some characterizations for nonnegative matrices with special

zero patterns to be inverse M-matrices. A necessary and sufficient condition for a matrix to be an

inverse M-matrix will be given in Section 2, and this main result will be used in Section 3 to study

certain special matrices, namely, k-diagonal matrices and triadic matrices.

We first fix some notation. Denote by 〈n〉 the index set {1, . . . , n} for positive integer n. For notation
convenience, we set 〈n〉 = ∅ if n� 0. Let α and β be nonempty ordered subsets of 〈n〉, both of strictly

increasing integers. Then A[α,β] is the submatrix of Awith rows indexed byα and columns indexed by

β . For simplicity, we write A[α] = A[α,α]. It is not surprising that inverseM-matrices inherit certain

considerable properties from M-matrices. Here, we list some properties that will be frequently used

in this paper.

Suppose A is an inverse M-matrix.

(P1) A is a nonnegative matrix with positive diagonal entries.

(P2) All principal submatrices of A are inverse M-matrices.

(P3) For any permutation matrix P, PTAP is an inverse M-matrix.

(P4) For any α ⊆ 〈n〉, the Schur complement of A/A[α] is an inverse M-matrix.

To present the next property, we require the following definition. A nonnegative matrix B = [bij]
is called zero-pattern invariant if for any i, j, the (i, j)th entry of B equals zero if and only if

bij = 0 ⇐⇒ bikbkj = 0 for all k.

Indeed, if B is zero-pattern invariant, then every power Bn of B has the same zero pattern as B. Let

A = [aij]bean inverseM-matrix. Then (P1) implies thatAhaspositivediagonal entries and (P4) implies

that the Schur complement A/[akk] is an inverseM-matrix for all k and hence A/[akk] is nonnegative.
Then for any distinct i, j and k,

aij − aikakj

akk
� 0.

It follows that aij = 0 implies aikakj = 0 for all k. Then

aij = 0 	⇒ ∑
k

aikakj = 0 	⇒ aijajj = 0 	⇒ aij = 0.

Thus, we have the following property.

(P5) Every inverseM-matrix is zero-pattern invariant.

It has to be noted that (P5) is equivalent to awell known fact that the directed graph of every inverse

M-matrix is transitively closed. That is, in the directed graph of an inverse M-matrix, there exists a

path form i to j if and only if there is an edge from i to j (see e.g., [7,10]). For amore detailed description

of inverseM-matrices, we refer readers to [3,5].

2. Main result

We now present the main theorem of the paper.

Theorem 1. Suppose A = [aij] is an n × n nonnegative matrix with positive diagonal entries. Define the

ordered index sets
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γi = {k ∈ 〈n〉 : aik > 0} and ρj = {k ∈ 〈n〉 : akj > 0} for all i, j ∈ 〈n〉.
Then the following are equivalent.

(a) A is an inverse M-matrix;
(b) A is zero-pattern invariant and the principal submatrix A[γi] is an inverse M-matrix for all i ∈ 〈n〉;
(c) A is zero-pattern invariant and the principal submatrix A[ρj] is an inverse M-matrix for all j ∈ 〈n〉.

Proof. The implications (a)⇒ (b) and (a)⇒ (c) clearly follow from (P2) and (P5).We nowprove (b)⇒
(a). The proof for (c)⇒ (a) is similar.

Assume (b) holds. Fixed any arbitrary i ∈ 〈n〉. We choose a sequence i1, . . . , im ∈ 〈n〉 with i1 = i

such that

γik+1
\γik /= ∅ for all k = 1, . . . , m − 1 and

m⋃
k=1

γik = 〈n〉.

Define α1 = γi1 and αk = γik\(γi1 ∪ · · · ∪ γik−1
) for k = 2, . . . , m. Then for any k < �,

αk ∩ α� = ∅ and

m⋃
k=1

αk = 〈n〉.

Suppose k < � and take any arbitrary (r, s) ∈ αk × α�. Notice that r ∈ γik while s /∈ γik . Hence, aikr /=
0 and aiks = 0. Then zero-pattern invariant property ensures that aikrars = 0 and thus ars = 0. In

short,

ars = 0 for all (r, s) ∈ αk × α� with k < �.

From this, there exists a permutation matrix P such that

PTAP =

⎡
⎢⎢⎢⎢⎢⎣

A[α1] 0 · · · 0

∗ A[α2] . . .
...

...
. . .

. . . 0

∗ · · · ∗ A[αm]

⎤
⎥⎥⎥⎥⎥⎦ .

Furthermore, since γik ⊆ α1 ∪ · · · ∪ αk, A[γik ] is permutationally similar to[
A[γik\αk] 0

∗ A[αk]
]

.

Then the assumption that A[γik ] is an inverseM-matrix ensures the invertibility of A[αk] for all k, and
therefore PTAP is invertible. Moreover,

PTA−1P = (PTAP)−1 =
[
(A[α1])−1 0

∗ ∗
]

=
[
(A[γi])−1 0

∗ ∗
]

.

By the assumption, A[γi] is an inverse M-matrix and hence (A[γi])−1 has non-positive off-diagonal

entries only. In particular, all off-diagonal entries in the ith row of A−1 are non-positive. As i is

arbitrary, we conclude that A−1 has non-positive off-diagonal entries only. Therefore, A is an inverse

M-matrix. �

A few remarks on Theorem 1. By (P1) and (P5), it is natural to assume in Theorem 1 that A is zero-

pattern invariant andhas positive diagonal entries. On the other hand, given an n × nmatrixAwith the

above mentioned properties, to determine whether A is an inverseM-matrix, by applying Theorem 1,

one only needs to check whether the n principal submatrices A[γ1], . . . , A[γn] are inverseM-matrices.

In particular, if |γi| � k < n for all i ∈ 〈n〉, one only has to consider n submatrices of Awhich are of size
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at most k. It will be definitely an advantage in computation if k is much smaller than n. To illustrate

this, let us consider the following simple example.

Example 1. Let

A =

⎡
⎢⎢⎢⎢⎣
1 0 1 0 1

0 1 1 0 0

0 0 1 0 0

0 1 1 1 0

0 0 1 0 1

⎤
⎥⎥⎥⎥⎦ .

First it can be checked that A is zero-pattern invariant. Since

γ1 = {1, 3, 5}, γ2 = {2, 3}, γ3 = {3}, γ4 = {2, 3, 4}, and γ5 = {3, 5},
one suffices to check the submatrices

A[{1, 3, 5}] =
⎡
⎣1 1 1

0 1 0

0 1 1

⎤
⎦ and A[{2, 3, 4}] =

⎡
⎣1 1 0

0 1 0

1 1 1

⎤
⎦ .

Observe that both these two matrices are inverse M-matrix matrices, so as A by Theorem 1. Indeed,

A−1 =

⎡
⎢⎢⎢⎢⎣
1 0 0 0 −1

0 1 −1 0 0

0 0 1 0 0

0 −1 0 1 0

0 0 −1 0 1

⎤
⎥⎥⎥⎥⎦ .

The following corollary is immediate from Theorem 1.

Corollary 2. Suppose A is an n × n matrix with at most k nonzero entries in every row (column). Then A

is an inverse M-matrix if and only if A is zero-pattern invariant and every k × k principal submatrix of A is

an inverse M-matrix.

3. k-Diagonal matrices and triadic matrices

The sufficient condition in Theorem 1 can be further reformulated if certain special zero pattern

is imposed. A matrix A = [aij] is called k-diagonal if aij = 0 for all |i − j| > k−1
2

. Obviously, we can

always assume k is odd. Now we have the following series of results for k-diagonal matrices.

Theorem 3. Suppose A is an n × n nonnegative k-diagonal matrix with 1 < k < n. Then A is an inverse

M-matrix if and only if A is zero-pattern invariant and the (k − 1) × (k − 1) principal submatrix

A[〈r〉\〈r − k + 1〉]
is an inverse M-matrix for all r = k − 1, . . . , n.

Proof. The necessity part is trivial by (P2) and (p5). For the sufficiency part, note that for any i ∈ 〈n〉,
there is k � r � n such thatA[γi] is a principal submatrix of the k × kmatrixA[〈r〉\〈r − k〉]. By Theorem
1 and (P2), it suffices to show that A[〈r〉\〈r − k〉] is an inverse M-matrix for all r = k, . . . , n.

LetB = [bij] = A[〈r〉\〈r − k〉] andp = k+1
2

. Clearly,B is a k × knonnegative zero-pattern invariant

k-diagonal matrix. By considering (1, k)th entry of B2 with the fact that b1k = 0, we have

0� b1pbpk �
k∑

j=1

b1jbjk = 0.
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Then either b1p = 0 or bpk = 0. If bpk = 0, then B has at most k − 1 nonzero entries in every row.

Define βi = {� : bi� > 0} for i ∈ 〈k〉. Observe that B[βi] is a principal submatrix of either

B[〈k − 1〉] = A[〈r − 1〉\〈r − k〉] or B[〈k〉\〈1〉] = A[〈r〉\〈r − k + 1〉].
By assumption, both these two matrices are inverse M-matrices. Thus, B[βi] is an inverse M-matrix

and the same conclusion occurs to B by Theorem1. If b1p = 0, then B has atmost k − 1 nonzero entries

in every column. By a similar argument, the result follows by considering τj = {� : b�j > 0}. �

If A is also symmetric, then one only needs to consider submatrices with size k+1
2

as shown below.

Corollary 4. Suppose 1 < k < n and A is an n × n nonnegative symmetric k-diagonal matrix. Then A is

an inverse M-matrix if and only if A is zero-pattern invariant and the p × p principal submatrix

A[〈r〉\〈r − p〉]
is an inverse M-matrix for all r = p, . . . , n, where p = k+1

2
.

Proof. If A is an inverse M-matrix, obviously the conclusion is true by (P2) and (P5). Conversely, to

get the result, it suffices to show that every A[γi] is a principal submatrix of A[〈r〉\〈r − p〉] for some

p� r � n.

To see this, suppose ais and ait are the first and the last nonzero entries in the ith row, respectively.

Notice that the (s, t)th entry of A2 is equal to

n∑
�=1

as�a�t � asiait = aisait > 0.

Because of the zero-pattern invariance property, A2 is also k-diagonal and so |t − s| � k−1
2

< p. Then

γi ⊆ {s, . . . , t} ⊆ 〈t〉\〈t − p〉, and therefore, A[γi] is a principal submatrix of A[〈t〉\〈t − p〉]. �

Notice that a 2 × 2 nonnegative matrix B is an inverse M-matrix if and only if the determinant of

B is positive. Then Theorem 3 implies the following.

Corollary 5. Suppose A is a nonnegative tridiagonal matrix. Then A is an inverse M-matrix if and only if A

is a zero-pattern invariant matrix with all its principal minors of order 2 being positive.

For 3 × 3 case, we have the following equivalent conditions for inverse M-matrix, which can be

found in [4,13].

Lemma 6. Suppose A = [aij] is a 3 × 3 nonnegative matrix with positive diagonal entries. Then the

following are equivalent.

(a) A is an inverse M-matrix;
(b) For any distinct i, j and k,

aijaji < aiiajj and aikakj � aijakk.

(c) The Schur complements A/[a11], A/[a22], andA/[a33]are nonnegativewith positive diagonal entries.

Now Theorem 3 and Lemma 6 give the following result.

Corollary 7. Suppose A = [aij] is a nonnegative symmetric 5-diagonal matrix with positive diagonal

entries. Then A is an inverse M-matrix if and only if the Schur complement A/[ajj] is nonnegative with

positive diagonal entries for all j ∈ 〈n〉.
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Proof. The necessity part is clear by (P1) and (P4). For the sufficiency part, suppose the Schur com-

plement A/[ajj] is nonnegative with positive diagonal entries for all j ∈ 〈n〉. Then for any distinct i, j

and k,

aijaji < aiiajj and aikakj � aijakk.

So aij = 0 implies aikakj = 0 and hence
∑n

k=1 aikakj = 0. Thus, A is zero-pattern invariant. Also by

Lemma 6, the submatrix A[〈r〉\〈r − 3〉] is an inverse M-matrix for all r = 3, . . . , n. Then the result

follows by Theorem 3. �

A matrix A is called a triadic matrix if each row of A has at most two nonzero off-diagonal entries.

Obviously, a tridiagonal matrix is a special case. We remark that this definition is slightly different

from the one given by Fang and O’leary in [2]. By a similar argument as in the proof of Corollary 7, we

have the following result for triadic matrices.

Theorem 8. Suppose A = [aij] is a nonnegative triadic matrix with positive diagonal entries. Then A is an

inverse M-matrix if and only if the Schur complement A/[ajj] is nonnegative with positive diagonal entries

for all j ∈ 〈n〉.
Corollary 9. Suppose A is a triadic (0,1)-matrix. Then A is an inverse M-matrix if and only if A is a

nonsingular zero-pattern invariant matrix.

Proof. The necessity part is clear by (P5). Suppose A is nonsingular and zero-pattern invariant. Clearly,

all its diagonal entriesmust be positive, i.e., ajj = 1. In addition, if aikakj /= 0, then zero-pattern invari-

ant property ensures aij /= 0 and by the fact that A is a (0,1)-matrix, we conclude aikakj � aijakk for all

distinct i, j and k.

We next claim that aijaji = 0 for all i /= j. Suppose not, then aij = aji = 1. For any k /= i and j,

aik = 0 ⇒ aijajk = 0 ⇒ ajk = 0 ⇒ ajiaik = 0 ⇒ aik = 0.

Therefore, aik = 0 if and only if ajk = 0. In this case, the ith and jth rows of A are the same as A is a

(0,1)-matrix. But this contradicts that A is nonsingular. So aijaji = 0 and hence aijaji < aiiajj . Since the

above inequalities hold for any arbitrary distinct i, j and k, it can be concluded by Lemma 6 that any

3 × 3 principal submatrix of A is an inverse M-matrix. Then the result follows by Theorem 3. �

Back to the Example before Corollary 2. Indeed, thematrix A in the example is a triadic zero-pattern

invariant (0,1)-matrix. One can conclude directly by Corollary 9 that A is an inverseM-matrix, and the

examination of those principal submatrices A[γi] is actually redundant.

However, it has to be noted that the sufficiency part of Corollary 9 is not true if one removes the

triadic condition. This can be seen by considering the following counter-example.

B =
⎡
⎢⎢⎣
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

⎤
⎥⎥⎦ and B−1 =

⎡
⎢⎢⎣
1 −1 −1 1

0 1 0 −1

0 0 1 −1

0 0 0 1

⎤
⎥⎥⎦ .

Notice that B is a nonsingular zero-pattern invariant (0,1)-matrix, but B is not an inverse M-matrix.
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