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A partial ordering is defined for monotone projections f: N + N, N = ( 1,2,..., n), 
such that the class of these mappings is a lattice which is isomorphic to the 
partition lattice. Thus a partition can be uniquely represented by an element of this 
class of mappings and the partial ordering of partitions is preserved. Algorithms for 
computing the join and meet of given partitions are presented. 

1. INTR~OUCTI~N 

A partition 7c on a finite set N= { 1,2,..., n) is a collection of mutually 
disjoint nonempty subsets of N whose union is N. The members of a are 
called “blocks” or “equivalence classes.” If the elements a, b E N are in the 
same block of 71, this is indicated by a = b(n). The set of all partitions on N 
is denoted by n(N). It is well known that n(N) is a lattice with the partial 
ordering Q, such that for Vu, b E N, if a = b(n) implies a = b(t) then n Q r 
[3]. This ordering is by “refinement,” so that blocks of 7c are obtained by 
further partitioning of blocks in r. 

A partition n E n(N) can be represented by a mapping f: N-, N in the 
sense that a - b(n) if and only if f(a) = f(b), Certainly, there are many 
different mappings that can represent the same partition, that is, a represen- 
tation is by no means unique. Hutchinson [2] has given a set of rules for 
representing the partitions on a finite set of n elements by an n-tuple integer 
array, which can be considered as a mapping from N into itself, and an 
algorithm for generating these partitions. A loopless algorithm for generating 
th 

1 
partitions is also developed by Ehrlich [ 11. We define an alternate set of 

ru es for the representation of partitions which preserves the partial ordering. 

* This work was done while the author was at the Polytechnic Institute of New York, 
Brooklyn, New York. 
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That is, we define a class of mappings f: N+ N which have a partial 
ordering that is isomorphic to the partition lattice. Also, the representations 
by these mappings are unique. 

For an arbitrary mapping f: N+ N, we can always find a partition 
defined by 

7c= {flk)flk=f-‘(i),iERange f}. 

This partition induced by f will be denoted by N/f. In other words, if two 
elements i and j yield the same values off, they are in the same class of N/’ 
otherwise they are in different classes of N/f. As we discussed above we may 
have N/f = N/g for f # g. Thus in order to represent the partitions uniquely, 
additional criteria have to be imposed on the mappings. These criteria are 
given in the next section. Algorithms for calculating the join and meet of 
given partitions are presented in Section 4. 

2. PRELIMINARY RESULTS 

Let F(N) be the collection of all mappings from N into itself which satisfy 
the following criteria: 

Contruction: f(i) & i, Vi E N, (1) 

Zdempotent: f’(i) = f(i), Vi E N. (2) 

DEFINITION 1. For f,, fi E F(N), the binary relation f, Q f2 is defined 
by 

fi(i) = fi(j) implies h(i) = fd.9 Vi,jEN. (3) 

THEOREM 1. 

Forf,,f,EF(N),f,~f,ifff,f,=f,. (4) 

Proof: First we show f, Q f2 implies f2 f1 = f2. Since fi satisfies the 
idempotent criterion (2), fl(fi(i)) = fi(i), Vi EN. It follows from (3) that 
fi(fl(i)) = f2(i), Vi E N. Therefore, f2 fi = f2. Next we prove fif, = fi 
implies f, <A. Suppose fi(i) = h(j), then Hi) = f&Xi)) = AK(A) = 
f*(j). From (3) we know f, < f2. 

COROLLARY 1. 

For fly f2 E J’(Nh f, Q f2 implies f2(i) Q f,(i), ViE N. (5) 
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Proof: From (4) we know that f, < fi implies fiu,(i)) = fr(i), Vi E N. 
From the contraction criterion (1) we have f2(fi(i)) < fi(i), Vi E N, therefore 
f*(i) < fi(i), Vi E N and the corollary is proved. 

A binary relation < on a set X is called a “partial order” of X when it is 
reflexive, transitive, and antisymmetric. A set X with a partial order < is 
called a “poset” {X, <} [3]. The binary relation < on the set P(N) defined 
by (3) is obviously reflexive and transitive. From (5) of Corollary 1, we can 
verify tat the binary relation < on F(N) is antisymmetric. (It is a conse- 
quence of the fact that the binary relation “less than or equal to,” <, on the 
set of natural numbers is antisymmetric.) Thus the set F(N) with the partial 
ordering < is a poset. 

DEFINITION 2. A “join” (or, a “least upper bound”) of f,, f2 E F(N) is 
denoted by f, V f2, and has the property that for f = f, V fi, f, < f, f2 <f 
and for any g E F(N), f, < g, fi <g implies f < g. 

DEFINITION 3. A “meet” (or, a “greatest lower bound”) of fi , fi E F(N) 
is denoted by fi A fi, and has the property that for f = fi A f2, f < f,, 
f <f, and for any gEF(N), g<f,, g<f, implies g<f. 

In what follows we show how to construct a join and a meet for any f,, 
fi E F(N). Thus the poset {F(N), <} is a lattice {F(N), V, A}. Furthermore, 
we show it is isomorphic to the partition lattice. In order to make our 
constructions, we need the following definition. 

DEFINITION 4. For fi, fi E F(N), let h, be the identity mapping, 
h,(i) = i, Vi E N. For j = 1, 2 ,..., n, define h,,, = hj- i, and for k > 1, define 

hj,di) = hj,k - 1 (A 
if hj,k-l(i) >j and hj,k-l(j) 
satisfies either condition (a) or (b), 

(6) 
= hj,k- Iti) otherwise, 

for i = 1, 2,..., n, where conditions (a) and (b) are: 

(a> hj,k-ldfi(0) =hj.k-l(j) or hj,k-l(.ti(O) =hj,k-I(j). (7) 

(b) hj,k-i(m) = hj,k-l(j) and either 
f,(m) = i or f2(m) = i, for some m > i. (8) 

If kj is the smallest integer such that h,,,, = hj,k,+ i then define hi = h,,kj, 
j= 1, 2 ,.*., n. 
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THEOREM 2. The mappings hj,k have the following properties: 

(i) h,,,(j) = h,,,(j) = se- = h,,kj(j), for j= 1,2 ,..., n. (9) 
(ii) Ifhj,k-l(i)>j,thenhj.k-,(i)=...=hj,l(i)=hj_,,k,-,(i)=...= 

h,,,(i) = i, for j= 1, 2 ,..., it, and k > 1. (10) 

(iii) hj,k E F(N), for j = 1, 2 ,..., n, and k = l,.,,, kj, 

(iv) hjgk form an ascending chain such that 

h,=h,.,~.‘.~hl,k,=hl=hZ,,~..‘~hj,k, 

=hj=hj+l.,~“.(h,,kn=h,. (11) 

Proo$ (i) Since hj,1(j) < j, it follows from (6) that hi,,(j) =hj,,(j). 
Similarly, h,,,(j) = hj,k _ 1 (j), for k > 2. 

(ii) We prove (10) by contradiction. Suppose h,,k-,(i) = . . . = h,,,(i) = 
hj- Iskj-1 (i) = a.. = h,,Ji) # h,,p- I(i). According to (6), we must have 
~,,Ji) = h,, - 1 (4 < 1 < 1. It follows that hj,k-,(i) = h,,,(i) < j. But 
j,k-,(i) > j is given and therefore (10) must be true, 

(iii) First, we prove that hj,k satisfies the contraction criterion by 
mathematical induction. We have h,,,(i)=h,(i)=i<i, ViEN. If 
hj,k-l(i) < i, Vi E N, then from (7) we know either hj,k(i) = hJskVl(j) < 
j < hj,kml(i) < i, or hj,k(i) = h,,k-,(i) Q i: Therefore hj,k(i) < i, Vi E N and 
hj,k satisfies the contraction criterion (1). 

Next, we prove h,,k satisfies the idempotent criterion. Suppose 
h;,k-, = hj,k-, . We show hj,k = h,,k by considering the two possibilities: 

Case 1. hj,k(i) =hj,k-i(j). Since hj,k-i(j) < j, then h,,k--l(hj,k-l(j)) Q 
hj,k- i(j) < j. It follows from (6) that h,,k(h,,k(i)) = hl,k(hj,k--l(j)) = 
hj,k-l(hj,k-l(j)) = hj,k-l(j)= h,,k(i). 

Case 2* hj,k(i) =h,,k-I@). If h,,k-l(i) <j, then hj,k&,k-I(i)) < 
hj,k- I(i) < j. It fOllOWS from (6) that h,.dh,,k(i)) = h,,k(h,,k-l(i)) = 
hj,k- ,(hj,k- I(i)) = hj,k- l(i) = hJ+k(i). If hj,k- I(i) > j, it follows from (10) that 
hj,k-l(i) = i. COnseqUentlY, hj,k(hj,k(i)) = hj,k(hj,k-,(i)) = hj,k(i). Now we 
have hj,k(hj,k(i)) = hj,k(i), Vi E N. Therefore hj,k satisfies the idempotent 
criterion (2). 

(iv) From Theorem 1, we have to prove that h,,k(h,,k-,(i)) = hj,Ji), 
Vi E N. There are two possibilities: 

Case 1. h,,,-.,(i) <j. In this case, we have h,,k-,(h,,k-,(i)) < 
h,,k- i(i) < j. It follows from (6) that h,,k(i) = hj,k- i(i), and h,,k(hj,k- ,(i)) = 
hj.k- l(hj,k- I(i)> = hj,k- I(i). Hence hj,k(hj,k- I(i)) = hj,k(i). 
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Case 2. hj,k-l(i) >j. In this case, from (10) we have h,,k-,(i) = i. Hence 
hj,dhj,,- ,(iN = hj,k(i). Th us we have proven that hj,k < hj,k+ i and the 
mappings hj,k form an ascending chain, 

It should be noted that part (iv) of Theorem 2 implies there always exists 
a finite kj such that hj,k, = hj,kj+, . 

THEOREM 3. The mapping h, is the join off, and fi. 

Proof There are two parts to be proved. First, we show f, < h, and 
fi < h,. Next, we prove that if g E P(N), f, < g and fi < g imply h, < g. 

(i) We first prove f, < h, and f2 <h,. Let f,(i) =j, then 
hj,,(&(i)) = hj,I(j). If h,,,(i) > j, then since hi,,(j) satisfies condition (a) (7), 
we have h,,,(i) = Ai,,( From (11) we know hjq2 < h, , h,,, < h,. It follows 
that h,,(i) = h,(h,,,(i)) = h,(h,,,(j)) = h,(j) = h,OC(i)). On the other hand, if 
h,+,(i) Q j, there are two possibilities: 

Case 1. h,,dO = hj-,,kjJO = - = h,,,(i)= i. In this case, hj,l(i)= 
ig j, but given f,(i) = j< i. It follows that i = j = fi(i) and 
h,(f,(i)) = h,,(i). 

Case 2. 

hj,l(i) = hj-l.k,Ji) = *a- = hd) 
=h I,/+l(l). 
+ h,,,-,(O 

In this case, if h,Jj) > I, we know from (9) that h,,k(i) = h,,,-,(l) = h,,,(l). 
Since fi(i) = j < i, therefore h,,&) satisfies (S), condition (b). It follows 
from (6) that h I,k+ ,(j) = h&) = h,,,- 1(l) = hl,k(i). From (11) we have 
h,(j) = hn(hl,k+ 1 (j)) = h,(h,,,(i)) = h,(i). But h,df,(i)) = h,(j), therefore 
ifi({;yE = h,,(i). On the other hand, for h,,k(j) < 1, since 

-.a = h,,,(j) = h,-,,,,-,(j) = e-m = h,,,(j) = j< 1 
th&efore it must be 

is impossible, 

h,,k(j) = . . . = h,,,(j) = . . . = h,,,(j) 

I 

= hm*r-l(m)' 

+ h,,,- lU). 

From (6), we know that h,,,-,(i) > 1. It follows from (10) that 
h ,,k-I(i)=...=h,,l(i)=... =h,,,(i)=h,,,-,(i)=... =h!,,(i)=i. Since 
f,(i) = j is given we have h&f,(i)) = h,,,(j) = h,,,-,(m) = h,,,,(m), which 
implies h,,,(m) satisfies (7), the condition (a), and we know that h,,,,(i) = 
i > fi(i) = j > 12 m. From (6), we obtain i = h,,,,, l(i) = h,,,(m) = h,,,(j) = 
h,,,(fdiN. “h&-ore h,(i) E h#,,,+ ,(O) = h,(h,Jf,(i)) = U.f,(i)). From 
the above discussion we have h,df,(i)) = h,(i), Vi E N and f, Q h, . Similarly 
we have f2 < h,. This completes the first part of the proof. 
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(ii) We next prove that if g E F(N), f, Q g and fi < g imply h, Q g. 
From Theorem 1, we want to show gfi = g and dz = g imply gh, = g. 
From (1 l), we know that it is sufftcient to prove that gf, = g and gf, = g 
imply gh,., = g, for j = 1, 2 ,..., n, k = l,..., k,. Since hi,, = h, is the identity 
mapping, we have gh,,, = g. Suppose gh,,k-, = g; we show gh,,, = g by 
considering two possibilities: 

Case 1. hj,k(i) = h,,,-,(j) and h,,,-,(j) satisfies either condition (a) or 
condition (b). In this case, it follows that g(hj,Ji)) = g(hj,k-l(j)) = g(j). If 
hj,k-l(j) satisfies condition (a), then from (7) we have hj,k-l(&(i)) = 

hj,k-I(j), where f, is either f, or fz. It follows from the assumptions that 
g(hj,k-l(fs(i))) = df,GN = g(i) and g(hj,k-,(j)) = g(j). Thus, g(i) = g(j). 
Similarly, it can be shown that this is also true if h,,k-l(j) satisfies condition 
(b). Thus, we have g(hj,,(i)) = g(i) for Case 1. 

Case 2. hj,k(i) = hj,k-,(i). In this case, we have g(h,,,(i)) = 
g(hj,,- I(i)) = g(i). Hence, g(h,,,(i)) = g(i), Vi E N, and gh,,, = g. In 
particular, gh, = g. Therefore h, is the join of f, and f2. 

THEOREM 4. Forf,,f,EF(N),lerf(l)=l andforiZ2, 

f(i) = f(k) iffi(O = f,(k) and .4(i) = fd0 

forsomek=1,2 ,..., i-l. 

=I otherwise, 

(12) 

then f E F(N) is the meet off, and fi. 

Proof: We begin by proving f E F(N). 

(i) First we show that f satisfies the contraction criterion (1). The proof 
is by induction. Given f (1) = 1 ( 1, suppose f(i) < i, for i = 1,2 ,..., m < n. 
From (7), the definition of J we know that either f(m + 1) = m + 1, or 
f(m + 1) = f(k) < k for some k = 1,2,..., m. It follows that f(m + 1) < 
m + 1. By induction f(i) <i, Vi E N. Thus f satisfies the contraction 
criterion (1). 

(ii) Next we show that f satisfies idempotent criterion (2). The proof is 
also by induction. Given f(f(1)) = f(l), suppose f(J(i)) = i, for 
i 4 I, 2,..., m < n. From (7), we know that either f (m + 1) = m + 1 implies 
iy(rn + 1)) =* f(m + l), or f(m + 1) = f(k) for some k = 1,2 ,..., m. From 

assumptron, f df(m + 1)) = f (f(k)) = f(k) = f (m + 1). Therefore 
f(f(i)) = f(i), Vi E N by induction. Consequently f satisfies the idempotent 
criterion (2) and f E F(N). 

(iii) Now we prove f is the meet of f, and f2. First we show f < fi and 
f Q f2. The proof is by induction. Given f,(f(l)) = f,(l), suppose 
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fi(f(i)) = f,(i), for i = 1, 2 ,..., m < n. From (12), we know that either 
f(m + 1) = m + 1 implies f,(f(m + 1)) = fi(m + l), or f(m + 1) = f(k) for 
some k = 1, 2,..., m, such that f,(k) = fi(m + 1) and f,(k) = f,(m + l), but 
then f,(f(m + 1)) = fi((f(k)) = f,(k) = fr(m + 1). It follows that 
fi(f(i)) = fi(i), Vi EN by induction. Then we have f < fi from (4). 
Similarly f < fi. Thus f is a lower bound of f, and f,. 

(iv) Next we show f = f, A fi. For g E F(N), let g < f, and g < fi 
which imply fi g = f, and f2 g = fi due to (4). We want to show g < fi that 
is fg =f. The proof is again by induction. Given f(g( 1)) = f( I), suppose 
f(g(i))= f(i), for i= 1,2 ,..., m < )2. Then either g(m + 1) = m + 1 implies 
f(g(m+l))=f(m+l), or g(m+l)<m+l. Since we know 
f,(g(m + 1)) = fi(m + 1) and fi(g(m + 1)) = f2(m + l), it follows from (7) 
directly that f (m + 1) = f (g(m + 1)). By induction f( g(i)) = f(i), Vi E N. 
Therefore, g < f and f = f, A f2 . 

The above two theorems also state that {F(N), V, A} is a lattice. An 
example of how to calculate the join and meet for f,, f2 E F(N) is given in 
the next section. The algorithms are discussed in Section 4. 

Theorems 3 and 4 have given the join and meet of any two mappings f,, 
f2 E F(N). Neverheless, if more than two mappings f, ,..., f, E F(N), s > 2, 
are given, these theorems can be extended with appropriate modifications to 
find their join and meet as well. 

3. ORDER-PRESERVING REPRESENTATIONS 

In this section we show that every partition in n(N) can be uniquely 
represented by a mapping in F(N). Furthermore, the lattices F(N) and 17(N) 
are shown to be isomorphic, which is to say the partial ordering in n(N) is 
preserved in F(N). 

DEFINITION 5. For a given 71 = {N, , flz ,..., N,,, } E 17(N), the mapping 
f:N+Ndefined by 

f(i) = min flk, for iEflk,i= 1,2 ,..., n, (13) 

is called the “representation” of a. 

Clearly, not every mapping f : N -+ N can be a legitimate partition 
representation according to the rule given in (13). The following theorem 
shows that only mappings in F(N) can represent the partitions on N. 

THEOREM 5. The necessary and smcient conditions for f : N --) N to be 
a partition representation is f E F(N). 
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We want to prove the following: 

(i) For a given f: N --) N which satisfies the contraction and idem- 
potent criteria, let R = N/f = {fl,, flz,..., fl,,,} then f(i) = min flk, for i E flk 
and Vi E N. 

(ii) For a given partition a E n(N), let f be the partition represen- 
tation of R given by (13). Then f satisfies the contraction and idempotent 
criteria. 

Proof: (i) Let Nk= {k k i , 2 ,..., kj}, then f (k,) = L(k,) = a** = f (kj) = mk. 
From (l), we have mk < min{k,, k2 ,..., k,} = min Nk. From (2), we have 
f (mk) = f ‘(k,) = f(k,) = . .. = f *(kj] = f (k,) = f (k,) = . . . = f (k,) = mk. It 
follows that mk E !k and mk = min Nk. Thus we have f (k,) = f (k,) = . . . = 
f (kj) = mk = min Nk. 

(ii) For given K = (H,, Nz ,..., flm} E n(N), let f be deftned by (13), then 
f(i) = min flk for i E js,. It follows that f(i) = min !k < i. Thus f satisfies 
the contraction criterion (1). Also, f (f(i)) = f (min N,J = min flk = f(i), for 
i E Nk. We know that f satisfies the idempotent criterion (2). Consequently, 
f E F(N). . 

A morphism @ of two posets {L, (} and {M, <} is a function @: L --f A4 
such that 

a < b implies @(a) < O(b), Vu, b E L. (14) 

An isomorphism @ of two posets L and M is a bijection @: L + A4 such that 
both @ and a-’ are morphisms of posets. A morphism of lattices is a 
function @: L -PM on a lattice L to a lattice M such that 
@(a V 6) = @(a) V Q(b) and @(a A b) = @(a) A e(b) for all a, b EL. An 
isomorphism @ : L + M of lattices is a bijection which is also a morphism of 
lattices; its inverse is then automatically also a morphism of lattices. It 
should be noted that an isomorphism of posets which are lattices necessarily 
preserves join and meet, hence it is an isomorphism of lattices [3]. We prove 
an important theorem: 

THEOREM 6. The lattices {F(N), V, A} and {II(N), V, A} are isomorphic. 

Proof: Let @: F(N) + n(N) be defined by Q(f) = N/x Vf E F(N). We 
must show: 

(i) @ is bijection, (ii) @ satisfies (14). 

(i) For given JI gE F(N), and f # g, suppose @pdf) = N/f = II, 
Q(g) = N/g = r, and of = t = {fli ,..., fim}. We want to prove this is a 
contradiction. From Theorem 5, we know that f(i) = min flk, g(i) = min flk 
for i E fik ; then f(i) = g(i), Vi E N. But this is impossible for given f # g. 
It follows that @p(f) # @p(g) and thus @J is one-to-one. 
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For 71 = (1, ,..., For 71 = (1, ,..., R,} E 17(N), let f be given by (13). Then f(i) = min is, R,} E 17(N), let f be given by (13). Then f(i) = min is, 
for i E !k. It follo_ws that f(i) = min flk < i and f satisfies (1). Also, f*(i) = for i E !k. It follows that f(i) = min flk < i and f satisfies (1). Also, f’(i) = 
f (min Nk) = min flk = f(i) for min flk E flk. Therefore f satisfies (2). Hence f(min Nk) = min Nk = f(i) for min flk E flk. Therefore f satisfies (2). Hence 
f E F(N) and @J is onto. f E F(N) and @ is onto. 

(ii) Now we show that @ preserves the partial ordering. Let fi, f2 E F(N) 
and fi Q fi. Suppose @(f,) = z and @(fi) = 5. Then i =j(n) implies 
f,(i) = f,(j). It follows that f2(f,(i)) =fi(fi(j)). Since f, < fi by 
assumption, from (4) we have fi(i) = f,(j). Hence i = j(t). Consequently, 
@dfi) G @(fJ and @ is a morphism of F(N) and n(N). 

Theorems 3,4, 5, and 6 are illustrated by the following example, where the 
notation 

is used for f E F(N). 

EXAMPLE. Given n = (m, m6, 4,5,7), 
---- 

r = (1,3,6,2,8,4,5,7) E 
n(8). According to (13), the representations of K and 5 are: f, = G-‘(n) = 
( : : : : : i : t), fi=@-‘(z)=(: : i i : t : i). The join f, V fi is 
calculated according to Theorem 3 as follows. h,,, = h, = (: : : : : z : i). 
Since 4 ,(fO)) = h 

1’2343676 
,(l), W.M3)) = hl,lUh and WM6)) = hl,,W9 

h =(111*5171)’ 
:“z 3 4 5 6 7 8 

Since hz.lti@)) = h2,1(1)9 ht.3 = 

( , , , 4 s , 7 1), and h,,, =h,,3 implies h, =h1,3. Also we find that 
h2 = h,, h, = h,, and h,,, = h, = (: i i : : t : :). Since h4,,(f,(5)) = 
h4,1(4) and h4,l(fl(7))=h4,1(4h h4.2 = (: ? : : : ? : :), and h4,3 =h4,2 

implies h, = h,,,. Then we have h, = h,, h, = h,, h, = h,, h, = h,. Therefore 
h, = fi V f2. It should be noted that @(f, V f2) = (1,2,3,6,8, 4,5,7) = 
x V t = @(F,) V @(f2). The meet f = f, A f2 is calculated according to 
Theorem 4 as follows. f(1) = 1, f(2) = 2, f(3) = 3, f(4) = 4, 
f(5)=f(4)=4; since fi(5) = f,(4) and f2(5) = f2(4), f (6) = f (3) = 3; 
since f,(6) = f,(3) and f,(6) = f2(3), f(7) = 7, f(8) = 8. Therefore 
f =f1Af2=( : : : i : ; : i). We also find that @(f, A f2) = G(f) = 

------ 
(1,2,3,6,4,5,7,8) = n A t = @df,) A @df2). 

4. ALGORITHMS OF JOIN AND MEET 

We have proven that F(N) and n(N) are isomorphic. In order to obtain 
the join and meet of II, 7 E n(N), we can simply calculate the join and the 
meet of their representations. The algorithms of join and meet are given 
below : 
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Algorithm Join 

1. Read f, and fi. 

2. (Initialization) set A(i) = i, B(i) = i for i= 1, 2,..., n. [,4 and B 
correspond respectively to h,,k-l and hj,k in (6).] 

3. Do steps 4 to 8 for j = 1, 2 ,..., n. [At this step A = hj- , .] 

4. Set A(i) =B(i) for i= 1, 2 ,..., n. [At this step hj,kt h,+,.] 

5. Do steps 6 and 7 for i = 1, 2 ,..., n, as long as A(i) > j. 

6. If AV;(i))=A(j) or Au,(i)) = A(j) then set B(i) = A(j). [Test for 
condition a (7).] 

7. If A(m) = A(j) and &(m) = i of f2(m) = i for some m = i, i + I,..., n, 
then set B(i) = A(j). [Test for condition b (S).] 

8. If A(k) # B(k) for some k = 1, 2 ,..., IE, then go to step 4. [If A = B then 

A = h/,/c, = hj,k,+ 1~ h./+ 1, 1 
9. Print out A. [A = h,, the join of f, and f2] 

Algorithm Meet 

1. Read f, and fi. 
2. (Initialization) Set f(i) = i for i = 1, 2 ,..., n. 

3. Do step 4 for i = 2 ,..., n. 

4. If there is some k = l,..., i - 1, such that f,(i) = fi(i) = f,(k) and 
f*(i) = h(k), set Ai) = f(k). 

5. Print out f. [The meet of fi and f,] 
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