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Amyloid-b peptides induce cell proliferation and macrophage
colony-stimulating factor expression via the PI3-kinase/Akt pathway

in cultured Ra2 microglial cells
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Abstract Alzheimer�s disease is characterized by numerous
amyloid-b peptide (Ab) plaques surrounded by microglia. Here
we report that Ab induces the proliferation of the mouse micro-
glial cell line Ra2 by increasing the expression of macrophage
colony-stimulating factor (M-CSF). We examined signal cas-
cades for Ab-induced M-CSF mRNA expression. The induction
of M-CSF was blocked by a phosphatidylinositol 3 kinase (PI3-
kinase) inhibitor (LY294002), a Src family tyrosine kinase inhib-
itor (PP1) and an Akt inhibitor. Electrophoretic mobility shift
assays showed that Ab enhanced NF-jB binding activity to the
NF-jB site of the mouse M-CSF promoter, which was blocked
by LY294002. These results indicate that Ab induces M-CSF
mRNA expression via the PI3-kinase/Akt/NF-jB pathway.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Alzheimer�s disease (AD) is characterized by the presence of

senile plaques in the brain composed primarily of amyloid-b
peptide (Ab). Microglia have been reported to surround the

Ab plaques, which provokes a microglia-mediated inflamma-

tory response that contributes to neuronal cell loss [1]. On

the other hand, microglia play an important role in the clear-

ance of Ab by phagocytosis, primarily through scavenger

receptor class A (SR-A, CD204), scavenger receptor-BI (SR-

BI) and CD36 [2–4]. Recently, it has been reported that
Abbreviations: AD, Alzheimer�s disease; Ab, amyloid-b; EMSA, elec-
trophoretic mobility shift assay; FBS, fetal bovine serum; GM-CSF,
granulocyte–macrophage colony stimulating factor; M-CSF, macro-
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kinase, phosphatidylinositol 3 kinase; RAGE, receptor for advanced
glycation end-products
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microglia isolated from CD36-deficient mice had marked

reductions in Ab-induced cytokine/chemokine secretion [5].

CD36 binds to Ab in vitro [6], and is physically associated with

members of the Src family tyrosine kinase [7,8], which trans-

duce signals from this receptor [9]. Another receptors such as

receptor for advanced glycosylation end-products (RAGE),

integrins and heparan sulfate proteoglycans, also have been re-

ported to bind with Ab [10].

There are many reports that microglia are activated by Ab,
but it has been unclear whether Ab is associated with the pro-

liferation of microglia. Here we report that Ab induces prolif-

eration of the microglial cell line Ra2 by increasing

macrophage colony-stimulating factor (M-CSF) expression.

We also elucidated signal transduction pathways from Ab-
treatment to M-CSF mRNA expression in microglia.
2. Materials and methods

2.1. Materials
Synthetic human Ab25–35, Ab1–42 and Ab1–16 were obtained

from Peptide Institute Inc. Ab35–25 was from AnaSpec Inc.
Ab25–35, Ab1–16 and Ab35–25 were dissolved in H2O and Ab 1–
42 was dissolved in 0.1% NH3 according to the manufacturer�s
instructions. Anti-phospho-Akt (Serine 473), anti-Akt, anti-phos-
pho-IjBa (Serine 32), and anti-IjBa antibodies were from Cell Sig-
naling. PP1 was from Biomol. Wortmannin, LY294002 and Akt
inhibitor [1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-
octadecylcarbonate] were from Calbiochem. Piceatannol was from
Sigma–Aldrich. Mouse recombinant granulocyte–macrophage col-
ony-stimulating factor (mrGM-CSF) was from Pharmingen. Mouse
recombinant M-CSF (mrM-CSF) was from Techne. Ab25-35 and
Ab1–42 were used at 50 and 10 lM, respectively, in all studies unless
otherwise stated.

2.2. Cell culture
Microglial cell line Ra2 was cultured in MGI medium [Eagle�s MEM

supplemented with 0.2% glucose, 5 lg/ml bovine Insulin
(Sigma–Aldrich), and 10% fetal bovine serum (FBS, Invitrogen)] and
0.8 ng/ml mrGM-CSF (Pharmingen) [11]. Before Ab-treatment, Ra2
cells were cultured in MGI medium without mrGM-CSF for 16 h. Pri-
mary microglia and primary astrocytes were prepared using newborn
C57BL/6 mice as described previously [12], and cultured in MGI med-
ium containing 0.8 ng/ml mrGM-CSF. The neuroblastoma cell line
Neuro2a was cultured in DMEM supplemented with 10% FBS. Pri-
mary neurons were obtained from the cortex of 14-day-old C57BL/6
mouse embryos as described previously [13] with some modifica-
tions. Neural cells cultured in DMEM supplemented with TIS (5 lg/ml
blished by Elsevier B.V. All rights reserved.
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transferrin, 5 lg/ml insulin, and 5 ng/ml selenite, Sigma), 10% FBS and
5 lM cytosine arabinoside (Ara-C, Sigma). Before Ab-treatment, pri-
mary neurons were cultured in MGI medium for 16 h.

2.3. Cell proliferation (WST-1) assay
Cell proliferation was determined by analyzing the conversion of

WST-1 (light red) to its formazan derivate (dark red) using a WST-1
Cell Counting Kit (Dotite). For neutralization of M-CSF, anti-mouse
M-CSF antibody (Techne) was added to the culture medium. At the
end of the experiments, the media were replaced, and cells were incu-
bated with 10 ll of the WST-1 reagent for 1 h at 37 �C in 5% CO2.
The absorbance at 450 nm was measured by using a microplate reader
(Bio-Rad).

2.4. Immunoblotting
Cells were lysed in sample buffer (62.5 mM Tris–HCl, pH 6.8, 2%

SDS, 10% glycerol, 5% 2-mercaptoethanol, and 5% bromophenol
blue). Then 50 lg of total protein was resolved by SDS–PAGE and
transferred to PVDF membranes (Millipore). Immunoblotting was
performed with the appropriate antibody using the enhanced chemilu-
minescence (ECL) system (Amersham Pharmacia).

2.5. RT-PCR and real-time quantitative RT-PCR
Total RNA was isolated using an RNeasy mini kit (Qiagen) accord-

ing to the manufacturer�s instructions. Two micrograms of total RNA
was reverse transcribed to cDNA using SuperScript II Reverse Trans-
criptase (Invitrogen). For RT-PCR and real-time quantitative PCR,
the primers for mouse M-CSF and b-actin genes were as follows (5 0

to 3 0): M-CSF sense, CCATCGAGACCCTCAGACAT; M-CSF anti-
sense1 for RT-PCR, CCTAAGGGAAAGGGTCCTGA; M-CSF
antisense2 for real-time PCR, GATGAGGACAGACAGGTGGA; b-
actin sense, AGTGTGACGTTGACATCCGT; and b-actin antisense,
GCAGCTCAGTAACAGTCCGC. Conventional RT-PCR was per-
formed using 0.5 ll cDNA, and 30 cycles of amplification for M-CSF
or 23 cycles for b-actin at 94 �C for 1 min, 60 �C for 1 min and 72 �C
for 1 min. Quantitative real-time PCR was performed on the Smart Cy-
cler system (Takara) using the following program: 2 min at 50 �C,
10 min at 95 �C, followed by 40 cycles of 15 s at 95 �C, 1 min at
60 �C, and 8 s at 72 �C. The reactions were carried out using 0.5 ll
cDNA with Smart Kit for Sybr Green I (Eurogentec). To check the
specificity of reactions, a single band of the correct size was visualized
by running out on 2% agarose gels. Values were expressed as relative
expression of M-CSF mRNA normalized to the b-actin mRNA.

2.6. Nuclear extracts and electrophoretic mobility shift assays (EMSAs)
Nuclear extracts of Ra2 cells were prepared as previously described

[14]. Three micrograms of nuclear extract was incubated with 5 fmol
of 32P end-labeled double-stranded oligonucleotides derived from M-
CSF promoter in binding buffer [10 mM Tris, pH 7.5, 4% glycerol,
1 mM MgCl2, 50 mM NaCl, 0.5 mM EDTA, 0.5 mM DTT, and
0.05 lg/ll poly(dI–dC)] for 20 min at room temperature. For competi-
tion assays, 1 pmol of unlabeled probe was incubated in the reaction
mix before the addition of the 32P-labeled probe. The oligonucleotides
used in these experiments were as follows: NF-jB probe, 5 0-GCC-
TTGAGGGAAAGTCCCTAGGGGC-3 0; AP1 probe, 5 0-GTAGT-
ATGTGTCAGTGCC-30. For supershift assays, nuclear extracts were
preincubated with anti-NF-jB p50 or p65 antibodies (Santa Cruz)
for 1 h at 4 �C. The DNA–protein complex was separated on 5% native
polyacrylamide gels. The dried gels were visualized using an Image
Reader (Fujifilm).

2.7. Statistical analysis
Results are expressed as means ± S.D. Statistical analysis was done

by a two-tailed Student�s t test. A P value of <0.05 was considered sta-
tistically significant.
Fig. 1. Ab promotes Ra2 cell proliferation. Cellular proliferation was
measured by WST-1 assay. (A, B and C) Ra2 cells were incubated with
the medium containing M-CSF, Ab25–35 or Ab1–42 at indicated
concentrations for 48 h. (D) Ra2 cells were preincubated with 1 lg/ml
anti-M-CSF antibody for 1 h before treatment with 5 lM Ab1–42 or
25 ng/ml M-CSF for 24 h. Mean ± S.D. values from a single experi-
ment were performed in triplicate. Similar results were obtained in
each of two separate experiments (\P < 0.05).
3. Results and discussion

3.1. Ab promotes microglial cell proliferation

To investigate the possible role of Ab in the activation of

microglia, we examined if Ab could sustain the cell prolifera-
tion of microglial cell line Ra2. Ra2 cells proliferate in MGI

medium containing GM-CSF and stop proliferating without

GM-CSF [11]. Under MGI medium without GM-CSF, the ef-

fects of M-CSF or Ab on the proliferation of Ra2 cells were

analyzed by the WST-1 assay. The addition of M-CSF induced

cell proliferation dose-dependently (Fig. 1A). Ab25–35 in-

creased Ra2 cell proliferation dose-dependently (Fig. 1B).

Ab25–35 does not occur naturally but has shown to mimic

the effects of Ab1–42 [15–17]. Ab1–42, which occurs in a brain

affected by AD, was more effective in cell proliferation than

Ab25–35 (Fig. 1C). It has been reported that Ab stimulates

the proliferation of microglia to enclose Ab plaque [18,19].

We examined if M-CSF provoked the cell proliferation with

Ab-treatment. The effect of Ab on the proliferation was

blocked by anti-M-CSF antibody (P < 0.05) (Fig. 1D). The

treatment with M-CSF was performed as a control. The effect

of M-CSF was blocked by anti-M-CSF antibody (Fig. 1D).

We found that Ab induces microglial cell proliferation by M-

CSF production.

3.2. Ab induces M-CSF mRNA expression in microglia

To examine whether Ab could induce M-CSF mRNA

expression in microglia, Ra2 cells were stimulated with

Ab25–35 for 16 h at various concentrations. Ab25–35 in-

duced M-CSF mRNA expression dose-dependently (Fig.

2A). As a result of real-time quantitative RT-PCR (Fig.

2A, right), M-CSF mRNA induction by 50 lM Ab25–35
was about sevenfold of non-treated control. Ab25–35 in-

duced time-dependent increases in M-CSF mRNA expression

(Fig. 2B). Ab1–42 also induced M-CSF expression (Fig. 2A

and B). GM-CSF mRNA, on the other hand, was not in-

duced by Ab25–35 or Ab1–42 (data not shown). Ab1–16
did not induce M-CSF mRNA expression (Fig. 2C), nor



Fig. 2. Ab stimulates M-CSF mRNA expression in microglia. (A and B) M-CSF and b-actin mRNA were determined by RT-PCR (left) and
quantified by real-time PCR (right). Data represent means ± S.D. of three separate determinations. Ra2 cells were treated with Ab25–35 or Ab1–42
at indicated concentrations for 16 h (A). Time course of M-CSF relative expression of Ra2 cells treated with 50 lMAb25–35 and 10 lMAb1–42 (B).
(C and D) Ra2 cells were treated with 50 lM Ab1–16 (C) or 50 lM Ab35–25 (D) for indicated times. (E and F) Primary microglia (E), primary
neurons, primary astrocytes and neuroblastoma Neuro2a (F) were treated with 50 lM Ab25–35 or 10 lM Ab1–42 for 16 h.
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did Ab 35–25, which was a reverse sequence of Ab25–35
(Fig. 2D). In primary microglia, as well as in Ra2 cells,

Ab25–35 and Ab1–42 increased M-CSF mRNA expression

(Fig. 2E). We also examined whether Ab induced increases

in M-CSF mRNA expression in primary astrocytes, primary

neurons, and neuroblastoma cells Neuro2a. These cells con-

stitutively expressed M-CSF mRNA, but Ab25–35 and Ab1–
42 did not induce further expression of M-CSF mRNA (Fig.

2F). These results demonstrate that Ab induced M-CSF

mRNA expression in only microglia.

3.3. Ab induces M-CSF mRNA via Src family tyrosine kinase

and PI3-kinase signal cascade

Because our studies showed that Ab25–35 had induced M-

CSF expression in Ra2 cells, we examined signal cascades for

Ab-induced M-CSF mRNA expression by using several

chemical inhibitors. The Src family tyrosine kinase is associ-

ated with CD36, which transduces signal cascades by Ab
[7,8,20]. In addition, Syk tyrosine kinase is activated by Ab
[21]. First, we examined if M-CSF mRNA expression was in-

duced by Ab via tyrosine kinase, Src family and Syk. A spe-

cific inhibitor of Src family kinase, PP1, prevented the

increase in M-CSF mRNA induced by Ab (Fig. 3A). A

Syk-selective inhibitor, piceatannol, also blocked the increase

in M-CSF mRNA expression (Fig. 3B). Next, to investigate

whether the PI3-kinase pathway regulates Ab-induced M-

CSF expression, Ra2 cells were pretreated with the PI3-ki-

nase inhibitors, wortmannin or LY294002. Wortmannin

and LY294002 inhibited the increase in M-CSF mRNA

expression dose-dependently (Fig. 3C and D). Fig. 3E shows

the result of quantitative amounts of mRNA by real-time

PCR. It has been reported that Ab stimulates tyrosine ki-

nase, PI3-kinase and Akt activation in neural and macro-

phage cells [21–24]. However, analysis of these signal

transductions in microglia has not been reported. This is

the first report that Ab induces M-CSF expression through



Fig. 3. Signal transduction for M-CSF mRNA expression induced by
Ab. (A–D) M-CSF and b-actin mRNA expression were determined by
RT-PCR. Ra2 cells were preincubated with 10 lM PP1 (A), wort-
mannin (C), LY294002 (D) for 30 min or piceatannol (B) for 1 h before
treatment of 50 lM Ab25–35 for 6 h. Beacuse all inhibitors were
dissolved in DMSO, control cells were treated with DMSO. (E) M-
CSF mRNA expressions were measured by real-time PCR (pice,
piceatannol; wort, wortmannin; LY, LY294002). Data represent
means ± S.D. values of three separate determinations.
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the Src family and Syk tyrosine kinases and the PI3-kinase

in microglia.
3.4. Ab activates Akt signaling pathway in microglia

We examined whether Akt was involved in the Ab-induced
M-CSF expression in Ra2 cells. Akt inhibitor blocked the in-

crease of M-CSF mRNA expression (Fig. 4A). Immunoblot-

ting analysis revealed that Akt was transiently phoshorylated

at serine 473 by Ab (Fig. 4B). LY294002 and PP1 suppressed

the phosphorylation of Akt induced by Ab (Fig. 4D). Picea-

tannol also blocked the phosphorylation of Akt (Fig. 4E).

Because tyrosine kinases and PI3-kinase activate MEK/Erk/

Elk [25,26], we examined whether these signal pathways were

related to M-CSF mRNA expression induced by Ab. Ab in-

duced MEK and Erk1/2 phosphorylation in Ra2 cells. How-
ever, specific inhibitors of MEK, U0126 and PD98059 did

not inhibit Ab-induced M-CSF mRNA expression (data not

shown). These results indicate that the tyrosine kinases, Src

family and Syk, and the PI3-kinase activate Akt for Ab-
induced M-CSF expression.

3.5. Ab activates NF-jB via PI3-kinase signal cascade

Because NF-jB is a target of Akt [27], next we examined if

IjBa phosphorylation was induced by Ab. The phosphoryla-

tion of IjBa on serine 32 results in the release and nuclear

translocation of active NF-jB [28]. IjBa was phosphorylated

time-dependently, the phosphorylation peaked at 60 min and

then declined (Fig. 4C). The phosphorylation was inhibited

by LY294002 and PP1 (Fig. 4D). Piceatannol also blocked

the phosphorylation of IjBa (Fig. 4E).

The M-CSF promoter region has a putative NF-jB bind-

ing site at �369–378 bp from the transcriptional start site

[29]. To investigate whether this NF-jB binding site is asso-

ciated with Ab-induced M-CSF expression, EMSA was car-

ried out with nuclear extracts prepared from untreated and

Ab-treated Ra2 cells. The amount of protein binding to

the NF-jB probe was increased by Ab-treatment (Fig. 5A,

compare lanes 2 and 3). NF-jB binding activity was almost

completely eliminated by adding an excess of the unlabeled

NF-jB probe but not by the unlabeled AP1 probe (Fig.

5A, lanes 6 and 7). Anti-p50 antibody supershifted the com-

plexes (Fig. 5A, lane 4) and anti-p65 antibody partially dis-

rupted the DNA binding of the complexes (Fig. 5A, lane 5).

To examine whether the Ab-induced increase in nuclear NF-

jB binding activity correlated with tyrosine kinase and PI3-

kinase, Ra2 cells were preincubated with chemical inhibitors

before treatment with Ab. LY294002 reduced Ab-induced
binding to the NF-jB probe and piceatannol blocked the

DNA-binding complex (Fig. 5B, lanes 4–7). These results

indicate that Ab enhances the binding of NF-jB to M-

CSF promoter via the Syk tyrosine kinase and the PI3-

kinase.

We have shown in the present study that Ab proliferates

microglia and induces M-CSF via the PI3-kinase/Akt/NFjB
signal pathways. It has been reported that Ab binds to

CD36, which transduces signals via tyrosine kinase [6,20].

CD36 may participate in the initiation of intracellular sig-

naling to M-CSF expression. RAGE also has been reported

to induce NF-jB activation to M-CSF production [30]. Fur-

ther works are needed to prove the receptors of Ab, which
induces PI3-kinase/Akt/NF-jB signal pathways to M-CSF

mRNA expression. Ab increases production of reactive oxy-

gen species (ROS) and activates Akt in neural cells [23].

And in microglia CD36 mediates production of ROS in re-

sponse to Ab [31]. We found that antioxidants such as

reduced glutathione and a-tocopherol slightly blocked M-

CSF mRNA expression (data not shown). Also in microglia,

ROS may partly participate in activating the signal cascade

to M-CSF expression. It is important to reveal the relation

among the receptors of Ab, production of ROS and signal

cascades.

Monsonego et al. [32] showed that activated microglia

migrated outside the brain and could present Ab peptide

to T lymphocytes. Further analysis of microglial activation

may reveal the immunological mechanism of AD, and may

enhance the prospects of immune manipulation to prevent

AD.



Fig. 4. Ab-induced Akt and IjB phosphorylation through tyrosine kinase and PI3-kinase. (A) RT-PCR (top) and real-time PCR (bottom) of M-CSF
mRNA. Ra2 cells were preincubated with or without 20 lM Akt inhibitor before treatment with 25 lM Ab25–35 for 6 h. Data represent
means ± S.D. values of three separate determinations. (\P < 0.01) (B–E) Immunoblotting analysis using anti-phospho Akt (Ser 473) or anti-phospho
IjBa (Ser 32) antibody. The same blots were reprobed with anti-Akt or anti-IjB antibody. Ra2 cells were treated with Ab25–35 for indicated times
(B and C). Ra2 cells were preincubated with 25 lM LY294002 or 10 lM PP1 for 30 min or 50 lM piceatannol for 1 h before treatment with 50 lM
Ab25–35 for 30 min (D and E).

Fig. 5. NF-jB binding activity in EMSA. 32P-labeled probe without
nuclear extracts are showed in lane 1. (A) Ra2 cells were treated with
50 lM Ab25–35 for 4 h (lanes 3–7). Anti-p50 or anti-p65 antibody was
added to the extracts for supershift assay (lanes 4 and 5). Unlabeled
competitor of NF-jB or AP1 probe was added to the extract (lanes 6
and 7). (B) Ra2 cells were preincubated with 25 lM LY294002 for
30 min (lanes 4 and 5) or 50 lM piceatannol for 1 h (lanes 6 and 7)
before treatment with or without 50 lM Ab25–35 for 4 h (lanes 2–7).
Control cells were preincubated with DMSO (lanes 2 and 3). Nuclear
extract of Ra2 cells treated with 1 lg/ml LPS for 4 h were used as a
positive control (lane 8).
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