ON THE SHARPNESS OF TCHEBYCHEFF TYPE INEQUALITIES. II ¹)

BY

J. H. B. KEMPERMAN

(Communicated ar the meeting of April 24, 1965)

5. Arbitrary measurable functions

Let again X, \mathscr{F} , F, F^+ and \mathscr{M}^+ be as in section 2. In the present section we shall assume that \mathscr{M}^+ is non-empty. In a number of important cases, compare Theorem 4.2, the quantity $\mu_{\max}(f)$ defined by (2.6) may be regarded as being known. In particular, by Lemma 1.1,

(5.1)
$$\mu_{\max}(f) = \sup_{x \in X} f(x) \text{ if } F^{+} = F_0^{+}.$$

Be given a subset

$$\{g_j, j \in D_1\}$$

of F. By L_1 we shall denote the product space

$$L_1 = \prod_{j \in D_1} R_j,$$

(with R_i as a copy of the reals), consisting of all points

$$\sigma = \{\sigma_i, j \in D_1\},\$$

(that is, all real-valued functions on the index set D_1). Let us consider the set

$$(5.2) V = \{ \sigma \in L_1 : \text{ exists } \mu \in \mathscr{M}^+ \text{ with } \mu(g_j) = \sigma_j \text{ for all } j \in D_1 \}.$$

Clearly, V is a convex subset of the real linear space L_1 . We further have, by (2.6) and (5.2), that

$$(5.3) V \subset W.$$

Here,

$$(5.4) \hspace{1cm} \textit{W} = \{\sigma \in L_1 : \sum_{j \in D_1} \beta_j \sigma_j \leqslant \mu_{\max}(\sum_{j \in D_1} \beta_j g_j) \text{ for all } \beta \in L_1^* \},$$

where L_1^* consists of all real-valued functions $\{\beta_j, j \in D_1\}$ on D_1 such that $\beta_j = 0$ for all but finitely many j.

¹⁾ Supported in part by the National Science Foundation, GP-2499.

Theorem 5.1. We have

$$(5.5) cl(V) = W,$$

(cl = closure) when L_1 is given the product topology.

This result is known in the case $F^+=F_0^+$, see [42] p. 318. The product topology in L_1 is the coarsest topology making all projections $\sigma \to \sigma_j$ continuous. In other words, a net of points $\sigma^{(n)} \in L_1$ converges to $\sigma^{(0)} \in L_1$ if and only if, for each $j \in D_1$, the j-th coordinate $\sigma_j^{(n)}$ of $\sigma^{(n)}$ converges to the j-th coordinate $\sigma_j^{(0)}$ of $\sigma^{(0)}$. Clearly, W as defined by (5.4) is a closed and convex subset of L_1 . Hence, $\operatorname{cl}(V) \subset W$, by (5.3).

Proof of Theorem 5.1. Let $\sigma^{(0)} \in L_1$ be such that $\sigma^{(0)} \notin \operatorname{cl}(V)$; we must prove that $\sigma^{(0)} \notin W$. Since L_1 is a locally convex vector space, there exists, [9] p. 73, a closed hyperplane separating $\sigma^{(0)}$ strictly from $\operatorname{cl}(V)$. That is, there exists a continuous real and linear functional $\varphi(\sigma)$ on L_1 and a constant c, such that $\varphi(\sigma^{(0)}) > c$, while $\varphi(\sigma) < c$ throughout $\operatorname{cl}(V)$, hence, throughout V. As is easily seen, φ must be of the form

$$\varphi(\sigma) = \sum_{j \in D_1} \beta_j \sigma_j, \quad \text{all } \sigma \in L_1,$$

for some $\beta \in L_1^*$, $\beta \neq 0$. Using (2.6) and (5.2), we have

$$\mu_{\max}(\sum_{j\in D_1}\beta_jg_j)\leqslant c<\sum_{j\in D_1}\beta_j\sigma_j^{(0)},$$

implying that $\sigma^{(0)} \notin W$.

Only in exceptional cases, (often obtainable from assertion (I) of Theorem 4.3), the set V is closed, that is, V = W. This makes the following result especially useful; it generalizes a result of RICHTER [38].

Theorem 5.2. We have

(5.6)
$$\operatorname{int}_{S}(W) = \operatorname{int}_{S}(V),$$

provided that $\operatorname{int}_S(V)$ is non-empty. Here, the interiors are taken relative to the minimal flat S containing W. In particular, (5.6) always holds when S is finite-dimensional, (say, when the index set D_1 is finite).

Proof. It is known, [48] p. 13, that int (V) = int $(\operatorname{cl}(V))$ as soon as V is convex and int (V) is non-empty, (everything relative to S). Using (5.5), this yields (5.6).

Next, suppose that S is finite-dimensional. Note that V is non-empty since \mathcal{M}^+ is non-empty. Let $m \geqslant 0$ denote the largest integer such that V contains the m+1 corners of a non-degenerate m-simplex. Let S' denote the m-dimensional flat spanned by this simplex. Then $V \subset S'$, (for, otherwise, m would not be maximal). It follows that

$$W = \operatorname{cl}(V) \subset \operatorname{cl}(S') = S'$$
,

hence, S' = S. Moreover, V being convex it contains the convex hull of the above simplex, hence, $\operatorname{int}_S(V)$ is non-empty.

In the remaining part of this section, we shall for convenience assume that D_1 is a finite set, $D_1 = \{1, 2, ..., n\}$. Thus, we are given n measurable functions $g_j(x)$ on X with $g_j \in F$, j = 1, ..., n. Let intv (V) denote the interior of V relative to the minimal flat S containing V, similarly, intv (W). Since S is closed and $W = \operatorname{cl}(V)$, S is also the minimal flat containing W. Hence, by Theorem 5.2,

(5.7)
$$intv (V) = intv (W).$$

Be given a point

$$\sigma^* = (\sigma_1^*, ..., \sigma_n^*) \in \mathbb{R}^n,$$

and consider the collection

$$\mathcal{M}_*^+ = \{ \mu \in \mathcal{M}^+ \colon \mu(g_j) = \sigma_j^*, \ j = 1, \dots, n \}.$$

This collection is non-empty if and only if $\sigma^* \in V$. We shall be interested in the relative maximum

(5.8)
$$\mu_{\max}(f|\sigma^*) = \sup \{\mu(f) : \mu \in \mathcal{M}_*^+\}, \qquad (f \in F).$$

Theorem 5.3. Suppose that $\sigma^* \in \text{intv }(W)$. Then $\sigma^* \in V$, by (5.7). Moreover, we have for each $f \in F$ that

(5.9)
$$\mu_{\max}(f|\sigma^*) = \inf_{\beta} \mu_{\max}(f + \sum_{j=1}^n \beta_j(g_j - \sigma_j^* f_0)).$$

Here, β runs through all of \mathbb{R}^n . Note that (5.9) can also be written as

$$\sup_{\mu} \inf_{\beta} \mu(f + \sum_{j=1}^{n} \beta_{j}g_{j}^{*}) = \inf_{\beta} \sup_{\mu} \mu(f + \sum_{j=1}^{n} \beta_{j}g_{j}^{*}),$$

where $g_j^* = g_j - \sigma_j^* f_0$. Here, β runs through \mathbb{R}^n while μ runs through \mathbb{M}^+ .

Proof. Replacing, in (5.2) and (5.4), the system $\{g_1, ..., g_n\}$ by the system $\{g_1, ..., g_n, f\}$ one obtains a pair of convex subsets V' and W' of \mathbb{R}^{n+1} such that $V' \subset W'$, intv $(V') = \operatorname{intv}(W')$. By (5.8),

$$\mu_{\max}(f|\sigma^*) = \sup \{\sigma_{n+1} : (\sigma_1^* ..., \sigma_n^*, \sigma_{n+1}) \in V'\}.$$

Further it is easily seen that the right hand side of (5.9) is precisely equal to

$$\sup \{\sigma_{n+1} : (\sigma_1^*, \, ..., \, \sigma_n^*, \, \sigma_{n+1}) \in W'\} = \gamma, \, \text{ say}.$$

Since $V' \subset W'$, we have $\mu_{\max}(f|\sigma^*) \leq \gamma$.

Consider the one-dimensional open interval

$$I = \{(\sigma_1^*, \ldots, \sigma_n^*, \sigma_{n+1}) : \mu_{\max}(f|\sigma^*) < \sigma_{n+1} < \gamma\}.$$

Then I is contained in W' while it is disjoint from V'. Further, $\sigma^* \in \text{intv}(W)$, where W is the n-dimensional "base" of W'. Since W' is convex, it follows that $I \subset \text{intv}(W') = \text{intv}(V')$. Hence, I must be empty, proving (5.9).

Corollary 5.4. Suppose that $F^+ = F_0^+ = \{f \in F : f \ge 0\}$. Then $\sigma^* \in \text{Intv}(W)$ implies that $\sigma^* \in V$ and, further,

(5.10)
$$\mu_{\max}(f|\sigma^*) = \inf_{\beta} \sup_{x} \left[f(x) + \sum_{j=1}^n \beta_j (g_j(x) - \sigma_j^*) \right],$$
 holding for each $f \in F$.

The above corollary follows by (5.1); it is due to RICHTER [38] p. 154. The formulae (5.9) and (5.10) are no longer valid in general when σ^* is merely a boundary point of V, compare the examples in part (II) of section 6.

Actually, when $F^+=F_0^+$ and σ^* is a boundary point of V one could use in stead the following result. It was found independently by RICHTER [38] p. 151 and ROGOSINSKY [40] p. 4, but goes essentially back to Riesz [39], who took the g_j as continuous functions on the real line. Its proof proceeds by an induction with respect to n.

Theorem 5.5. If $F^+=F_0^+$ then V is precisely the convex hull of the set of points $\{P_x, x \in X\}$, where

$$P_x = (g_1(x), g_2(x), ..., g_n(x)) \in \mathbb{R}^n.$$

In other words, if $F^+=F_0^+$ then a given point $\sigma \in \mathbb{R}^n$ belongs to V if and only if there exists a probability measure v on X of *finite* support such that $v(g_j) = \sigma_j$, (j = 1, ..., n). For a thorough study of such measures v in important special cases, see for instance [24], [34], [46], [49].

Summarizing: the method of the present section is simple and straightforward, but it does have a few defects. Namely, except for the case $F^+=F_0^+$, there is no clear procedure for handling the boundary points of W. A related difficulty is that no procedure is given for determining $\mu_{\max}(f)$ or even for determining whether or not \mathcal{M}^+ is non-empty.

Added in proof. The reader may also consult a paper by K. IsII, "On sharpness of Tchebycheff-type inequalities", Ann. Inst. Statist. Math. (Tokyo), vol. 14 (1963) 185–197. It is a well-written paper (which I noticed only recently) in which the author rediscovers some of the results of Richter and Rogosinsky.

6. Some illustrations

In this section we shall present some applications of the results in section 5. We shall take X as the k-dimensional Euclidean space R^k . Let further $g_j(x)$, j=0, 1, ..., n, be given Borel measurable functions on R^k and consider the collection \mathcal{M}^+ of all regular probability measures μ on R^k satisfying

$$\int |g_j(x)| \mu(dx) < \infty, \quad j = 0, 1, ..., n.$$

In other words, \mathcal{M}^+ is the collection of the distributions

$$\mu(A) = \Pr(Z \in A), \qquad A \subset \mathbb{R}^k,$$

of all the k-dimensional random variables Z for which

(6.1)
$$E(|g_j(Z)|) < \infty, \quad j = 0, 1, ..., n;$$

(all that follows in this section remains valid if \mathcal{M}^+ is further restricted by requiring that $E(|g(Z)|) < \infty$ for some or even for all Borel measurable functions g on R^k ; the latter would mean that μ has finite support).

Let us consider the set $V \subset \mathbb{R}^n$ defined by

(6.2)
$$V = \{\sigma : \text{ exists } \mu \in \mathcal{M}^+ \text{ with } \mu(g_i) = \sigma_i, i = 1, ..., n\}.$$

In other words, $\sigma = (\sigma_1, ..., \sigma_n) \in V$ if and only if there exists a random variable Z satisfying (6.1) and

(6.3)
$$E(g_j(Z)) = \sigma_j \text{ for } j = 1, ..., n.$$

We shall be interested in the quantity

(6.4)
$$\begin{cases} \mu_{\max}(g_0|\sigma) = \sup \{\mu(g_0) : \mu \in \mathscr{M}^+; \ \mu(g_j) = \sigma_j, \ j = 1, \dots, n \} \\ = \sup E(g_0(Z)), \end{cases}$$

where Z ranges over the random variables satisfying (6.1) and (6.3); it is of interest only when $\sigma \in V$. Clearly,

$$\mu_{\max}(g_0|\sigma) \leqslant q(g_0|\sigma).$$

Here, the quantity $q(q_0|\sigma)$ will be defined as

(6.6)
$$q(g_0|\sigma) = \inf \{ \gamma_0 + \sum_{j=1}^n \gamma_j \sigma_j \},$$

where $(\gamma_0, \gamma_1, ..., \gamma_n)$ ranges over the (n+1)-tuples of real numbers satisfying

 $g_0(x) \leqslant \gamma_0 + \sum_{j=1}^n \gamma_j g_j(x), \quad \text{for all } x \in R^k.$

If no such (n+1)-tuples exist we put $q(g_0|\sigma) = +\infty$.

One easily sees that $q(g_0|\sigma)$ as defined by (6.6) is equal to the right hand side of (5.10), provided we take there $f=g_0$, $\sigma_j^*=\sigma_j$. Applying Corollary 5.4 (due to Richter), it follows that (6.5) becomes an equality, that is,

(6.7)
$$\mu_{\max}(g_0|\sigma) = q(g_0|\sigma),$$

as soon as

$$(6.8) \sigma \in \operatorname{int}(V).$$

Let us now give some examples.

(I). Take k=1. Let r>1 and $\varrho \geqslant 0$ be given constants, and consider a one-dimensional random variable Z satisfying

$$E(Z) = 0, E(|Z|^r) = \rho.$$

We would like to determine the best upperbound on

$$\Pr(Z \ge 1) = E(g_0(Z)),$$

in terms of r and ϱ . Here, $g_0(x) = 0$ or 1, depending on whether x < 1 or

 $x \ge 1$, respectively. In other words, we are interested in the quantity (6.4), where n = 2,

$$g_1(x) = x$$
, $g_2(x) = |x|^r$, $\sigma = (0, \varrho)$.

Without loss of generality, one may assume that $\varrho > 0$; then σ is an interior point of V; (for, there exists (Hölder) a random variable Z satisfying E(Z) = m and $E(|Z|^r) = \varrho$ if and only if $|m| \leq \varrho^{1/r}$). By (6.5),

(6.9)
$$\Pr(Z \leqslant 1) \leqslant q(g_0|\sigma).$$

Moreover, by (6.7), the bound (6.9) is *sharp*, that is, it cannot be improved; (we shall not be interested in the fact that the upperbound (6.9) is even assumed). Here, by (6.6),

(6.10)
$$q(g_0|\sigma) = \inf \{ \gamma_0 + \gamma_1 \cdot 0 + \gamma_2 \cdot \varrho \},$$

where $(\gamma_0, \gamma_1, \gamma_2)$ ranges over the triplets of real numbers satisfying

$$\gamma_0 + \gamma_1 x + \gamma_2 |x|^r \geqslant 0$$
 for $x < 1$,
 $\geqslant 1$ for $x \geqslant 1$.

One may as well assume that the γ_i are nonnegative. Considering the derivative of the left hand side, the above restriction is easily seen to be equivalent to

$$1 - \gamma_0 - \gamma_2 \leqslant \gamma_1 \leqslant (s\gamma_0)^{1/s} (r\gamma_2)^{1/r}$$

where 1/r + 1/s = 1. For the special case r = 2, (6.9) yields in this way the well-known sharp upperbound

$$\Pr(Z \ge 1) \le \frac{\sigma^2}{(1 + \sigma^2)}$$

holding whenever E(Z) = 0 and $E(Z^2) = \sigma^2$.

(II). Let k=1, n=1, $g_0(x)=|x|^3$, $g_1(x)=x^2$. Then $q(g_0|\sigma)=+\infty$, whatever the real number $\sigma>0$. On the other hand, if $\sigma=0$ then $\mu_{\max}(g_0|0)=0$, (for, $E(Z^2)=0$ implies $E(|Z|^3)=0$). Thus, (6.7) fails to hold for $\sigma=0$, which should not be surprising since 0 is a boundary point of $V=\{\sigma\colon \sigma>0\}$.

As a somewhat different counterexample, let k=1, n=1, $g_0(x)=0$ for $x \le 0$, $g_0(x)=1$ for x>0, $g_1(x)=x^2$. Here, $\mu_{\max}(g_0|0)=0$, while $q(g_0|0)=1$. The correct value for $\mu_{\max}(g_0|0)$ would also follow from Theorem 4.4, see Theorem 7.2.

An analogous situation occurs when k=1, n=1 and

$$g_0(x) = e^x$$
, $g_1(x) = 1 - e^x$ for $x < 0$,
= $-e^{-x}$, = 0 for $x \ge 0$.

In this case, $\mu_{\max}(g_0|0) = 0$, $q(g_0|0) = 1$, while $\mu_{\max}(-g_0|0) = q(-g_0|0) = 1$.

(III). Furtheron in this section, Z will denote a random variable $Z \in \mathbb{R}^k$ such that $E(|g(Z)|) < \infty$ for all functions g considered. We shall regard Z as a k-tuple

$$Z=(X_1, ..., X_k)$$

of real-valued random variables X_i . Its second moments will be denoted as

(6.11)
$$\sigma_{ij} = E(X_i X_j) = \int_{\mathbb{R}^k} x_i x_j \, \mu(dx),$$

(i, j=1, ..., k). Here, μ denotes the distribution of Z and $x=(x_1, ..., x_k)$ a generic point of R^k . It will be convenient to take $x_0=X_0=1$, and to allow in (6.11) that i=0 or j=0, thus,

$$\sigma_{i0} = E(X_i)$$
, $\sigma_{00} = 1$.

Let $q_0 = q_0(x)$ be a given Borel measurable function on \mathbb{R}^k .

Problem: given certain of the moments σ_{ij} , to determine the best possible upperbound on $E(g_0(Z))$.

Such problems have already been considered by Berge [5], Lal [25], Whittle [51], Olkin and Pratt [36], Marshall and Olkin [29], [30], [31], Birnbaum and Marshall [6].

The above problem is a special case of the one considered in the beginning of this section. Namely, take there $\{g_1, ..., g_n\}$ as a special set of n functions

$$\{g_{ij}(x) = x_i x_j, (i, j) \in \Gamma\}.$$

Here, Γ denotes a given set of n pairs of integers i and j, such that $0 \le i \le j \le k$. We shall exclude the pair (0, 0) from Γ ; (there are k + k(k+1)/2 such pairs, hence, $n \le k(k+3)/2$).

In the present case, the set $V \subset \mathbb{R}^n$ as defined by (6.2) is precisely the set of all functions

$$\sigma = \{\sigma_{ij}, (i, j) \in \Gamma\}$$

on Γ such that there exists at least one k-dimensional random variable $Z = (X_1, ..., X_k)$ satisfying

(6.13)
$$E(X_i X_j) = \sigma_{ij} \text{ for all } (i, j) \in \Gamma.$$

Further, (6.6) becomes

(6.14)
$$q(g_0|\sigma) = \inf \left\{ \gamma_{00} + \sum_{r} \gamma_{ij} \sigma_{ij} \right\},$$

where $\{\gamma_{ij}; (i, j) \in \Gamma\}$ ranges over all real-valued functions on Γ such that

$$(6.15) g_0(x) \leqslant \gamma_{00} + \sum_{r} \gamma_{ij} x_i x_j mtext{for all } x \in R^k.$$

Let $\sigma \in V$ be given. The best possible upperbound on $E(g_0(Z))$, given (6.13), will again be denoted as $\mu_{\max}(g_0|\sigma)$. It clearly satisfies (6.5). By (6.7), we even have

(6.16)
$$\mu_{\max}(g_0|\sigma) = q(g_0|\sigma),$$

provided that σ is an interior point of V. Using Theorem 5.2, it is easily seen that a point σ of the form (6.12) belongs to V and, moreover, is an interior point of V, if and only if

(6.17)
$$\gamma_{00} + \sum_{r} \gamma_{ij} x_i x_j \geqslant 0 \text{ for all } x \Rightarrow \gamma_{00} + \sum_{r} \gamma_{ij} \sigma_{ij} > 0.$$

Here, the γ_{ij} denote real constants such that $\gamma_{ij} \neq 0$ for at least one pair $(i,j) \in \Gamma$. In particular, if $(i,i) \in \Gamma$ then necessarily $\sigma_{ii} > 0$. A (necessary and) sufficient condition for (6.17) is that there exists at least one random variable $Z = (X_1, ..., X_k)$ satisfying (6.13), which is genuinely k-dimensional in the sense that its distribution μ is not supported by any flat or quadratic surface of the form $\gamma_{00} + \sum_{\Gamma} \gamma_{ij} x_i x_j = 0$. For certain special choices of Γ , (6.16) was also demonstrated by Marshall and Olkin [32].

(III)' Following BIRNBAUM and MARSHALL [6], let us consider a random variable $Z = (X_1, ..., X_k)$ satisfying

(6.18)
$$E(X_i^2) = \sigma_{ii} = \sigma_{i}^2, E(X_j X_{j+1}) = \varphi_{j},$$

(i=1, ..., k; j=1, ..., k-1). Here, the $\sigma_i \ge 0$ and φ_j are given real numbers. We shall assume that

(6.19)
$$\sigma_i > 0, (i = 1, ..., k) ; \epsilon_j > 0, (j = 1, ..., k - 1),$$

where $\varepsilon_j = \sigma_j \sigma_{j+1} - |\varphi_j|$.

The assumption (6.18) amounts to taking Γ as the set of all the n=2k-1 pairs (i, i) and (j, j+1). We claim that the point $\sigma \in R^{2k-1}$ as defined by (6.12), $(\sigma_{j,j+1} = \varphi_j)$, is an interior point of V. In view of (6.17), we have to show that

(6.20)
$$\nu(h) = \sum_{i=1}^{k} a_i \sigma_i^2 + 2 \sum_{j=1}^{k-1} b_j \varphi_j + c$$

is strictly positive whenever the function

(6.21)
$$h(x) = \sum_{i=1}^{k} a_i x_i^2 + 2 \sum_{j=1}^{k-1} b_j x_j x_{j+1} + c$$

is nonnegative for all $x = (x_1, ..., x_k)$. Here, the a_i , b_j and c denote real constants not all zero. Given such an h, take $x_i = \pm \sigma_i$ with the \pm -signs chosen in such a way that

$$b_j x_j x_{j+1} = -|b_j|\sigma_j \sigma_{j+1} = -|b_j|(|\varphi_j| + \varepsilon_j) \leqslant b_j \varphi_j - |b_j|\varepsilon_j.$$

Using $h(x) \ge 0$, this yields

(6.22)
$$v(h) \geqslant 2 \sum_{j=1}^{k-1} \varepsilon_j |b_j| \geqslant 0.$$

By (6.19), (6.20) and (6.22), we conclude that v(h) = 0 can only happen when all the a_i , b_i and c are equal to zero.

We now have from (6.16) that, for any Borel measurable function $g_0(x)$ on R^k , the best upperbound $\mu_{\max}(g_0|\sigma)$ on $E(g_0(X_1, ..., X_k))$, given (6.18), is equal to

(6.23)
$$q(g_0|\sigma) = \inf \{ v(h) : h \geqslant g_0 \}.$$

Here, h ranges over all the functions of the special form (6.21); further, $\nu(h)$ is defined by (6.20).

As an illustration, let us take $g_0(x) = 0$ if $x \in Q$, $g_0(x) = 1$ if $x \notin Q$, where Q denotes the cube

$$Q = \{x = (x_1, \ldots, x_k) : |x_i| < 1 \text{ for all } i = 1, \ldots, k\}.$$

Let us consider the (sharp) bound $q(g_0|\sigma)$ in

(6.24)
$$\Pr(Z \notin Q) = E(g_0(Z)) \leqslant q(g_0|\sigma).$$

This bound is given by (6.23). In particular (taking $h \equiv 1$), we have $q(g_0|\sigma) \leqslant 1$; thus, in (6.23) we need only to consider functions h of the form (6.21) with $h \geqslant g_0$ and v(h) < 1. Then the minimum value c of the function h satisfies $0 \leqslant c < 1$, thus, $h^* = (h-c)/(1-c)$ satisfies $h^* \geqslant g_0$ and $v(h^*) < v(h)$ if $c \neq 0$. Hence, we may as well assume that c = 0.

Given

$$w = (a_1, ..., a_k; b_1, ..., b_{k-1}) \in R^{2k-1},$$

let us introduce

$$(6.25) h_w(x) = \sum_{i=1}^k a_i x_i^2 + 2 \sum_{j=1}^{k-1} b_j x_j x_{j+1}, (x \in R^k).$$

and

(6.26)
$$\psi(w) = v(h_w) = \sum_{i=1}^k \sigma_{ii} a_i + 2 \sum_{j=1}^{k-1} \varphi_j b_j.$$

Then, by (6.23), the required bound $q(g_0|\sigma)$ may be written as

(6.27)
$$q(g_0|\sigma) = \inf \{ \psi(w) : w \in K \}.$$

Here, K will denote the *closed* and *convex* subset of R^{2k-1} consisting of all points w such that

(6.28)
$$\begin{cases} h_w(x) \geqslant 0 \text{ for all } x, \\ \geqslant 1 \text{ for all } x \notin Q; \end{cases}$$

(in the present case where Q is a cube, K is clearly non-empty; for more general sets Q: if K is empty then $q(g_0|\sigma)=1$).

By (6.19) and (6.22), we have that $\psi(w) \to \infty$ if $|w| \to \infty$, $w \in K$. Observing that $\psi(w)$ is a linear functional, we conclude that the minimum value (6.27) is in fact taken at an extreme point of K. Therefore,

(6.29)
$$q(g_0|\sigma) = \inf \{ \psi(w) : w \in K_E \},$$

whenever K_E is a subset of K containing all extreme points of K. In other words, we are allowed to impose additional restrictions on h_w provided that these are automatically satisfied when w is an extreme point of K.

Let us replace (6.28) by an equivalent condition not involving x. Let $w \in R^{2k-1}$ be given and consider the $r \times r$ matrix B_r defined by

$$(B_r)_{ij} = a_i \text{ if } j = i,$$

= $b_i \text{ if } j = i + 1,$
= $b_j \text{ if } j = i - 1,$
= 0, otherwise.

(i, j=1, ..., r); thus, B_r is symmetric (r=1, ..., k). Also note that $B_k=A$ (say) is the matrix of the quadratic form $h_w(x)$ defined by (6.25).

If $w \in K$ then, by (6.28), the matrix A (that is, $h_w(x)$) is strictly positive definite, hence, all principal minors of A have a positive determinant. Moreover, as is well-known, a sufficient condition for A to be strictly positive definite is that

(6.30)
$$\det(B_r) > 0, \qquad r = 1, ..., k;$$

(here, $D_r = \det(B_r)$ satisfies $D_{r+1} = a_{r+1}D_r - b_r^2 D_{r-1}$, thus, (6.30) is easily verified).

As was shown by Olkin and Pratt [36] p. 229, (see also [51] p. 235), given (6.30), the second condition (6.28) is equivalent to

(6.31)
$$\det (A_{ii}) \leq \det (A), \qquad i = 1, ..., k.$$

Here, A_{ii} denotes the (principal) minor corresponding to the diagonal element $a_{ii} = a_i$ of $A = B_k$. Thus, the set

$$K \subset R^{2k-1}$$

occurring in (6.27) and (6.29), may be defined by (6.30) and (6.31), (in stead of (6.28)).

For convenience, let us restrict ourselves to the special case k=3; (even for this case the results of BIRNBAUM and MARSHALL [6] are incomplete). The reasoning in [36] p. 230 shows that for both i=1 and i=k the equality sign holds in (6.31) as soon as w is an extreme point of K; by (6.29), this is an admissable restriction. The resulting two equations can easily be solved in terms of b_1^2 and b_2^2 , yielding

$$b_1^2 = (a_1 - 1)a_1a_2/(a_1 + a_3 - 1),$$

$$b_2^2 = (a_3 - 1)a_2a_3/(a_1 + a_3 - 1),$$

(where $a_i \ge 1$). Afterwards, the case i=2 of (6.31) yields the condition

$$a_1 + a_3 - 1 \le a_2$$

Letting

$$2a_1 = 1 + \xi_1$$
, $2a_2 = (\xi_1 + \xi_3)\xi_2^2$, $2a_3 = 1 + \xi_3$

the latter condition is equivalent to $\xi_2 > 1$. In fact, the only restrictions on the ξ_i are

$$\xi_1 \geqslant 1$$
 , $\xi_2 \geqslant 1$, $\xi_3 \geqslant 1$.

Further, b_1 and b_2 are given by

$$b_1^2 = \frac{1}{4}(\xi_1^2 - 1) \xi_2^2$$
, $b_2^2 = \frac{1}{4}(\xi_3^2 - 1) \xi_2^2$.

It remains to minimize the function of the ξ_i which results on substituting these expressions into (6.26). More precisely, using (6.29), we obtain that

(6.32)
$$2q(g_0|\sigma) = \inf \{f(\xi) : \xi_i \geqslant 1\},\$$

where

$$f(\xi) = \sigma_{11}(1+\xi_1) + \sigma_{22}(\xi_1+\xi_3) \ \xi_2^2 + \sigma_{33}(1+\xi_3) -2|\varphi_1| \ \xi_2 \ \sqrt{\xi_1^2-1} \ -2|\varphi_2| \ \xi_2 \ \sqrt{\xi_3^2-1}.$$

Taking $\xi_2 = 1$, and choosing afterwards ξ_1 and ξ_3 in the best possible way, one arrives at the inequality

(6.33)
$$2q(g_0|\sigma) \leqslant \sigma_{11} + \sigma_{33} + \sqrt{d_1} + \sqrt{d_2}$$

where

$$d_1 = (\sigma_{11} + \sigma_{22})^2 - 4\varphi_1^2$$
, $d_2 = (\sigma_{22} + \sigma_{33})^2 - 4\varphi_2^2$.

The upperbound (6.33) is contained in a more general result (k arbitrary) due to BIRNBAUM and MARSHALL [6] p. 693.

Note that $f(\xi)$ is a quadratic function of ξ_2 . Hence, given ξ_1 and ξ_3 , the choice $\xi_2 = 1$ is best possible if and only if the minimum

(6.34)
$$[|\varphi_1|\sqrt{\xi_1^2-1}+|\varphi_2|\sqrt{\xi_3^2-1}]/[\sigma_{22}(\xi_1+\xi_3)]=\varrho(\xi_1,\,\xi_3),$$

(say), does not exceed 1. Hence, (6.33) certainly holds with the *equality* sign when max $(|\varphi_1|, |\varphi_2|) \leqslant \sigma_{22}$, hence, also when max $(\sigma_{11}, \sigma_{33}) \leqslant \sigma_{22}$.

For the final analysis, let us restrict ourselves to the special case

$$(6.35) \sigma_{11} = \sigma_{33}, \quad |\varphi_1| = |\varphi_2|.$$

Then one may as well take $\xi_1 = \xi_3$ in (6.32). The strict inequality sign in (6.33) can arise only when the case $\xi_2 > 1$ is of any importance. By (6.34), the latter happens when $\xi_1 > 1$ satisfies

$$\varrho(\xi_1) = (|\varphi_1|/\sigma_{22})\sqrt{1-\xi_1^{-2}} > 1,$$

(which requires that $|\varphi_1| > \sigma_{22}$). Given such a value ξ_1 and choosing ξ_2 in an optimal fashion, (namely, $\xi_2 = \varrho(\xi_1)$), we obtain

$$\inf_{\xi_1\geqslant 1,\,\varrho(\xi_1)\geqslant 1}\ \left[\sigma_{11}\sigma_{22}+\left(\sigma_{11}\sigma_{22}-\varphi_1{}^2\right)\,\xi_1+\varphi_1{}^2\,\xi_1{}^{-1}\right]\!/\sigma_{22}$$

as a further contribution to (6.32). If here the minimum is taken at a point with $\varrho(\xi_1)=1$ then (6.33) holds with the equality sign. If not then, as is easily seen, we have $\delta>0$, where

$$\delta = 2(\varphi_1^2/\sigma_{22}) - \sigma_{11} - \sigma_{22}.$$

Moreover, in this case, (6.32) yields

$$q(g_0|\sigma) = \sigma_{11} + 2(|\varphi_1|/\sigma_{22}) \sqrt{\sigma_{11}\sigma_{22} - \varphi_1^2}$$

= $\sigma_{11} + \sqrt{d_1 - \delta^2} < \sigma_{11} + \sqrt{d_1}$.

Consequently, assuming (6.35), we have that (6.33) holds with the equality sign if and only if $\delta \leq 0$.

(III)" Returning to the more general situation (6.13), let us assume that the point σ defined by (6.12) is an interior point of V. Consider a fixed non-empty Borel subset B of R^k , $B \neq R^k$, and let χ_B denote its characteristic function. It follows from (6.16) that for any k-dimensional random variable Z satisfying (6.13) we have

(6.36)
$$\Pr(Z \in B) \leqslant q(\chi_B | \sigma),$$

and further that this bound cannot be improved. The main problem remaining is to determine (if possible) a more explicit expression for the quantity $q(\chi_B|\sigma)$ defined by (6.14) and (6.15).

Following Marshall and Olkin [31] p. 1003, let us consider the special case that B is convex, $(B \neq R^k)$. We assert that in this case

$$(6.37) q(\chi_B|\sigma) = \inf \{ q(\chi_A|\sigma) : A \in \mathscr{A}, A \supset B \}.$$

Here, \mathscr{A} will denote the collection of all closed half-spaces A of the form

(6.38)
$$A = \{x \in \mathbb{R}^k : a_0 + \sum_{i=1}^k a_i x_i \ge 0\},$$

with the a_i as real constants, $a_i \neq 0$ for at least one index $i \neq 0$.

In proving (6.37), consider a quadratic function h of the form

$$h(x) = \gamma_{00} + \sum_{r} \gamma_{ij} x_i x_j,$$

 $(x \in R^k)$, and satisfying $h \geqslant \chi_B$. In view of (6.14), it suffices to show that there exists a closed half-space A such that $h \geqslant \chi_A$ and $A \supset B$, (that is, $h \geqslant \chi_A \geqslant \chi_B$).

We have $h(x) \ge 0$ for all x. Thus, h(x) is a nonnegative definite quadratic form, hence,

$$C = \{x : h(x) < 1\}$$

is a convex subset of R^k ; also note that C is open. We may assume that C is non-empty, (for, otherwise, $h > 1 > \chi_A$ for any set A and we would be ready).

If $x \in B$ then $1 = \chi_B(x) \le h(x)$, thus, $x \notin C$. It follows that B and C are disjoint non-empty convex subsets of R^k , consequently, [48] p. 25, there exists a half-space A containing B and disjoint from C. Since C is open, we may assume that A is closed. Finally, if $x \in A$ then $x \notin C$, thus, $h(x) \ge 1 = \chi_A(x)$, hence, A has all the required properties.

Next, let A be a half-space as in (6.38). We assert that

$$q(\chi_A|\sigma) = \inf_{\beta \geqslant 0} q(\varphi_\beta|\sigma),$$

where

$$\varphi_{\beta}(x) = [1 + \beta(a_0 + \sum_{i=1}^k a_i x_i)]^2, \quad (\beta \geqslant 0).$$

Clearly, $\varphi_{\beta} \geqslant \chi_A$, hence, $q(\chi_A|\sigma)$ does not exceed the right hand side of (6.40). To prove the converse inequality, we may assume that $q(\chi_A|\sigma) < 1 =$

 $=q(\varphi_0|\sigma)$. By (6.14), there exists a non-constant function h of the form (6.39) such that $h \geqslant \chi_A$. In computing $q(\chi_A|\sigma)$, one may as well assume that the smallest value of h is equal to zero, (compare the remark following (6.24)), $h(x^*)=0$, say. But then $x^* \notin A$, thus,

$$\beta = [-a_0 - \sum_{i=1}^k a_i x_i^*]^{-1} > 0$$
, while $h(x) \geqslant \varphi_{\beta}(x)$,

for all x; (the latter inequality is obvious at the boundary of A; moreover, both h and φ_{β} are homogeneous functions of the $y_i = x_i - x_i^*$). This proves (6.40).

Recall (see (6.4) and (6.7)) that

$$q(\varphi_{\beta}|\sigma) = \sup E[1 + \beta(a_0 + \sum_{i=1}^k a_i X_i)]^2,$$

the supremum being taken over all k-tuples $(X_1, ..., X_k)$ satisfying (6.13). Hence, in the particular case that all moments σ_{ij} are given, (6.40) yields

(6.41)
$$\begin{cases} q(\chi_A|\sigma) = 1 - \alpha^2 / \sum_{i=0}^k \sum_{j=0}^k \sigma_{ij} a_i a_j & \text{if } \alpha < 0, \\ = 1 & \text{if } \alpha \geqslant 0, \end{cases}$$

where $\alpha = \sum_{i=0}^{k} a_i \sigma_{i0}$. For this same special case, the sharp upperbound (6.36), with $q(\chi_B|\sigma)$ defined by (6.37) and (6.41), is due to Marshall and Olkin [31] p. 1003; they also gave a large number of specific applications.

7. An alternative approach

Many of the problems in section 6 can equally well or better be handled by means of the results in section 4, in particular Theorem 4.4. Suppose, for instance, that we are interested in a k-dimensional random variable $Z = (X_1, ..., X_k)$ satisfying

$$(7.1) E(X_i) = 0$$

and

$$(7.2) E(X_i X_j) = \sigma_{ij},$$

(i, j=1, ..., k). Here, the σ_{ij} denote given real numbers, such that the matrix

$$\Sigma = (\sigma_{ij}; i, j=1, ..., k)$$

is symmetric and nonnegative definite. Unless in section 6, we shall allow Σ to be singular. On occasion, it will be convenient to replace (7.2) by the weaker condition that

(7.3)
$$E(\sum_{i=1}^{k} a_i X_i)^2 \leqslant \sum_{i=1}^{k} \sum_{i=1}^{k} \sigma_{ij} a_i a_j,$$

for each choice of the real numbers $a_1, a_2, ..., a_k$.

If $C = (c_{ij})$ is a square matrix then by $C \gg 0$ we shall denote that C is nonnegative definite; further $C_1 \ll C_2$ will denote that $C_2 - C_1 \gg 0$. Thus, condition (7.3) may be written as

$$\Sigma' \ll \Sigma$$
, where $\sigma'_{ij} = E(X_i X_j)$.

For f as a function on R^k , put

$$q^*(t) = \inf \{ \alpha_0 + \sum_{i,j=1}^k c_{ij} \sigma_{ij} \}.$$

Here, the real numbers α_0 and c_{ij} are subject to the conditions:

- (i) $C \gg 0$, where $C = (c_{ij}; i, j = 1, ..., k)$.
- (ii) For some choice of the real constants $\alpha_1, ..., \alpha_k$, we have

$$\sum_{i=0}^k \alpha_i x_i + \sum_{i,j=1}^k c_{ij} x_i x_j \geqslant f(x), \qquad ext{for all } x \in R^k.$$

Note that (ii) implies (i) as soon as

$$\lim_{|x|\to\infty}\inf f(x)/|x|^2 \geqslant 0.$$

Hence, in this case, $q^*(f)$ coincides with the quantity $q(f|\sigma)$ defined by (6.14) if there we take Γ as the set of all admissable pairs (i, j) and $\sigma_{0,j} = 0$ (j = 1, ..., k). Let us finally introduce

$$Q^*(f) = \sup \{q^*(g) : g \leqslant f, g \text{ is u.s.c.}\};$$

in particular, $Q^*(f) = q^*(f)$ if f itself is upper semi-continuous.

Theorem 7.1. Let f(x) be a given Borel measurable function on \mathbb{R}^k such that

(7.4)
$$\lim_{|x| \to \infty} f(x)/|x|^2 = 0.$$

Then

(7.5)
$$E(f(X_1, ..., X_k)) \leq Q^*(f)$$

for each set of random variables $X_1, ..., X_k$ satisfying (7.1) and (7.3). This inequality is *sharp*, that is, in (7.5) one cannot replace $Q^*(f)$ by any smaller constant.

Finally, if f itself is upper semi-continuous (say, $f = \chi_B$ with B as any closed subset of R^k) then the equality sign in (7.5) is assumed by some $Z = (X_1, ..., X_k)$ satisfying (7.1) and (7.3).

Proof. Apply Theorem 4.4 with $X = R^k$, $\{f_i, i \in D_0\}$ as the set of continuous functions $\{f_i(x) = x_i, i = 0, 1, ..., k\}$ $(x_0 = 1)$ and with $\{h_j, j \in I\}$ as the collection of all nonnegative definite quadratic functions $h_p = \sum c_{ij}x_ix_j$, while $\eta_p = \sum c_{ij}\sigma_{ij}$, thus, $\eta_p \geqslant 0$; (an equivalent choice would be $h_p = (\sum a_ix_i)^2$ and $\eta_p = \sum \sigma_{ij}a_ia_j$).

The last assertion of Theorem 7.1 is no longer valid if (7.3) is replaced by (7.2). For example, if k=1 and $f(x)=e^{-x^2}$ then $Q^*(f)=1$ whatever the value $\sigma_{11} > 0$. But there does not exist any real random variable X satisfying E(X)=0, $E(X^2)=\sigma_{11}>0$, $E(e^{-X^2})=1$.

Theorem 7.2. Let f be a Borel measurable function on R^k satisfying (7.4). Then the inequality (7.5) is still *sharp* when $Z = (X_1, ..., X_k)$ is assumed to satisfy the stronger conditions (7.1) and (7.2).

Proof. Let $\varepsilon > 0$ be a given number. We must prove that there exists a probability measure μ on R^k satisfying

(7.6)
$$\mu(x_i) = 0$$
, $\mu(x_i x_j) = \sigma_{ij}$,

(i, j = 1, ..., k), and

$$\mu(f) > Q^*(f) - \varepsilon$$
.

By Theorem 7.1, there exists a probability measure ν on \mathbb{R}^k satisfying

$$v(x_i) = 0$$
, $v(x_i x_j) = \sigma'_{ij}$

(i, j=1, ..., k), and $\nu(j) > Q^*(j) - \varepsilon/2$. Here, (by (7.3) and the remark following it), the matrix $\Sigma' = (\sigma'_{ij}; i, j=1, ..., k)$ satisfies $0 \ll \Sigma' \ll \Sigma$. Hence, there exist real numbers α_{pi} (p=1, ..., m; i=1, ..., k) such that

$$\sigma_{ij} - \sigma'_{ij} = \sum_{n=1}^m \alpha_{pi} \alpha_{pj}, \qquad (i, j=1, ..., k);$$

we may assume that $m \ge 0$ is minimal. Similarly, there exist real numbers β_{pi} such that σ'_{ij} can be written as

$$\sigma_{ij}' = \sum_{p=1}^n \beta_{pi} \beta_{pj}, \qquad (i, j=1, ..., k);$$

we may assume that $n \ge 0$ is minimal. With λ as a positive real number, let Δ_{λ} denote the nonnegative measure on R^k of total mass m having a mass 1/2 at each of the 2m points

$$\pm (\lambda \alpha_{p1}, \lambda \alpha_{p2}, ..., \lambda \alpha_{pk}), \qquad (p=1, ..., m);$$

(these 2m points are distinct since m is minimal). It satisfies

$$\Delta_{\lambda}(x_i) = 0$$
, $\Delta_{\lambda}(x_i x_j) = \lambda^2(\sigma_{ij} - \sigma'_{ij})$,

(i, j=1, ..., k). Let further ν_{λ} denote the measure of mass n having a mass equal to 1/2 at each of the 2n points $\pm (\lambda \beta_{p1}, ..., \lambda \beta_{pk}), p=1, ..., n$. It satisfies

$$v_{\lambda}(x_i) = 0$$
, $v_{\lambda}(x_i x_j) = \lambda^2 \sigma'_{ij}$,

(i, j=1, ..., k). Moreover, by (7.4), one has for $\lambda > 0$ sufficiently large that

$$|\Delta_{\lambda}(f)| < (\varepsilon/8) \lambda^2 , \quad |\nu_{\lambda}(f)| < (\varepsilon/8) \lambda^2.$$

Now, let us form (with $\lambda > n^{\frac{1}{2}}$ fixed) the measure

$$\mu = (1 - \delta) \nu + \delta_1 \Delta_2 + \delta_2 \nu_3$$

where

$$\delta_1 = \lambda^{-2}, \quad \delta_2 = m\lambda^{-2}/(\lambda^2 - n), \quad \delta = m\delta_1 + n\delta_2$$

depend on λ ; note that $\delta = \delta_2 \lambda^2$. It follows from the above relations that μ is a probability measure satisfying (7.6). Moreover, using (7.7) and $\nu(f) > Q^*(f) - \varepsilon/2$, we have

$$\mu(f) \geqslant (1-\delta) Q^*(f) - \varepsilon/2 - (\varepsilon/8) (\delta_1 \lambda^2 + \delta_2 \lambda^2) > Q^*(f) - \varepsilon,$$

as soon as $\lambda > 0$ is sufficiently large.

(To be continued)