non-inferior to enoxaparin/VKA for recurrent VTE (HR: 1.12, 95%CI 0.75-1.68) and demonstrated superior reduction in major bleeding (0.49, 95%CI 0.31-0.79; P<0.003). STUDY QUESTION: What is the incremental cost/QALY gained, from a Canadian provincial government perspective, for rivaroxaban compared to LMWH/VKA for treatment of VTE, over a 5 year horizon? METHODS: A Markov model was developed and evaluated in the middle-aged FE and elderly population. The model was run for 3, 6 or 12 months of treatment. Patients were exposed to treatment-specific risks of recurrent VTE and bleeding events, and associated mortality and long-term complications. Clinical inputs were from EINSTEIN-PE and published literature. Economic inputs were from publically available Canadian sources. Consistent with EINSTEIN-PE, a reduction in hospital length of stay was included for admitted patients treated with rivaroxaban. Utility inputs were from published literature. Extensive sensitivity analyses were conducted. RESULTS: Results were demonstrated at the economic burden and health care utilizations were significantly higher for patients with PTSD after UA diagnosis versus those without. Comorbid PTSD diagnosis was associated with increased medical care costs ($1,146 vs. $570, p<0.0001) and total costs ($3,793 vs. $2,492, P<0.0001), pharmacy costs ($6,679 vs. $2,492, P<0.0001), and emergency room visits ($2,492 vs. $82, P<0.0001). Women had significantly higher total costs ($3,793 vs. $2,492, P<0.0001) and pharmacy costs ($6,679 vs. $2,492, P<0.0001) than men. Mortality rates were 10.56% in patients with PTSD and 8.27% in those without PTSD (p=0.003). CONCLUSIONS: It is critical to investigate the use of value of information analyses to estimate the value of the prospective Potential of r-tPA for Ischemic Strokes with Mild Symptoms (PRISMS) trial studying recombinant tissue plasminogen activase (r-tPA) for the treatment of mild stroke patients. METHODS: We programmed a value of information model for the outcome of patients who were treated with vs. treated with r-tPA. We modeled specific stroke severity health states based on modified Rankin scores using Markov modeling techniques. Prostate cancer estimates of QALYs and direct costs in mild patients were derived from a subset of International Stroke Trial-3 patients. Utility and cost inputs were derived from other published sources. Model simulations assessed the expected value of the prospective trial and the expected value of reducing uncertainty in key trial endpoints. RESULTS: A Markov model was used to evaluate the adjusted life year of $100,000, the PRISMS trial’s expected value of sample information was approximately $1.1 billion. Uncertainty reduction in the absolute difference in nondisabled patients (mRS 0-1) between strategies had the greatest expected value at $963 million, followed by uncertainty reduction in the mRS distribution of r-tPA patients at $466 million. Reducing uncertainty in costs, long-term life expectancy, and utility measures did not offer any additional societal value. CONCLUSIONS: Our analysis supports the need for future clinical trials of r-tPA. Given the uncertainty regarding the potential value of research. The trial’s expected benefits could be compared to those of other competing research proposals when prioritizing future research funding.