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Abstract Microarrays are one of the latest breakthroughs in
experimental molecular biology, which allow monitoring of gene
expression for tens of thousands of genes in parallel and are
already producing huge amounts of valuable data. Analysis and
handling of such data is becoming one of the major bottlenecks in
the utilization of the technology. The raw microarray data are
images, which have to be transformed into gene expression
matrices ^ tables where rows represent genes, columns represent
various samples such as tissues or experimental conditions, and
numbers in each cell characterize the expression level of the
particular gene in the particular sample. These matrices have to
be analyzed further, if any knowledge about the underlying
biological processes is to be extracted. In this paper we
concentrate on discussing bioinformatics methods used for such
analysis. We briefly discuss supervised and unsupervised data
analysis and its applications, such as predicting gene function
classes and cancer classification. Then we discuss how the gene
expression matrix can be used to predict putative regulatory
signals in the genome sequences. In conclusion we discuss some
possible future directions. ß 2000 Federation of European Bio-
chemical Societies. Published by Elsevier Science B.V. All
rights reserved.
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1. Introduction

With several eukaryotic genomes completed and the draft
human genome published, we are now entering the postge-
nomic age. The main focus in genomic research is switching
from sequencing to using the genome sequences in order to
understand how genomes are functioning. Some questions we
would like to ask are

b what are the functional roles of di¡erent genes and in what
cellular processes do they participate;

b how are genes regulated, how do genes and gene products
interact, what are these interaction networks;

b how does gene expression level di¡er in various cell types
and states, how is gene expression changed by various dis-
eases or compound treatments.

Knowing the gene transcript abundance in various tissues,
developmental stages and under various conditions is impor-
tant for attacking these questions. Although mRNA is not the

ultimate product of a gene, transcription is the ¢rst step in
gene regulation, and information about the transcript levels is
needed for understanding gene regulatory networks. More-
over, the measurement of mRNA levels currently is consider-
ably cheaper and can be done in a more high-throughput way
than direct measurements of the protein levels. The correla-
tion between the mRNA and protein abundance in the cell
may not be straightforward, nevertheless the absence of
mRNA in a cell is likely to imply a not very high level of
the respective protein and thus at least qualitative estimates
about the proteome can be based on the transcriptome infor-
mation. The mRNA and protein level correlation studies are
under way (see [1]).

The ability to monitor gene expression at the transcript
level has become possible due to the advent of DNA micro-
array technologies (see [2]). A microarray is a glass slide, onto
which single-stranded DNA molecules are attached at ¢xed
locations (spots). There may be tens of thousands of spots
on an array, each related to a single gene. Microarrays exploit
the preferential binding of complementary single-stranded nu-
cleic acid sequences. There are several variations of microar-
ray technologies each used in a speci¢c way.

One of the most popular experimental platforms is used for
comparing mRNA abundance in two di¡erent samples (or a
sample and a control). RNA from the sample and control
cells are extracted and labeled with two di¡erent £uorescent
labels, e.g. a red dye for the RNA from the sample population
and a green dye for that from the control population. Both
extracts are washed over the microarray. Gene sequences from
the extracts hybridize to their complementary sequences in the
spots.

To measure the relative abundance of the hybridized RNA
the array is excited by a laser. If the RNA from the sample
population is in abundance, the spot will be red, if the RNA
from the control population is in abundance, it will be green.
If sample and control bind equally, the spot will be yellow,
while if neither binds, it will not £uoresce and appear black.
Thus, from the £uorescence intensities and colors for each
spot, the relative expression levels of the genes in the sample
and control populations can be estimated.

By measuring transcription levels of genes in an organism
under various conditions, at di¡erent developmental stages
and in di¡erent tissues, we can build up `gene expression
pro¢les' which characterize the dynamic functioning of each
gene in the genome. We can imagine the expression data rep-
resented in a matrix with rows representing genes, columns
representing samples (e.g. various tissues, developmental
stages and treatments), and each cell containing a number
characterizing the expression level of the particular gene in
the particular sample. We will call such a table a gene expres-
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sion matrix. Building up a database of such matrices will help
us to understand gene regulation, metabolic and signaling
pathways, the genetic mechanisms of disease, and the response
to drug treatments. For instance, if overexpression of certain
genes is correlated with a certain cancer, we can explore which
other conditions a¡ect the expression of these genes and
which other genes have similar expression pro¢les. We can
also investigate which compounds (potential drugs) lower
the expression level of these genes.

2. From raw data to gene expression matrix

Like many experimental technologies, microarrays measure
the target quantity (i.e. relative or absolute mRNA abun-
dance) indirectly by measuring another physical quantity ^
the intensity of the £uorescence of the spots on the array
for each £uorescent dye, i.e. for each optical wavelength

(so-called channel). Therefore the raw data produced by mi-
croarrays are in fact monochrome images (Fig. 1). Transform-
ing these images into the gene expression matrix is a non-
trivial process: the spots corresponding to genes on the micro-
array should be identi¢ed, their boundaries determined, the
£uorescence intensity from each spot measured and compared
to the background intensity and to these intensities for other
channels. The software for this initial image processing is
often provided with the image scanner, since it will depend
on particular properties of the hardware. Often laborious
manual adjustment of the grid for spots is used. We will not
discuss the raw data processing in detail in this paper, some
survey of image analysis software can be found on http://
cmpteam4.unil.ch/biocomputing/array/software/MicroArray_
Software.html.

In any physical experiment it is important to know not only
the value of the measurement, but also the standard error or

Fig. 1. A sample image from scanning a hybridized rat microarray containing over 5000 genes. Each spot features a pool of identical single-
stranded DNA molecules representing a single gene. The brightness of the spot is proportional to the amount of £uorescent mRNA hybridized
to the DNA of the spot. Automated image analysis software should identify these £uorescence spots, determine their boundaries, and the £uo-
rescence intensity from each spot should be measured and compared to the background £uorescence. Moreover, the image should be compared
to a similar image obtained from the control measurements and the ratio of background-subtracted intensities calculated. In this way images
are transformed into a gene expression matrix, which can be analyzed further by numerical methods. The image was kindly provided by Tom
Freeman (Sanger Centre, Cambridge, UK).
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some other indicator of reliability for each data point. For
most microarray technology platforms only the ratio of the
background-subtracted signals of the given sample and the
control is meaningful. If the spot intensity is low, the ratio
of these numbers may be high, but the measurement may not
be reliable. The spot quality can be assessed not only by the
absolute intensity in each channel, but also by many other
factors, such as uniformity of the individual pixel intensities,
or the shape of the spot. Unfortunately there is currently no
standard way of assessing the spot measurement reliability. If
experiments have been done in replicates, they can be used to
assess the standard errors in addition to the single measure-
ment quality assessments. Little has been published yet on
how to use the reliability of gene expression measurements
by combining the information about the spot image in each
channel and the replicate images.

Another di¤culty in creating a gene expression matrix
comes from the necessity to identify each spot with the re-
spective gene. This is not always possible, since spots are
typically based on EST sequences, and linking the EST to
the respective gene may be non-trivial. Typically it is done
through EST clustering. Additionally, the same gene may be
represented by several spots on the array, either by exactly the
same or by a di¡erent sequence. What expression level to
attribute to the gene, if measurements from these di¡erent
spots di¡er?

Microarray-based gene expression measurements are still
far from giving estimates of mRNA counts per cell in the
sample. The measurements are relative by nature: essentially
we can compare the expression level either of the same gene in
di¡erent samples, or of di¡erent genes in the same sample.
Moreover, appropriate normalization should be applied to
enable any data comparisons. Typically it is assumed that
abundance ratios of 1.5^2 are indicative of a change in gene
expression, but such estimates are very crude. The reliability
of ratios depends on the absolute intensity values, as well as
varying from spot to spot due to speci¢city of the sequence
and cross-hybridization of homologous sequences (for in-
stance see [3]). This should be kept in mind while analyzing
the gene expression matrix. The value of microarray-based
gene expression measurements would be considerably higher
if reliability and limitations of particular microarray platforms
for particular kinds of measurements, as well as cross-plat-
form comparison and normalization, were studied and pub-
lished.

After we have processed the raw image data into the gene
expression matrix, the next task is to analyze this matrix and
to try to extract from it some knowledge about the underlying
biological processes.

3. Gene expression matrix analysis

There are two straightforward ways how gene expression
matrix can be studied:

1. comparing expression pro¢les of genes by comparing rows
in the expression matrix;

2. comparing expression pro¢les of samples by comparing
columns in the matrix.

Additionally both methods can be combined (provided that
the data normalization allows it). When comparing rows or

columns, we can look either for similarities or for di¡erences.
If we ¢nd that two rows are similar, we can hypothesize that
the respective genes are co-regulated and possibly functionally
related. By comparing samples, we can ¢nd which genes are
di¡erentially expressed and, for instance, study e¡ects of var-
ious compounds.

Before we can perform any comparisons, we need a way to
measure the similarity (or distance) between the objects we are
comparing. We can regard these objects (rows or columns in
the matrix) as points in n-dimensional space or as n-dimen-
sional vectors, where n is the number of samples for gene
comparison, or number of genes for sample comparison.
The natural, so-called Euclidean distance (for de¢nition see
[4]) between these points in the n-dimensional space may be
the most obvious, but not necessarily the best choice. It is
intuitively appealing to use the correlation coe¤cient calcu-
lated by treating the two n-dimensional vectors as series of
random variables. In fact this distance is related to the angle
between the two n-dimensional vectors. Euclidean and corre-
lation distance measures are related, if we normalize the
length of the n-dimensional vectors to 1. This makes it possi-
ble to use correlation distance even in the cases when Euclid-
ean properties are important. Some other distance measures,
including rank correlation coe¤cient and mutual information-
based measure, are proposed in D'haesleer et al. [5]. Cur-
rently, to the best of our knowledge, there is no theory how
to choose the best distance measure. Possibly one `right' dis-
tance measure in the expression pro¢le space does not exist,
and the choice should depend on the questions that we are
asking. Standard sets of known co-regulated genes in various
organisms and gene regulatory network modeling can poten-
tially help in ¢nding theoretically substantiated similarity
measures.

After having chosen the similarity measure in the expression
pro¢le space we can study the expression matrix in either a
supervised or an unsupervised manner. The supervised ap-
proach assumes that for some (or all) pro¢les we have addi-
tional information, such as functional classes for the genes, or
diseased/normal states attributed to the samples. We can view
this additional information as labels attached to the rows or
columns. Having this information, a typical task is to build a
classi¢er able to predict the labels from the expression pro¢le.
A typical example of unsupervised data analysis is expression
pro¢le clustering to ¢nd groups of co-regulated genes or re-
lated samples. For conceptual illustration of unsupervised and
supervised analysis see Fig. 2. First we discuss the clustering
approach.

3.1. Unsupervised analysis
The goal of clustering is to group together objects (genes or

samples) with similar properties. This can also be viewed as
the reduction of the dimensionality of the system. Clustering
is not a new technique, many algorithms have been developed
for it and many of these algorithms have been applied to
analyze expression data. The hierarchical [6] and K-mean clus-
tering algorithms [7,8] as well as self-organizing maps [9] have
all been used for clustering expression pro¢les. Even a simple
clustering algorithm based on binning (i.e. discretizing the
expression pro¢le space and clustering together the pro¢les
that map into the same bin) has been shown to be useful
for clustering genes and subsequent discovering of transcrip-
tion factor binding sites [10]. More recently new algorithms
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have been developed speci¢cally for gene expression pro¢le
clustering, for instance based on ¢nding approximate cliques
in graphs [11].

Hierarchical clustering works by iteratively joining the two
closest clusters starting from singleton clusters [6] or itera-
tively partitioning clusters starting with the complete set
[12], see Fig. 3. After each joining of two clusters, the distan-
ces between all the other clusters and a new joined cluster are
recalculated. The complete linkage, average linkage, and sin-
gle linkage methods use maximum, average, and minimum
distances between the members of two clusters respectively.
Note that to obtain a particular partitioning into clusters,
the threshold distance should be chosen by independent
means (typically by the user himself).

The K-means clustering algorithm typically uses the Euclid-
ean properties of the vector space. The desired number of
clusters K has to be chosen a priori. After the initial partition-
ing of the vector space into K parts, the algorithm calculates
the center points in each subspace and adjusts the partition so
that each vector is assigned to the cluster the center of which
is the closest. This is repeated iteratively until either the par-
titioning stabilizes or the given number of iterations is ex-
ceeded. The approaches for the initial selection of the ¢rst
set of K cluster centers can vary.

Clustering of expression pro¢les has been used for grouping
genes as well as samples. The clustering of genes for ¢nding
co-regulated and functionally related groups is particularly
interesting in the cases when we have complete sets of an
organism's genes. In a frequently quoted paper DeRisi et al.
[13] used a DNA array containing a complete set of yeast
genes to study the diauxic shift time course. They selected
small groups of genes with similar expression pro¢les and
showed that these genes are functionally related and contain
relevant transcription factor binding sites upstream of their
open reading frames (ORFs). More systematic studies of
this dataset for regulatory elements were done by Brazma et
al. [10] and van Helden et al. [14].

Later more expression studies of yeast under various con-
ditions were carried out, including sporulation [15], cell cycle

[16] and yeast gene regulatory machinery [17]. Clustering has
been applied to the obtained gene expression matrices, and
groups of functionally related and co-regulated genes have
been revealed. Tavazoie et al. [8] clustered expression pro¢les
of 3000 most variable yeast genes during the cell cycle (15
time points, data from Cho et al. [18]) into 30 clusters by
the K-means algorithm. They found that for half of these
clusters, strong sequence patterns are present in the gene up-
stream sequences. Note that expression pro¢les of cell cycle-
dependent genes are periodic and Fourier analysis has been
used to discover these genes [16].

Eisen et al. [6] have developed a hierarchical clustering-
based algorithm and visualization software package, which
is currently one of the most frequently used tools for expres-
sion pro¢le clustering and data visualization. They applied
their software to gene expression matrices obtained by com-
bining 80 di¡erent yeast samples (experimental conditions)
studied in various hybridization experiments at Stanford Uni-
versity (including the ones mentioned above).

Gene expression pro¢le clustering does not necessarily re-
quire the full genome. For instance Iyer et al. [19] studied
8600 genes in human ¢broblasts and obtained 10 distinct
gene clusters each associated with genes with particular func-
tional roles, such as signal transduction, coagulation, hemo-
stasis, in£ammation etc.

A simple method for ¢nding sets of interesting genes is
comparing expression pro¢les of two or more samples for
di¡erentially expressed genes. For instance, Lee et al. [20]
used this method to ¢nd genes that are di¡erentially expressed
in skeletal muscle of adult (5 months) and old (30 months)
mice. Of over 6347 mouse genes surveyed by a microarray, 58
displayed a greater than two-fold increase, whereas 55 dis-
played a greater than two-fold decrease in expression in the
skeletal muscles of the old mice. Of the genes that increased in
expression, 16% were mediators or stress response genes and
9% were involved in neuronal growth. Of genes that decreased
in expression, 13% were participating in energy metabolism.
In the same study gene expression pro¢les from 30 month
old mice with restricted caloric intake (76% of that of a con-
trol population) were compared to the 30 month old control
population, and it was shown that the expression pro¢le of
restricted caloric intake mice was closer to that of younger
mice.

Hierarchical clustering [6] has also been used for sample
clustering. An interesting application of this approach is the
clustering of tumors to ¢nd new possible tumor subclasses. In
a recent paper by Alizadeh et al. [21], di¡use large B-cell
lymphoma (DLBCL) was studied using 96 samples of normal
and malignant lymphocytes. Applying a hierarchical cluster-
ing algorithm to these samples they showed that there is a
diversity in gene expression among the tumors of DLBCL
patients. They identi¢ed two molecularly distinct forms of
DLBCL, which had gene expression patterns indicative of
di¡erent stages of B-cell di¡erentiation. Interestingly, these
two groups correlated well with patient survival rates, thus
con¢rming that the clusters are meaningful.

Sample clustering has been combined with gene clustering
to identify which genes are the most important for sample
clustering [12,21]. Alon et al. [12] have applied a partition-
ing-based clustering algorithm to study 6500 genes of 40 tu-
mor and 22 normal colon tissues for clustering both genes and
samples. They call this method two-way clustering.

Fig. 2. Supervised and unsupervised data analysis. In the unsuper-
vised case (left) we are given data points in n-dimensional space
(n = 2 in the example) and we are trying to ¢nd ways how to groups
together points with similar features. For instance, there are three
natural clusters in the example, each consisting of data points close
to each other in a sense of Euclidean distance. A clustering algo-
rithm should identify these clusters. In the supervised case (right),
the objects are labelled (e.g. we have ¢lled and un¢lled points in the
example), and the task is to ¢nd a set of classi¢cation rules allowing
us to discriminate between these points as precisely as possible. For
instance, the dotted line in the drawing discriminates most of the
points correctly, allowing us to predict their `labels' ^ ¢lled or un-
¢lled ^ by their position above or below the dotted line.
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Fig. 3. Hierarchical clustering of gene expression matrices. The image shows an average linkage (UPGMA) clustering of 505 yeast genes during
three di¡erent cell cycle studies with a total of 60 di¡erent time points analyzed. The color image on the left shows the numerical values en-
coded by color according to the method introduced by Mike Eisen. Red is used to represent the positive values and green the negative values.
Blue shows the missing values in the respective experiments. The clustering and the image are produced using WWW-based tools in Expression
Pro¢ler (http://www.ebi.ac.uk/microarray/). The interface is interactive and further information about the genes in each subtree is available by
clicking on the respective nodes in the tree.

FEBS 23893 18-8-00 Cyaan Magenta Geel Zwart

A. Brazma, J. Vilo/FEBS Letters 480 (2000) 17^24 21



3.2. Supervised analysis
One of the goals of supervised expression data analysis is to

construct classi¢ers, such as linear discriminants, decision
trees or support vector machines (SVM), which assign prede-
¢ned classes to a given expression pro¢le. For instance, if a
classi¢er can be constructed based on gene expression pro¢les
that is able to distinguish between two di¡erent, but morpho-
logically closely related tumor tissues, such a classi¢er can be
used for diagnostics. Moreover, if such a classi¢er is based on
a set of relatively simple rules, it can help to understand what
the mechanisms involved in each tumor are. Typically, such
classi¢ers are trained on a subset of data with a priori given
classi¢cation and tested on another subset with known classi-
¢cation. After assessing the quality of the prediction they can
be applied to data the classi¢cation of which is unknown.

Brown et al. [22] have applied various supervised learning
algorithms to six functional classes of yeast genes using gene
expression matrices from 79 samples [6]. Genes from some of
the classes, such as ribosomal proteins and histones, are ex-
pected to be co-expressed. For these classes a good classi¢ca-
tion accuracy was achieved. Some other functional classes,
such as protein kinases, are not expected to have distinct
gene expression pro¢les. It was shown that SVM provides
the best prediction accuracy for the functional classes that
are expected to be co-regulated.

Golub et al. [23] applied neighborhood analysis to construct
class predictors for samples, concretely for leukemias. They
were looking for genes the expression of which is best corre-
lated with two known classes of leukemias, acute myeloid
leukemia and acute lymphoblastic leukemia. They constructed
a classi¢er based on 50 genes (out of 6817) using 38 samples
and applied it to a collection of 34 new samples. The classi¢er
correctly predicted 29 of these 34 samples.

Note that when classifying samples, we are confronted with
a problem that there are many more attributes (genes) than
objects (samples) that we are trying to classify. This makes it
always possible to ¢nd a perfect discriminator if we are not
careful in restricting the complexity of the permitted classi-
¢ers. To avoid this problem we must look for very simple
classi¢ers, compromising between simplicity and classi¢cation
accuracy. Ben-Dor et al. [24] applied a new clustering algo-
rithm for classi¢cation of colon and ovarian cancer data sets.
They used unsupervised clustering to ¢nd a hierarchical struc-
ture in the expression pro¢le space, and supervised learning to
¢nd the best threshold to correlate the clustering structure
with the known cancer classes.

Whether we use supervised or unsupervised expression pro-
¢le analysis, they are only the ¢rst steps in expression data
analysis. It is a long way from ¢nding gene clusters to ¢nding
functional roles of the respective genes, and moreover, under-
standing the underlying biological processes. A natural step
downstream of expression pro¢le clustering is the usage of
putative promoter sequences of similarly expressed genes for
¢nding regulatory sequence elements in genomes. This is eas-
ier for yeast, since typically yeast promoters are relatively
close to ORFs. In the next section we describe an approach
which uses gene expression data to ¢nd regulatory sequence
elements in yeast.

4. Identi¢cation of putative regulatory signals

It seems reasonable to hypothesize that genes with similar

expression pro¢les, i.e. genes that are co-expressed, may have
something in common in their regulatory mechanisms, i.e.
may be co-regulated. Therefore by clustering together genes
with similar expression pro¢les one can ¢nd groups of poten-
tially co-regulated genes and search for putative regulatory
signals. The outline of such a discovery method is as follows:

1. cluster the genes based on a selection of expression mea-
surements;

2. extract putative promoter sequences for the genes in the
clusters;

3. search for sequence patterns overrepresented in these clus-
ters;

4. assess the quality of discovered patterns using some statis-
tical signi¢cance criteria.

A systematic application of this approach has been reported
for the yeast Saccharomyces cerevisiae using a public data set
from Stanford University [6] combining various yeast expres-
sion experiments with a total of 80 conditions for 6221 genes
(http://rana.stanford.edu/). The computational analysis con-
sisted of the following steps [25].

1. Clustering the expression data. In the absence of theoret-
ically `correct' similarity measures and clustering algo-
rithms, the simplest measure was selected and di¡erent
clusterings carried out. All genes were clustered based on
their expression pro¢les by the K-means clustering algo-
rithm using Euclidean distances. Instead of ¢xing the num-
ber of clusters K it was varied between 2 and 1000. For
each K the clustering was repeated 10 times with di¡erent
random initial cluster centers. In total over 900 separate
clusterings were made and clusters of size between 20 and
100 genes were selected, totaling over 52 100 di¡erent clus-
ters.

2. Sequence pattern discovery. For each cluster the set of gene
upstream sequences of length 600 bp was taken for analy-
sis. All substring patterns of unrestricted length occurring
in at least 10 sequences in a cluster were scored according
to the binomial probability of their occurrence in the clus-
ter. The background probability was estimated based on
the number of occurrences of each pattern in upstream
sequences of all 6221 genes.

3. Finding the signi¢cance threshold by control experiment.
To determine the statistical signi¢cance threshold for the
patterns, step 2 was repeated on randomized data by re-
placing the cluster contents by upstream sequences from
random sets of genes. A threshold probability of 1038

was chosen as patterns with higher probability were also
observable from random clusters.

4. Pattern selection. Of the over 6000 signi¢cant patterns
many were observed to occur in clusters of genes with
high homology in the respective upstream sequences. These
clusters, totaling 169 genes, were easily identi¢able and
they were removed. The remaining clusters of genes with
non-homologous upstream sequences contained 3727
ORFs and together they produced 1498 signi¢cant pat-
terns.

5. Grouping the patterns. As 1498 substring patterns is still
too many for human study, they were clustered using a
similarity measure based on common information content
[26]. This produced 62 clusters of similar patterns. For each
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cluster of patterns an approximate alignment and a con-
sensus pattern were calculated.

6. Evaluation of discovered patterns against known transcrip-
tion factor binding sites. All 1498 interesting patterns were
matched against experimentally veri¢ed DNA binding sites
of yeast as given in SCPD ([27], http://cgsigma.cshl.org/
jian/).

Of the 62 clusters of patterns 48 had matches in SCPD and
14 were such that they did not have a match in any site
reported in the SCPD database. Table 1 shows the partial
consensus patterns that were calculated from pattern align-
ments for these 14 clusters. The nucleotide groups (IUPAC
groups represented here using a regular expression notation)
were introduced when the frequency of the less frequent nu-
cleotide in the respective column was over 25% of the fre-
quency of the more frequent nucleotide. Inside the groups
nucleotides are ordered based on their frequency. Lowercase
letters are used when the majority of the patterns do not have
any nucleotide in that position, i.e. when the most frequent
nucleotide in the respective alignment column is a dash.

The fact that 48 out of 62 pattern classes have matches in
experimentally veri¢ed yeast transcription factor binding sites
indicates the validity of the described computational discovery
method. Potentially the most interesting patterns, however,
are the ones that do not have matches in the known binding
sites, and they can be targets for further research (see Table
1). In this way, the described computational experiment has
come up with targets for further research by more conven-
tional methods. Automatic or semiautomatic generation of
such hypotheses is one of the main tasks of bioinformatics
and data mining approaches.

The tools used for the experiments outlined above, as well
as the complete results of the experiments, are available on-
line (http://www.ebi.ac.uk/microarray). All the tools, includ-
ing the clustering and visualization methods for expression
data analysis and the regulatory region extraction for the
yeast, have a web interface. The individual tools are intercon-
nected so that similar analyses can be carried out over the web
for any expression and sequence data.

5. Conclusions

Expression data analysis methods are currently only in their

infancy. Even the rather obvious approaches, such as cluster
analysis and ¢nding di¡erentially expressed genes, have been
used only rather crudely. For instance, the appropriateness of
similarity measures has not been systematically explored and
these measures are used on an ad-hoc basis. The information
characterizing the measurement quality of di¡erent data
points is typically not used. Advances in this area are hindered
by the lack of systematic research in ways of assessing the
measurement quality and comparing data from various tech-
nology platforms. These shortcomings can be overcome only
if the journals encourage publications exploring the gene ex-
pression measurement technologies themselves, rather than al-
ways concentrating on the biological subject. In the long run
the advancement of biological knowledge will be accelerated
by technology-centric studies, with biology becoming more
quantitative science.

Gene expression data analysis methods will develop simi-
larly as sequence analysis methods have developed over the
past decades. The amounts of gene expression data will con-
tinue growing and the data will become more systematic.
Currently the gene expression pro¢ling is similar to gene se-
quencing before the era of genome sequencing: the measure-
ments are carried out to attack particular questions or some-
times just to demonstrate the concept.

With the technology becoming more reliable, with the in-
troduction of standard controls in experiments and developing
generally accepted data normalization and quality control
methods, it will become possible to systematically pro¢le
genes in various organisms, tissues, developmental stages
and conditions. Various chemical compounds will be pro¢led
for their possible toxicity and other e¡ects on organisms, and
various signatures will be associated with various toxicity
mechanisms or cellular processes. This approach will resemble
systematic genome sequencing. Algorithms for reliable search-
ing of similar expression pro¢les, or analyzing sets of related
pro¢les to discover common signatures, will be needed, just as
searching and pattern discovery algorithms are needed to ex-
plore sequences.

However, there is a major di¡erence between gene sequence
and expression data. Even if eventually we are able to over-
come various technological limitations, and even if we are
able to measure gene expression in terms of absolute units
such as mRNA counts, the gene expression pro¢les are mean-
ingful only in the context of the experimental conditions in
which they have been measured. This requires detailed and
systematic annotation of samples and experimental condi-
tions. For this to become a reality, agreed ontologies and
controlled vocabularies for tissues, cell types, and treatments,
as well as for array designs, image analyses and hybridization
protocols, have to be developed. Systematic building up of
gene expression matrices for various organisms would be fa-
cilitated by establishing a public repository for gene expres-
sion data [28].

Like genome sequencing, the systematic gene expression
pro¢le is not an end in itself. It is a long way from having
detailed gene expression pro¢les to real understanding of
underlying cellular processes. Bioinformatics methods and
tools will be needed to cope with the huge amounts of data,
but they will not bring any deep understanding by themselves.
On the other hand, the traditional `gene by gene' methods will
not be su¤cient to understand gene regulatory networks con-
sisting of thousands or tens of thousands of genes. One of the

Table 1
Consensus sequences of the pattern clusters that do not have
matches in the SCPD database

Cluster Consensus pattern

2 aaTCTTCATGt
5 cgTACCTCTa
8 gACAGCTAc
17 tAT[TAC]GTTAAgc
20 ACTTTATTT
21 [ag]TAACTT[AT]Ca
26 TATCGAG (singleton)
29 t[ta]CGAATA[AG]aaaa
42 [ta]TGCATGAAc
43 a[TG][GC]GTATAc
45 [ag][ga][AG]ATATG[TG][ga][ag]g
46 tag[AG]TAGA[TA]A[ga]aaaa
50 ATCCAAGAg
59 tTTTTCTG[CT][TA]c

See text for explanations.
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most challenging downstream goals of gene expression pro¢l-
ing and data analysis is the reverse engineering and modeling
of gene regulatory networks (see for instance [29^31]). With
biology becoming more quantitative science, modeling ap-
proaches will become more and more usual.
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