=
View metadata, citation and similar papers at core.ac.uk brought to you by i CORE

provided by Elsevier - Publisher Connector

JOURNAL OF COMBINATORIAL THEORY, Series A 31, 136-145 (1981)

Order-Preserving Representations
of the Partitions on the Finite Set

Tony T. LEE*

! Bell Laboratories,
Holmdel, New Jersey 07733

Communicated by the Editors

Received March 15, 1979

A partial ordering is defined for monotone projections f: N -+ N, N= {1, 2,..., n},
such that the class of these mappings is a lattice which is isomorphic to the
partition lattice. Thus a partition can be uniquely represented by an element of this
class of mappings and the partial ordering of partitions is preserved. Algorithms for
computing the join and meet of given partitions are presented.

1. INTRODUCTION

A partition 7 on a finite set ¥N= {1, 2,..,n} is a collection of mutually
disjoint nonempty subsets of N whose union is N. The members of 7 are
called “blocks™ or “equivalence classes.” If the elements a, b € N are in the
same block of =, this is indicated by a = b(n). The set of all partitions on N
is denoted by II(N). It is well known that II(N) is a lattice with the partial
ordering <, such that for Ya, b € N, if a =b(n) implies a = b(r) then 77
[3]. This ordering is by “refinement,” so that blocks of 7z are obtained by
further partitioning of blocks in 7.

A partition 7 € II(N) can be represented by a mapping f: N— N in the
sense that a=b(n) if and only if f(a)= f(b). Certainly, there are many
different mappings that can represent the same partition, that is, a represen-
tation is by no means unique. Hutchinson {2] has given a set of rules for
representing the partitions on a finite set of n elements by an n-tuple integer
array, which can be considered as a mapping from N into itself, and an
algorithm for generating these partitions. A loopless algorithm for generating
thT partitions is also developed by Ehrlich [1]. We define an alternate set of
rules for the representation of partitions which preserves the partial ordering.

* This work was done while the author was at the Polytechnic Institute of New York,
Brooklyn, New York.
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That is, we define a class of mappings f: N— N which have a partial
ordering that is isomorphic to the partition lattice. Also, the representations
by these mappings are unique.

For an arbitrary mapping f:N— N, we can always find a partition
defined by

n={N|N,=f""()),i € Range f}.

This partition induced by f will be denoted by N/f. In other words, if two
elements i/ and / yield the same values of f, they are in the same class of N/f;
otherwise they are in different classes of N/f. As we discussed above we may
have N/f= N/g for f # g. Thus in order to represent the partitions uniquely,
additional criteria have to be imposed on the mappings. These criteria are
given in the next section. Algorithms for calculating the join and meet of
given partitions are presented in Section 4,

2. PRELIMINARY RESULTS

Let F(N) be the collection of all mappings from N into itself which satisfy
the following criteria:

Contraction: f(i) < i, ViEeN, 0))
Idempotent: fX(i)= f(i), Vi€EN. ()

DErFINITION 1. For f), f, € F(N), the binary relation f, < f, is defined
by

fi) = fl(j) implies f5()) = fo(/).  Vi,jEN. (3)
THEOREM 1.

For fi, LEFWN), i< L it f,/i= 1o )

Proof. First we show f, < f, implies f, f, = f,. Since f, satisfies the
idempotent criterion (2), f,(f;())) = fi(}), Vi EN. 1t follows from (3) that
LUi@)= f,(i), YViE N. Therefore, f,f,=f,- Next we prove f,f, =/,
implies f, < f;. Suppose f,() = /,(J), then f3() = f2(f1()) = £,(i() =
f5()). From (3) we know f; < f;.

COROLLARY 1.

For f,, /, EFN), £, < f, implies f,() < /ii),  ViEN.  (5)
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Progf. From (4) we know that f| < f, implies f,(f,())) = f,(i), YIiEN.
From the contraction criterion (1) we have f,(f,(/)) < fi(i), Vi € N; therefore
L) < fili), Vi € N and the corollary is proved.

A binary relation < on a set X is called a “partial order” of X when it is
reflexive, transitive, and antisymmetric. A set X with a partial order < is
called a “poset” {X, <} [3]. The binary relation < on the set F(N) defined
by (3) is obviously reflexive and transitive. From (5) of Corollary 1, we can
verify tat the binary relation < on F(N) is antisymmetric. (It is a conse-
quence of the fact that the binary relation “less than or equal to,” <, on the
set of natural numbers is antisymmetric.) Thus the set F(N) with the partial
ordering < is a poset.

DEFINITION 2. A “join” (or, a “least upper bound”) of f,, f, € F(N) is
denoted by f, V f;, and has the property that for f = f|V f,, 1< £ L <Sf
and for any g € F(N), f1< g, f, < g implies f<g.

DEFINITION 3. A “meet” (or, a “greatest lower bound”) of f}, f, € F(N)
is denoted by f; A f,, and has the property that for f=fi A £, f < /15
f < f;, and for any g EF(N), g< f, §< f; implies g f.

In what follows we show how to construct a join and a meet for any f,,
/> € F(N). Thus the poset {F(N), <} is a lattice {F(N), V, A}. Furthermore,
we show it is isomorphic to the partition lattice. In order to make our
constructions, we need the following definition.

DeriniTiON 4. For f;, f, € F(N), let h, be the identity mapping,
ho(i)=1i, Vi EN. For j=1, 2,..., n, define h; , = h;_,, and for k > 1, define

if Ay () >7 and R ())

a8 =Ry i) satisfies either condition (a) or (b), (6)

= h; ,_ (i) otherwise,

for i =1, 2,..., n, where conditions (a) and (b) are:

(a) hj,k—x(fl(i)) = hj.k—l(j) or hj,k—l(fz(i)) = hj,k— 1(j)- (7)
(b) Ry (m)=h;,_ () and either
film)=ior fy(m)=i, for some m>i (8)

If k; is the smallest integer such that ;, =h;, ., then define h;=h;, ,
j=12..n
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THEOREM 2. The mappings h; , have the following properties:

O b=k ==yl for j=12man o)

(i) If by >, then by (@)= =h,()=hy_y,, ()=-=
h,@)=i, for j=1,2y,mandk>1. (10)

(iii) k4 € F(N), for j=1,2n, and k= 1,..,k;.

(iv) A, , form an ascending chain such that
h0=h1‘1< b <hl,kl=h1 =h2’1 < o <hj,kj

zhj=hj+l.l<"'<hn.k,,=hn' (11)

Proof. (i) Since h;,(j)<, it follows from (6) that h;,(j)=h; ().
Similarly, 4; (/) = h; ,_,(/), for k > 2.

(ii) We prove (10) by contradiction. Suppose &;,_,(i)=---=h; ()=
Ry, (@)= =h, (i) #h,,_,({). According to (6), we must have
h,@)=h, (<1< j It follows that &h;, (i)=h, (@) <j. But
h; (i) > Jj is given and therefore (10) must be true.

(iii) First, we prove that h;, satisfies the contraction criterion by
mathematical induction. We have &, ,()=h()=i<i, VYiEN. If
hjw—:1()<i, YIEN, then from (7) we know either A, (i)=h;,_,(J) <
J<hj (@) <i, or k(i) =h;, () <i Therefore k;,(i)<iYi€N and
h; , satisfies the contraction criterion (1).

Next, we prove h;, satisfies the idempotent criterion. Suppose
R} _1=h;x_,. We show h}, = h; , by considering the two possibilities:

Case 1. h; ())=h;,_,(j). Since h;,_,(j)<J, then h;,_,(h;,_,(J)) <
B ()< Jj. It follows from (6) that hy by (D) = hy (B g1 () =

hi,k—l(hj.k—l(j)) = hj,k——](j) = hj,,,(i).

Case 2. hy(i)=hy, (). I hy, (<), then hy, (h;, ()<
hj',k— ](l) < j. It fOllOWS from (6) that hj.k(hj,k(i)) = hj,k(h].k— l(i)) =
gy (B () = Ry (8) = Ry (). IE By iy (8) > J, it follows from (10) that
h; «_,(f)=1i. Consequently, h; ,(h; ,()))=h; (h;,_1()) = h; (). Now we
have h; ,(h; (i))=h; (i), Vi€ N. Therefore h;, satisfies the idempotent
criterion (2).

(iv) From Theorem 1, we have to prove that h; ,(h;,_,(i)) = h; (),
¥i € N. There are two possibilities:

Case 1. h;,_,(i))<j. In this case, we have Ay, (A ()<
;o () < J. It follows from (6) that h; (i) = h; ,_ (i), and A, ,(h; ,_ () =
Ry i(hj k- 1(D)) = hy (i) Hence hy (b, ,_ 1) = hy Q).
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Case 2. h;,_,(i) > j. In this case, from (10) we have &; , _, (/) = i. Hence
i i(hy k- 1(i)) = h; 4 (i). Thus we have proven that h;, <h;,,, and the
mappings A, , form an ascending chain.

It should be noted that part (iv) of Theorem 2 implies there always exists
a finite k; such that Ri, =i

THEOREM 3. The mapping h, is the join of f, and f,.

Proof. There are two parts to be proved. First, we show f, <A, and
f2 < h,. Next, we prove that if g€ F(N), fi< g and f,< g imply A, < g

(i) We first prove f,<h, and f,<h, Let fi(i{)=j, then
by (N@D) =y (). I Ay (7)) > J, then since A; () satisfies condition (a) (7),
we have h; ,(i) = #;,,(j). From (11) we know h; , <h, h;, <h,. It follows
that 4,(0) = h,(h; ;D)) = h,(h; () = R (/) = h,(f1(i)). On the other hand, if
h; (i) < J, there are two possibilities:

Case l- hj,l(l) - hj_lv"j‘l(i) = e = hl.l(i) = i. In thlS CaSe, h].l(i) =
i</, but given fi()=j<i It follows that i=j=f({) and
ho(f1(D) = R, ().

Case 2.

i) — N e e — . =hl.k-l(1)'
h;.A () hj—x.k,,,(l) hy (i) )
In this case, if & (/) > I, we know from (9) that h, ,()) =k, ,_,() = h; ().
Since fi(i) = j<i, therefore h, (/) satisfies (8), condition (b). It follows
from (6) that h, ., ,()=h,  ()="h,,_()=h, (0. From (11) we have
1) = Bty 1) = oy u®) = hy(i). But b, (/i) =h,(j), therefore
h,(fi(@)=h,(i). On the other hand, for &, ,(/)<1, since

h )= -=h ()= hI—l,k,,l(j)___ o=h, ()=7<! is  impossible,
therefore it must be
. N=hp,_(m).
h =-..=h '~_—-..=h m.r—1
1) 1) mAD) h )

From (6), we know that A,, ,({)>I It follows from (10) that
Ropr@) = -+ = hyy@) = o+ = by () = By, () = -+ =hy () =i.  Since
£,0)= j is given we have A, (/;(1)) = By (j) = hy, ,_(m) = h,, ,(m), Which
implies h,, (m) satisfies (7), the condition (a), and we know that A, (i) =
i 2 fi(iy=j>[> m. From (6), we obtain i=h,,, ,, ,({)=h,, (m)=h, (j)=
hm,r(fl(i))' Therefore hn(l) = hn(hm,r+ l(l)) = hn(hm,r(fl(i)) = hn(fl(l))' From
the above discussion we have h,(f;(i)) = k,(i), Vi € N and f, < A,. Similarly
we have f, < h,. This completes the first part of the proof.



REPRESENTATIONS OF PARTITIONS ON THE FINITE SET 141

(i) We next prove that if g€ F(N), f; < g and f, < g imply A, <
From Theorem 1, we want to show gf, =g and gf,= g imply gh,= g
From (11), we know that it is sufficient to prove that gf, = g and gf, =
imply gh;,= g, for j=1,2,.,nk=1,.,k;. Since h, , = h, is the 1dent1ty
mapping, we have gh, , = g. Suppose gh;,_, = g; we show gh;,= g by
considering two possibilities:

Case 1. h;,(i)=h;,_,(J) and h;,_,(/) satisfies either condition (a) or
condition (b). In this case, it follows that g(h; (i) = g(h; ,_,())) = g(j). If
h; -1(J) satisfies condition (a), then from (7) we have &, ,(f(i)=
h; . 1(J), where f is either f or f;. It follows from the assumptions that
gy (i) = g(/i(D) = g() and g(h;,_,(/)) = g(j). Thus, g(i) = g()).
Similarly, it can be shown that this is also true if 4, , _,() satisfies condition
(b). Thus, we have g(h; (i) = g(i) for Case 1.

Case 2. h;,(i)=h;, (i) In this case, we have g(h;,()=

8(hy (i) = g(i). Hence, g(h;(i))=g(), ViEN, and gh;;=g. In
particular, gh, = g. Therefore A, is the join of f, and f;.

THEOREM 4. For fi, f,EF(N), let f(1)=1 and for i > 2

SO =rKk) i £i()=fi(k) and f,()) = fr(k),
for some k=1,2,...,i— 1. (12)

=i otherwise,

then f € F(N) is the meet of f, and f,.
Proof. We begin by proving f € F(N).

(i) First we show that f satisfies the contraction criterion (1). The proof
is by induction. Given f(1)=1<1, suppose f(i) i, fori=1,2,...m<n.
From (7), the definition of f, we know that either f(m+ 1)=m+ 1, or
Sim+ 1)= f(k)<k for some k=1,2,.,m It follows that f(m+ 1)<
m+ 1. By induction f(/)<iVi€N. Thus f satisfies the contraction
criterion (1).

(ii) Next we show that f satisfies idempotent criterion (2). The proof is
also by induction. Given f(f(1))=f(1), suppose [f(f(}))=i, for
i=1,2,..,m <n. From (7), we know that either f(m + 1)=m + 1 implies
S(fm+1))=f(m+ 1), or f(m+ 1)= f(k) for some k=1, 2,..., m. From
the assumption, [f(f(m+ 1))=f(f(k))=f(k)=f(m+1). Therefore
SUf(#) = f(i), Vi € N by induction. Consequently f satisfies the idempotent
criterion (2) and f € F(N).

(iii) Now we prove f is the meet of f, and f,. First we show f < f; and
f < f,- The proof is by induction. Given f,(f(1))= f;(1), suppose
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HU@O)y= £fiG), for i=1,2,.,m<n. From (12), we know that either
Sm+1)=m+ 1 implies f,(f(m+ 1))= fim+ 1), or f(m+ 1)= f(k) for
some k=1, 2,.., m, such that f,(k)= fi(m+ 1) and f,(k)= fi{(m + 1), but
then fi(f(m+ 1) =f1((f(k)=fitk)y=fim+1). Tt follows that
LH(f@)= fi(i), YiEN by induction. Then we have f< f, from (4).
Similarly f < f;. Thus f is a lower bound of f, and f,.

(iv) Next we show f=fi A f,. For g€F(N), let g< f, and g< f,
which imply f, g = f, and f, g = f, due to (4). We want to show g < f; that
is fg=f The proof is again by induction. Given f(g(1))= f(1), suppose
Sf(gD)= f(i), for i=1,2,.,m< n. Then either g(m + 1)=m + 1 implies
flgm+1)=f(m+1), or gm+1)<m+1. Since we know
Silgm+ 1)) = fi(m+ 1) and f,(g(m + 1)) = f,(m + 1), it follows from (7)
directly that f(m+ 1)= f(g(m + 1)). By induction f(g(i))= f(i), ViEN.
Therefore, g fand f =/ A f,.

The above two theorems also state that {F(N),V, A} is a lattice. An
example of how to calculate the join and meet for f,, f, € F(N) is given in
the next section. The algorithms are discussed in Section 4.

Theorems 3 and 4 have given the join and meet of any two mappings f;,
/> € F(N). Neverheless, if more than two mappings f,,..., f/, € F(N), s > 2,
are given, these theorems can be extended with appropriate modifications to
find their join and meet as well.

3. ORDER-PRESERVING REPRESENTATIONS

In this section we show that every partition in IT(N) can be uniquely
represented by a mapping in F(N). Furthermore, the lattices F(N) and II(N)
are shown to be isomorphic, which is to say the partial ordering in II(N) is
preserved in F(N).

DerINITION 5. For a given n= {N,,N,,..,N,} € [I(N), the mapping
S+ N - N defined by '

f@=minN,, for i€EN,i=1,2,.,n, (13)

is called the “representation” of z.

Clearly, not every mapping f:N—- N can be a legitimate partition
representation according to the rule given in (13). The following theorem
shows that only mappings in F(N) can represent the partitions on N.

THEOREM 5. The necessary and syfficient conditions for f: N— N to be
a partition representation is f € F(N).
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We want to prove the following:

(i) For a given f:N— N which satisfies the contraction and idem-
potent criteria, let 1= N/f ={N,, N,,..., N, } then f(i)=minN,, for i EN,
and ViEN.

(ii) For a given partition n € II(N), let [ be the partition represen-
tation of n given by (13). Then f satisfies the contraction and idempotent
criteria.

Proof. (i) Let Ny = {ky, ky..., k;}, then f(k,) = flky) = --- = f(k;) = m,.
From (1), we have m, < min{k,, k,,..., k;} = min N,. From (2), we have
Sm) =12k = k) = - = f1k) = flke) = fkp) = -+ = flk) = m,. It
follows that m, € N, and m, =min N,. Thus we have f(k,)= f(k;)=---=
f(k;)=m,=min N,.

(ii) For given == {N,, N,,..., N,,} € II(N), let f be defined by (13), then
f()=min N, for i € N,. It follows that f(i) = min N, <i. Thus f satisfies
the contraction criterion (1). Also, f(f(i)) = f(min N,) = min N, = £ (i), for
i € N,. We know that f satisfies the idempotent criterion (2). Consequently,
S € F(N). .

A morphism @ of two posets {L, <} and {M, <} is a function P: L > M
such that

a < b implies @(a) < P(b), Va,bE L. (14)

An isomorphism @ of two posets L and M is a bijection @: L - M such that
both @ and P! are morphisms of posets. A morphism of lattices is a
function @:L-M on a lattice L to a lattice M such that
D(aV b)=®(a) vV ¢(b) and P(a A b)=P(a) A P(b) for all aq, bEL. An
isomorphism @ : L — M of lattices is a bijection which is also a morphism of
lattices; its inverse is then automatically also a morphism of lattices. It
should be noted that an isomorphism of posets which are lattices necessarily
preserves join and meet, hence it is an isomorphism of lattices [3]. We prove
an important theorem:

THEOREM 6. The lattices {F(N), V, A} and {II(N), V, A} are isomorphic.

Proof. Let @:F(N)- II(N) be defined by @(f)= N/f,Vf€ F(N). We
must show:

(i) @ is bijection, (ii) P satisfies (14).

(i) For given f g€F(N), and f+#g, suppose @P(f)=N/f=m,
P(g)=N/g=r1, and #=7={N;,.,N,}. We want to prove this is a
contradiction. From Theorem 5, we know that /(i) = min N, g({)=min N,
for i € N, ; then f(i) = g(i), Vi € N. But this is impossible for given f +# g.
It follows that @(f)+ ®(g) and thus @ is one-to-one.
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For n= {N,,..,N,,} € II(N), let f be given by (13). Then f(i)=min N,
forie Nk It follows that f({) = min Nk < i and f satisfies (1). Also, [ =
f(min N,) = min N, = f(i) for min N, € N,. Therefore f satisfies (2). Hence
f € F(N) and @ is onto.

(ii)) Now we show that @ preserves the partial ordering. Let f,, f, € F(N)
and f, < f,. Suppose @(f,)=7n and @D(f,)=rt. Then i=j(n) implies
L@ =A0)- Tt follows that f,(/,())=/f3(fi(j)). Since f,<f, by
assumption, from (4) we have f,(i)= f,(j). Hence i = j(r). Consequently,
?(f)) < P(f;) and P is a morphism of F(N) and II(N).

Theorems 3, 4, 5, and 6 are illustrated by the following example, where the

notation

f—( ! 2 o " )isusedforfEF(N)

Sy Q2 - Sfln) '
ExampLE. Given 7=(1,2,3,6,8,4,5,7), 7=(1,3,6,2,8,4,5,7)€
I1(8). According to (13), the representations of 7 and t are: f, = ® '(n) =
11363585, i=07'M=( 31441772 The join f,Vf, is
calculated according to Theorem 3 as follows. b, ,=ho=(] 3 } 4 5 ¢ 7 8)-
Smce hy, 1(f1(2)) hl (1), Ay (2(3))=hy (1), and h, (f3(6)) =k, (1),

l12—3 j E 2 ; F HERH B Since hy,1(f1(8)) = hy i (1), hy =
11145111) and h ,=h,, implies h =h, ;. Also we find that
hy=h,, hy=h,, and ’141—"3'—(l 11485710, Since A, ,(,(5) =
hy (4) and A, ,(fi(7))=h,,(4), h4.z—' 111 diti)), and hes=hy,
implies h, = h, ,. Then we have h; = h,, hs = hy, h, = hg, hy = h,. Therefore
hy=f,V f,. 1t should be noted that @(f,V f,)=(1,2,3,6,8, 4,5,7)=
aVr=®(F,)V &(f;). The meet f=f, A f, is calculated according to
Theorem4 as follows. f(1)=1, f(2)=2, f(3)=3, [f4)=4
f8)=f(4)=4; since fi(5)=f(4) and fi(5)=/,(4), f(6)=,(3)=3;
since fi(6)=f,(3) and f,(6)=,,3), f(7)=7, f(8)=8. Therefore
f=fiAfA=(G2343573) We also find that O(f, A f3)=&(f)=

(1,2,3,6,4,5,7,8) =n A 1= (f,) A D(f,).

4, ALGORITHMS OF JOIN AND MEET

We have proven that F(N) and II(N) are isomorphic. In order to obtain
the join and meet of 7, r € II(N), we can simply calculate the join and the
meet of their representations. The algorithms of join and meet are given
below:
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Algorithm Join

1. Read f| and f,.

2. (Initialization) set A({))=i, B({)=i for i=1,2,..,n. [4 and B
correspond respectively to 4, ,_, and &;, in (6).]

. Do steps 4 to 8 for j=1, 2,..., n. [At this step 4 =h;_,.]

. Set A({) = B(i) for i=1, 2,...,n. [At this step h; , < h; ,_,.]

. Do steps 6 and 7 for i =1, 2,..., n, as long as A(i) > j.

. I A(f(D) = A()) or A(f,(i)) =A()) then set B(i) =A(j). [Test for
condition a(7).]

7. If A(m)=A(j) and f,(m)=1i of f,(m)=i for some m=i,i+ 1,.,n,

then set B(i) = A(j). [Test for condition b (8).]

8. If A(k)+ B(k) for some k = 1, 2,..., n, then go to step 4. [If 4 = B then
4= hf.k, =hj 1 =Ry g

9. Print out 4. [4 = h,, the join of f; and f,]

AN W AW

Algorithm Meet

1. Read f; and f;.

(Initialization) Set f(/) =i for i= 1, 2,...,n.

Do step 4 for i = 2,...,n.

If there is some k=1,.,i—1, such that f,({)= f,({) = fi(k) and
S(i) = fo(k), set fli) = f(k).

5. Print out f. [The meet of f, and f; ]

Eal B

ACKNOWLEDGMENTS

The author wishes to thank Professor Edward J. Smith of Polytechnic Institute of
New York, who supervised this work for his help and guidance. Special thanks are also due to
the referee for his/her helpful comments and constructive suggestions. The author is grateful
to Dr. R. Krupp and Dr. M. Eisenberg, Bell Laboratories, Holmdel, New Jersey, for their
valuable comments and discussions during the revising of this paper.

REFERENCES

1. G. EHRUCH, Loopless algorithms for generating permutations, combinations, and other
combinatorial configurations, J. Assoc. Comput. Mach. 28 (1973), 500-513.

2. G. HutcHisoN, Partitioning algorithms for finite sets, Comm. Assoc. Comput. Mach. 6
(1963), 613-614.

3. S. MAcLANE aND G. BIRKHOFF, “Algebra,” 2nd ed. Macmillan, New York, 1979.



