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In this Letter we consider a Z, symmetrical 3-brane embedded in a 5-dimensional spacetime. We study
the effective Einstein equation and acceleration condition in presence of the quintom dark energy fluid as
the bulk matter field. It is shown that the time-dependent bulk quintom field induces a time-dependent
cosmological constant on the brane. In the framework of the DGP model, the effective Einstein equation
is obtained in two different cases: (i) where the quintom field is considered as the bulk matter field and

the brane is empty and, (ii) where the quintom dark energy is confined on the brane and the bulk is
empty. We show that in both cases one could obtain a self-inflationary solution at late time in positive
branch € =1, and an asymptotically static universe in negative branch € = —1.

© 2009 Elsevier B.V. Open access under CC BY license.

1. Introduction

Recent observations of type la supernova (SNIla) and WMAP
[1,2] indicate that our universe is currently undergoing an accel-
erating expansion, which confront the fundamental theories with
great challenges and also make the researches on this problem
a major endeavor in modern astrophysics and cosmology. Miss-
ing energy density—with negative pressure—responsible for this
expansion has been dubbed dark energy. Wide range of scenar-
ios have been proposed to explain this acceleration while most
of them cannot explain all the features of universe or they have
so many parameters that makes them difficult to fit. The models
which have been discussed widely in literature are those which
consider vacuum energy (cosmological constant) [3] as dark en-
ergy, introduce fifth elements and dub it quintessence [4] or sce-
narios named phantom [5] with w < —1, where w is parameter
of state. A challenging issue is that the time-dependent dark en-
ergy gives a better fitting than a cosmological constant, and in
particular the analysis of the properties of dark energy from recent
observations mildly favor models with w crossing —1 at redshift
z~0.2. Neither the quintessence nor the phantom alone can fulfill
the transition from w > —1 to w < —1 and vice versa. Although
for k-essence [6] one can have both w > —1 and w < —1, it has
been lately considered by Ref. [7] that it is very difficult for k-
essence to get w across —1 during evolving. But one can show
[8,9] that considering the combination of quintessence and phan-
tom in a joint model, the transition can be fulfilled. This model,
dubbed quintom, can produce a better fit to the data than more fa-
miliar models with w > —1. In other words, the quintom model of
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dark energy represents a transition of dark energy equation of state
from w > —1 to w < —1, or vice versa, namely from w < —1 to
w > —1 is also one realization of quintom, as can be seen clearly
in [10]. Although the models with negative kinetic term are of-
ten plagued by instability, there are possibilities that these models
might be phenomenologically viable if considered as effective field
theories [11,12].

An alternative way of explaining the observed acceleration of
the late universe is to modify gravity at large scales. A well-
studied model of modified gravity is the Dvali-Gabadadze-Porrati
(DGP) braneworld model [13] where the brane is embedded in
the flat bulk with infinite extra dimension. In this model grav-
ity leaks of the 4-dimensional brane universe into 5-dimensional
bulk spacetime at large scales. The inclusion of a graviton kinetic
term on the brane recovers the usual gravitational force law scal-
ing, 1/r2, at short distances, but at large distances it asymptotes
to the 5-dimension scaling, 1/r3. Motivated by string/M theory,
the AdS/CFT correspondence, and the hierarchy problem of particle
physics, braneworld models were studied actively in recent years
[14-17]. In these models, our universe is realized as a boundary of
a higher dimensional spacetime. The matter particles cannot freely
propagate in those large extra dimensions, but must be constrained
to live on a 4-dimensional submanifold. The DGP model has a large
scale/low energy effect of causing the expansion rate of the uni-
verse to accelerate. In almost all of works on braneworld models,
the 5-dimensional bulk spacetime is assumed to be vacuum ex-
cept for the presence of the cosmological constant, and the matter
fields on the brane are regarded as responsible for the dynamics of
the brane. However, from the unified theoretic point of view, the
gravitational action is not necessarily the Einstein-Hilbert action.
In fact, string theory tells us that the dimensionally reduced effec-
tive action includes not only higher-order curvature terms but also
dilatonic gravitational scalar fields. Thus at the level of the low-


https://core.ac.uk/display/82548214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
mailto:rezakord@ipm.ir
http://dx.doi.org/10.1016/j.physletb.2009.03.051
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

238 P. Moyassari, M.R. Setare / Physics Letters B 674 (2009) 237-242

energy 5-dimensional theory, it is naturally expected that there ap-
pears a dilaton-like scalar field in addition to the Einstein-Hilbert
action [18]. Hence it is of interest to investigate how such a scalar
field in the 5-dimensional theory affects the braneworld [19,20].

In this Letter our main motivation is investigating the effects
of the bulk quintom field on the evolution of the universe in
the braneworld scenario and in the DGP model. We first review
the braneworld scenario in presence of the bulk matter field in
Section 2. We study the acceleration condition for the universe
with quintom dark energy in the bulk and show that the time-
dependent bulk quintom field alters the brane as a time-dependent
cosmological constant which is related to the quintom potential on
the brane. In Section 3 we obtain the generalized Einstein equation
in the DGP model in presence of the tension and the bulk matter
field. In the two following sections we investigate whether it is
possible to have a late time accelerating phase on the brane when
there is a quintom dark energy fluid in the bulk and the brane is
empty; or inversely, when there is a quintom dark energy fluid on
the brane and the bulk is empty.

2. Effective Einstein equation on the braneworld

In this section we briefly review the braneworld scenario in
presence of the tension and bulk matter field. In the braneworld
scenario, our 4-dimensional world is described by a domain wall
(brane) in 5-dimensional spacetime. We consider an ansatz for the
5-dimensional metric of the form

ds? = —n?(t, y)de® + a*(t, y)yijdx dxl + b2 (t, y) dy?, (1)

where y is the coordinate of the fifth dimension and y;; is a
maximally symmetric 3-dimensional metric. We will use k to pa-
rameterize the spatial curvature and assume that the brane is a
hypersurface defined by y = 0. We shall be interested in the model
described by the action

/dSX\/_( (S)R A+£mat)
/ A% /(& + L), 2)

where ©'R is the scalar curvature of the 5-dimensional metric g4z,
A is the bulk cosmological constant, & is the brane tension, k% =
87 Gs, and qap = gap — nang (na is the unit vector normal to the
brane and A, B=0,1, 2, 3, 5) is the induced metric on the 3-brane.
The 5-dimensional Einstein equation can be written as

1
O Rpp — igAB(S)R =k2(—Agag + Tap + Suwdh 858 (yp)), (3)

here 8(yp) = Ty Tap is the energy-momentum tensor of the bulk
matter and the last term corresponds to the matter content on the
brane

Suv =—Eguv + Tpv. (4)

The non-zero components of the 5-dimensional Einstein equation
are

3 _i E_FE +l a_//_._a_/ a_/_b_, _E
n2a\a b b2\'a al\a b a?

=kE(—A+ T3+ S38(yp)), (5)
] . a/ a/ n/ b/ n/ a/ a// n//
8 e ) - =12 4
bZJ{a(a+n) baz(n+ a)+a+n}

P YL 25+b PR b ks
n2 ila\ a n a b a n b i

=IkE(—A+Th+S8(yp)), (6)

’ - b 5
3{n—g+a———a—}—k2To5, (7)
na ab a
3 a a’+n/ 1/a/a n +21' k
ab2\a n n2\a\a n a a?
=ki(—A+T3), (8)

where primes indicate derivatives with respect to y, while dots
derivatives with respect to t. Assuming a perfect fluid on the brane
ti" = diag(—pp, Pb, Db, Pb), (9)

and a quintom field in the bulk space containing the normal scalar
field ¢ (t, y) and negative kinetic scalar field o (t, y), with the La-
grangian expressed as the following form

1
L5 = 28" (@108 —0.40.0) + V (#.0). (10)

According to this action, the energy-momentum tensor of the bulk
quintom field is given by

Tap=¢.abB—0.408
1
—gAB(ing(m,D —o.ca,o)+V(¢,a>>. (1
In order to focus on the cosmological evolution on the brane we

use the Gaussian normal coordinates (b(y,t) = 1) [21]. Thus the
equations of motion of the scalar field ¢ and o in bulk space are

— - (3E - E)<i>+nz[("— +3a—)¢’+¢“] AL
n n a a¢
Emat
56 3(¥b),
—6 — (3* — H)O’ +n2|:(n— +3a—>6,+0//] +nzw
n n a Jdo
El‘ﬂ&t
=55 W) (12)
o

We are interested in studying the Einstein equation in presence of
a quintom field in the bulk at the location of the brane. Without
losing generality we choose n(t,0) =1 which can be achieved by
scaling the time coordinate. As is well known, the presence of the
brane leads to a singular term proportional to §-function in y on
the right-hand sides of the Einstein equations (5) and (6) and the
equation of motions (12), which have to be matched by singularity
in the second derivatives in y on the left-hand side. Since all fields
under consideration are symmetric under the orbifold symmetry
Z;, these jumps in the first derivatives in y fix these first deriva-
tives completely at y = 0. Here, these junction conditions read

a k2
| =T+,
aly—o
R
n|y=0=€(3pb +2pp — &), (13)
and
, 15£E1at
¢’|y=0=§ (Sd) s
]8[:“"“
o'ly=0=—5—2—. (14)

Using the components 00 and 55 of the Einstein equation in bulk
space one can obtain

2k? 2k?
F' = T5(A —-T9)a?d — T5T§’a3d, (15)
. 2k2 2k?
F== —2(A-T3)d*a TSnZTga%’, (16)
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where F is a function of t and y defined by

-2
F(t,y) = (‘;LZ) — (d'a)® + ka?. (17)
Since the quintom field does not appear in the matter field La-
grangian on the brane (LE‘“), Eq. (14) implies that the quintom
field is independent of y on the brane, namely ¢'|y—o =0"|y—0 =0
[19,20]. Therefor the non-vanishing components of the quintom
energy-momentum tensor at the location of the brane are

1., 1
rg:_pB:——¢2+5<'rz—V(¢,o>,
1
T = pB——¢> ——0 -V, 0),
Tos =¢¢' — 60’ =0,
155=%¢32_%dZ—V(¢,o). (18)

As one can see, in the case of y independent bulk quintom field
Tos vanishes. It means that there is no flow of matter along the
fiftth dimension. Using (18) one can solve Eq. (15) which leads to
the first integral of the 00 component of Einstein equation as

a  ad? k

5 atom & n 0 (19)
6 PTG @2 @ @&
where C is a constant of integration which is usually referred to
dark radiation [22]. Substituting the junction conditions (13) into
above equation, we arrive at the generalized Friedmann equation
on the brane as
k

2 —

H* + z-

2 2 4 2 4
%(M %sz) T VAR ¥ R c)
here H = g is the Hubble parameter. As one can see from Eq. (20),
in the absence of the bulk matter field, the cosmological constant
and the brane tension, the equation gives rise to a Friedmann
equation of the form H o pp instead of H o ./pp which is incon-
sistent with cosmological observation. This problem can be solved
by either considering the cosmological constant and tension on the
brane or considering a matter field in the bulk [23,24]. Recalling
the junction conditions (13), the 05 component of Einstein equa-
tion and field equations (12) on the brane take the following form
respectively

Op+3H(pp + pp) =0, (21)

Lo, dV(po)

b+359+ —— =0, (22)

54386 W@, (23)
a iles

It should be noted that if scalar field ¢ and o satisfy the field
equations (22) and (23) respectively, the bulk energy-momentum
tensor is automatically conserved and we have

Ps +3H(pg + pp) =0. (24)

We are interested in studying the acceleration condition for a uni-
verse with the quintom field in the bulk. The condition for ac-
celeration can be obtained from (20) by using the conservation
equation of the brane and bulk matter field (21) and (24)

i k2 k2 )\ ki
—=2(A+ 282 -2 3
p 6( t4¢ 365;‘(Pb+ pv)

k2 k2 4
- —(pB +3pp) — —(Zpb +3ppPp) — e (25)

To study the role of the bulk quintom field in the late time accel-
eration phase on the brane, we ignore the effect of tension, brane
matter, cosmological constant and dark radiation

d k2
PR +3ps). (26)

Thus the acceleration condition for a universe with quintom dark
energy in bulk is

PB 02 .2
Pp<—7. or ¢*—0"<V(p,0). (27)

Now we consider the 55 component of Einstein equation at the
position of the brane which leads to the Raychaudhuri equation

a , k ké ké 9
4 H AN N -] —
a+ +a2 3 +6§

l
+ps(3py + pp)) — 2T, (28)

2
S (€GP — )

Using Eq. (20) one can rewrite the above equation as
2

i k k2 k2 k2
-=2 (A + —552) — 3gE(o+3pp) — 2 08
a 6 6
c kd
(2pb +3pbPp) — — — ?ST; (29)

Comparmg Eq. (25) with (
energy-momentum tensor

(3ps — pp) = 4T2, (30)

which for the quintom field with the energy-momentum tensor
(18) leads to

9) provide a constraint on the bulk

$*—d62=o. (31)

It means that the time-dependent bulk quintom field influences
the brane like a time-dependent cosmological constant which can
be written in terms of the quintom potential energy, pg = —pp =
—V (¢) [25]. For a particular solution of (31) in which ¢ and o are
both constant on the brane, we arrive at the natural cosmological
constant induced by the time-dependent bulk quintom field.

3. Generalized Einstein equation in the DGP braneworld

In the DGP model, which provide a simple mechanism to mod-
ify gravity at large distances, it is supposed that a 3-dimensional
brane is embedded in a flat 5-dimensional bulk. This model pre-
dicts that 4-dimensional Einstein gravity is a short-distance phe-
nomenon with deviations showing up at large distances. The tran-
sition between four- and higher dimensional gravitational poten-
tials in the DGP model arises as a consequence of the presence of
both brane and bulk Einstein terms in the action. The DGP model
includes a length scale below which the potential has usual New-
tonian form and above which the gravity becomes 5-dimensional.
The cross over scazle between the 4-dimensional and 5-dimensional

gravity is ro = 2’% in which p? =87 Gy. In this framework, ex-
istence of a higher dimensional embedding space allows for the
existence of bulk or brane matter which can certainly influence
the cosmological evolution on the brane. Now we proceed to ob-
tain the generalized DGP model in which both bulk cosmological
constant A and brane tension & are non-zero. We consider the

model described by the gravitational bulk-brane action
/dSX S < (S)R A+£mat>

f d*xv=q ( @R - g+,c"““) (32)
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where @R is the Ricci scalar of the induced metric q,y. The
5-dimensional Einstein equation takes the form

1
)R pp — EgAB“’R =k2(—Agag + Tap + Swdh 858 (yp)).  (33)

Here T,4p is the energy-momentum tensor of the bulk matter, A is
the cosmological constant of the bulk spacetime and the energy-
momentum tensor on the brane is given by

Spv=—quv + Ty —M_zuu.v, (34)

the last term is the contribution coming from the scalar curvature
of the brane with the non-vanishing components given by

2
Uoo=3(H2+k”—2),
a

2 . .
a 2 n d
Uii=|=|—-H"+2H-—-2—- ) —k )yi. 35
ij (n2 ( + n a) )Vl] (35)
From 00 and ij components of the Einstein equation (33) we find
the following junction conditions which simply relate the jumps
of derivatives of the metric across the brane to the stress tensor
inside the brane

2

!

a k k
- =_—5(Pb+§)+rc(H2+_2)’
y=0 6 a
, k? , ik
Wly=0=—=@pp+20p =& +rc| —H* +2-——|]. (36)
6 a a

In the following two sections we study the Einstein equation (33)
when the quintom field is considered as the bulk matter field, and
a quintom dark energy confined on the brane, respectively.

3.1. Quintom field in bulk space

We consider the quintom field as the bulk matter field with
Lagrangian expression in Eq. (10). Integrating the equation of 00
component of (33) around y = 0 and using junction conditions
(36), we arrive at the generalized (first) Friedmann equation

£k , kYN k2 K2\ kd k2 c
1425 V(2 2 )5 (a4 58e2) - Bep, B0 &
( t o2 ta) e\ AT ) Tt et

kg 2 2,k 2

= — 3|H- + = . 37
36#“( M pp + ( +a2>> (37)
The brane-Friedmann equation (20) can be derived from above
equation by letting ; go to infinity. We are interested to study
the effect of the quintom field on the brane. Ignoring the cosmo-
logical constant A, the brane tension and the matter field on the

brane, Eq. (37) can straightforwardly be rewritten as

k 1 2k?2
Hz+a_2=ﬂ(1+e,/1_§pgrz), (38)

here pp is the energy density of the bulk quintom field on the
brane derived in Eq. (18). The two different possible € namely
€ = +1, correspond to two different embeddings of the brane into
the bulk spacetime [26]. Since the bulk quintom field satisfies the
usual energy-momentum conservation law on the brane (24), we
have pg oca=3@+1D (@ is the state parameter). Integrating Eq. (38)
for k=0 and w > —1 where ¢ > ¢, shows that the scale factor a
diverges at late time! (see Fig. 1). Thus the energy density of the

! The integration of Eq. (38) leads to [ = [ da

a,/1+€ /1—5':%

2.2
m >0 when w > —1 and m <0 when w < —1 and 8 = Zk%'f The variation of [

against a in different value of m and € are plotted in Fig. 1.

= o5 Jdt in which

bulk matter goes to zero at late time and reaches a regime where
it is small in comparison with 1/r§. In the case w < —1 where
¢ < &, integrating Eq. (38) indicates a vanishing scale factor a at
late time, so the matter density goes to zero and we could use
the assumption k%pg &« 1/r2. Therefore, in the DGP model with a
quintom dark energy fluid in the bulk space, one can expand the
Einstein equation (38) under the condition that kZpp < 1/r2 for all
range of w. At zero order and for spatially flat metric, two differ-
ent results depend on the value of € can be derived. Considering
the case € = —1 yields

H?>=0, (39)

which describes an asymptotically static universe. In the other case
we take € =1 which leads to

5 1 t
H*=—, or a(t)oexp|—|. (40)
ré Tc
This provides the self-inflationary solution at late time which is
the most important aspect of the DGP model. Therefor, the late
time behavior of the universe does not alter even if we ignore the
matter field on the brane and consider a model of the universe
filled with the bulk quintom dark energy.

3.2. Quintom field on the brane

In this section we ignore the bulk matter and consider a quin-
tom dark energy confined on the brane in the DGP model with the
Lagrangian expression as

‘l ~
L5 = 20" o — 0.,40.0) + T (9,0), “n

The energy-momentum tensor of the quintom field on the brane
is given by

Ty =P pudy — 0, u0,y
1 -
—Aduv (561“'9 (Datp—0a0,8)+V(d, U)) (42)

In absence of the bulk matter field and the brane tension, the gen-
eralized Friedmann equation (37) leads to [27]

2

H2+a,izzzirc(e+ 1+4%,obr§>, (43)
in which pp is quintom energy density obtained by (42). Since the
energy-momentum tensor on the brane is conserved, we could ap-
ply the strategy used in the previous section to study the late time
cosmology on the brane. Integrating Eq. (43) for a spatially flat
spacetime yields the same result as the previous section. It in-
dicates that for w > —1 the scale factor a diverges at late time
[27] and for @ < —1 the scale factor a vanishes at late time?
(Fig. 2). Thus the energy density of quintom dark energy goes
to zero for late time and reaches a regime where it is small in
comparison with 1/r§. Expanding Eq. (43) under the condition
wrop <1 /r? provides an asymptotically static universe, H =0, in
the case € = —1 and a self-accelerating phase, H = rl in the case
€ = 1. Therefore the presence of quintom dark energy on the brane
or in the bulk dose not change the late time behave of the uni-
verse. In both cases for all range of w (w < —1 or w > —1), one
can derive the self-accelerating universe at late time.

2 The integration of Eq. (43) leads to I = [ da

=L [dt in whi
———— = 5 [dt in which m >
a(l4+€ H’W)

4M2V2
0 when w > —1 and m <0 when w < —1 and g = —5-=<.
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Fig. 1. These figures show the evolution of I as a function of scale factor.
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Fig. 2. These figures show the evolution of I’ as a function of scale factor.

4. Conclusion

We have studied the cosmology of a Z, symmetrical 3-brane
embedded in a 5-dimensional spacetime including a quintom dark
energy fluid in bulk space. In the braneworld scenario, we derived
the acceleration condition due to the bulk quintom field. It was
indicated that the time-dependent bulk quintom field alters the
dynamics on the brane as a time-dependent cosmological constant
which can be derived in terms of the quintom field potential. It
means that to have an accelerated expansion phase on the brane,
the potential energy due to the bulk quintom field must be a pos-
itive function of time.

In the DGP model, when an intrinsic curvature term is added
on the brane, we have obtained the generalized Einstein equation,
where both bulk and brane matter field are non-zero. Cosmol-
ogy on 3-brane have been studied in two different cases. In first
case, we have considered the quintom field as the bulk matter
field and ignored the brane matter. It was shown that two dif-
ferent solutions are obtained for two different embeddings of the
brane. In negative branch where € = —1, the generalized Fried-
mann equation describes an asymptotically static universe, and in
positive branch where € =1, we obtained H = % which provides
a self-inflationary solution at late time. In second case, we have
considered a quintom dark energy confined on the brane in the
DGP model, and studied the solution of the generalized Friedmann
equation, when the bulk matter field and the brane tension were
ignored. Similar to the first case, here also two different results
can occur, H =0 for € = —1 and a self-inflationary solution at late
time, H = :—C for € = 1. Therefor, the late time behavior of the uni-
verse does not alter even if we ignore the matter field on the brane
and consider a model of the universe filled with the bulk quintom
dark energy, or vice versa, we ignore the bulk matter field and
consider only the quintom dark energy on the brane.

Finally we should stress on the ghost instabilities present in
the self-accelerating branch of this DGP-inspired model. The self-
accelerating branch of the DGP model contains a ghost at the
linearized level [28]. Since the ghost carries negative energy den-

sity, it leads to the instability of the spacetime. The presence of
the ghost can be attributed to the infinite volume of the extra-
dimension in DGP setup. When there are ghosts instabilities in
self-accelerating branch, it is natural to ask what are the results
of solutions decay. As a possible answer we can state that since
the normal branch solutions are ghost-free, one can think that the
self-accelerating solutions may decay into the normal branch so-
lutions. In fact for a given brane tension, the Hubble parameter
in the self-accelerating universe is larger than that of the normal
branch solutions. Then it is possible to have nucleation of bubbles
of the normal branch in the environment of the self-accelerating
branch solution. This is similar to the false vacuum decay in de
Sitter space. However, there are arguments against this kind of
reasoning which suggest that the self-accelerating branch does not
decay into the normal branch by forming normal branch bubbles
(see [28] for more details). It was also shown that the introduc-
tion of Gauss-Bonnet term in the bulk does not help to overcome
this problem [29]. In fact, it is still unclear what is the end state
of the ghost instability in self-accelerated branch of DGP inspired
setups. On the other hand, quintom scalar fields and induced grav-
ity in our setup provides a new degree of freedom which requires
special fine tuning and this may provide a suitable basis to treat
ghost instability. It seems that in our model this additional degree
of freedom has the capability to provide the background for a more
reliable solution to ghost instability due to wider parameter space.
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