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Abstract

Let g be a semi-simple simply-connected Lie algebra and let Uc be the corresponding

quantum group with divided powers, where c is an even order root of unity. Let in addition

ucCUc be the corresponding ‘‘small’’ quantum group. In this paper we establish the following

relation between the categories of representations of Uc and uc: We show that the category of

uc-modules is naturally equivalent to the category of Uc-modules, which have a Hecke eigen-

property with respect to representations lifted by means of the quantum Frobenius map

Uc-Uð$gÞ; where $g is the Langlands dual Lie algebra. This description allows to express the

regular linkage class in the category uc-mod in terms of perverse sheaves on the affine flag

variety with a Hecke eigen-property. Moreover, it can serve as a basis to the program to

understand the connection between the category uc-mod and the category of representations

of the corresponding affine algebra at the critical level.

r 2002 Elsevier Science (USA). All rights reserved.

0. Introduction

Let g be a semi-simple Lie algebra. Given a root of unity (cf. Section 1.2), one can
consider two remarkable algebras, Uc and uc; called the big and the small quantum
group, respectively. Let Uc- and uc-mod denote the corresponding categories of
modules. It is explained in [1,15] that the former is an analog in characteristic 0 of the
category of algebraic representations of the corresponding group G over a field of
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positive characteristic, and the latter is an analog of the category of representations
of its first Frobenius kernel.
It is a fact of crucial importance, that although Uc is introduced as an algebra

defined by an explicit set of generators and relations, the category Uc-mod (or,
rather, its regular block, cf. Section 5.1) can be described in purely geometric terms,

as perverse sheaves on the (enhanced) affine flag variety fF1F1; cf. Section 6.5. This is
obtained by combining the Kazhdan–Lusztig equivalence between quantum groups
and affine algebras and the Kashiwara–Tanisaki localization of modules over the

affine algebra on fF1F1: This paper is a first step in the project of finding a geometric
realization of the category uc-mod. We should say right away that one such
realization already exists, and is a subject of [6]. However, we would like to
investigate other directions.
We were motivated by a set of conjectures proposed by B. Feigin, E. Frenkel and

G. Lusztig, which, on the one hand, tie the category uc-mod to the (still hypothetical)
category of perverse sheaves on the semi-infinite flag variety (cf. [7,8]), and on the
other hand, relate the latter to the category of modules over the affine algebra at the
critical level.
Since we already know the geometric interpretation for modules over the big

quantum group, it is a natural idea to first express uc-mod entirely in terms of Uc-
mod. This is exactly what we do in this paper.

According to [13], there is a functor Frn from the category of finite-dimensional
representations of the Langlands dual group to Uc-mod. In particular, we obtain a

bi-functor: Ǧ-mod�Uc-mod -Uc-mod: V ;M-FrnðVÞ#M: We introduce the
category CðAG;OǦ

Þ to have as objects Uc-modules M; which satisfy the Hecke

eigen-condition, in the sense of [5].
In other words, an object of CðAG;OǦ

Þ consists of MAUc-mod and a collection of

maps aV : FrnðVÞ#M-
%
V#M; where

%
V is the vector space underlying the

representation V : The main result of this paper is Theorem 2.4, which states that
there is a natural equivalence between CðAG;OǦ

Þ and uc-mod.

As the reader will notice, the proof of Theorem 2.4 is extremely simple. However,
it allows one to give the desired description of the regular block uc-mod0 of the
category of uc-modules in terms of perverse sheaves on the enhanced affine flag
variety satisfying the Hecke eigen-condition, cf. Section 6.4.
In a future publication, we will explain how Theorem 6.4 can be used to define a

functor from uc-mod0 to the category of perverse sheaves on the semi-infinite flag
variety and to other interesting categories that arise in representation theory. In
particular, uc-mod0 obtains an interpretation in terms of the geometric Langlands
correspondence: it can be thought of as a categorical counterpart of the space of
Iwahori-invariant vectors in a spherical representation.
In another direction, Theorem 2.4 has as a consequence the theorem that uc-mod

is equivalent to the category of G½½t��-integrable representations of the chiral Hecke
algebra, introduced by Beilinson and Drinfeld. (We do not state this theorem
explicitly, because the definition of the chiral Hecke algebra is still unavailable in the
published literature.)
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Let us briefly describe the contents of the paper. In Section 1 we recall the basic
definitions concerning quantum groups. In Section 2 we state our main theorem and
its generalization for pairs of bi-algebras ðA; aÞ: In Section 3 we prove Theorem 2.4
in the general setting. In Section 4 we discuss several categorical interpretations of

Theorem 2.4 and, in particular, its variant that concerns the graded version
.
uc of uc:

In Section 5 we discuss the relation between the block decompositions of Uc and uc:
Finally, in Section 6 we prove Theorem 6.4, which provides a geometric

interpretation for the category uc-mod0:
In this paper, we consider quantum groups at a root of unity of an even order,

in order to be able to apply the Kazhdan–Lusztig equivalence. However, the
main result, i.e., Theorem 2.4 holds and can be proved in exactly the same way
in the case of a root of unity of an odd order, with the difference that in the

definition of the quantum Frobenius, the Langlands dual group Ǧ must be replaced
by G:

1. Quantum groups

1.1. Root data. Let G be a semi-simple simply connected group. Let T be the Cartan
group of G and let ðI ;X ;Y Þ be the corresponding root data, where I is the set of
vertices of the Dynkin diagram, X is the set of characters T-Gm (i.e. the weight
lattice of G) and Y is the set of co-charactersGm-T (i.e. the coroot lattice of G). We
will denote by /;S the canonical pairing Y � X-Z: For every iAI ; aiAX (resp.,
$aiAY ) will denote the corresponding simple root (resp., coroot); for i; jAI we will
denote by ai;j the corresponding entry of the Cartan matrix, i.e. ai;j ¼ /$ai; ajS:

Let ð�; �Þ : X � X-Q be the canonical inner form. In other words, jjaijj2 ¼ 2di;
where diAf1; 2; 3g is the minimal set of integers such that the matrix ðai; ajÞ :¼ di � ai;j

is symmetric.

1.2. The big quantum group. Given the root data ðI ;Y ;XÞ Drinfeld and Jimbo
constructed a Hopf algebra Uv over the field CðvÞ of rational functions in v:
Namely, Uv has as generators the elements1 Ei;Fi; iAI ;Kt; tAT and the relations
are:

Kt1 � Kt2 ¼ Kt1�t2 ;

Kt � Ei � K�1
t ¼ aiðtÞ � Ei;Kt � Fi � K�1

t ¼ aiðt�1Þ � Fi;

Ei � Fj � Fj � Ei ¼ di;j �
Ki � K�1

i

vdi � v�di
; where Ki ¼ Kdi �$aiðvÞ;

1We are using a slightly non-standard version of U; in which the toric part coincides with the group-

algebra of the classical torus T :
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X
rþs¼1�aij

ð�1Þs 1� aij

s

" #
di

Er
i � Ej � Es

i ¼ 0 if iaj;

X
rþs¼1�aij

ð�1Þs 1� aij

s

" #
di

Fr
i � Fj � Fs

i ¼ 0 if iaj;

where

m

t

" #
d

:¼
Yt

s¼1

vd�ðm�sþ1Þ � v�d�ðm�sþ1Þ

vd�s � v�d�s for mAZ:

The co-product is given by the formulae:

DðEiÞ ¼ Ei#1þ Ki#Ei;

DðFiÞ ¼ Fi#K�1
i þ 1#Fi;

DðKtÞ ¼ Kt#Kt;

and the co-unit and antipode maps are

eðEiÞ ¼ eðFiÞ ¼ 0; eðKtÞ ¼ 1;

tðKtÞ ¼ Kt�1 ; tðEiÞ ¼ �K�1
i � Ei; tðFiÞ ¼ �Fi � Ki:

Let now c be a sufficiently large even natural number, which divides all the di’s.
We set ci ¼ c=di and let us fix a primitive 2cth root of unity z: Let RCCðvÞ denote
the localization of the algebra C½v; v�1� at the ideal corresponding to v � z:
In his book [13], Lusztig defined an R-lattice UR inside Uv: Namely, UR is an R-

subalgebra of Uv generated by Ei;Fi;Kt and the following additional elements:

Eci

i :¼ Eci

i

½ci�di
!
;F ci

i :¼ F ci

i

½ci�di
!
; where ½m�d ! ¼

Ym
s¼1

vd�s � v�d�s

vd � v�d

and

Ki;m

t

" #
di

:¼
Yt

s¼1

Ki � vdi �ðm�sþ1Þ � K�1
i � v�di �ðm�sþ1Þ

vdi �s � v�di �s for mAZ:

It is shown in [13] that UR is a Hopf subalgebra of Uv: Finally, following Lusztig
we set Uc to be the reduction of UR modulo the ideal ðv � zÞCR: By construction, Uc

is a Hopf algebra over C:
The main object of study of this paper is not so much the algebra Uc itself, but

rather certain categories of its representations. We introduce the category Uc-mod as
follows: its objects are finite-dimensional representations M of Uc; for which the
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action of the Kt’s comes from an algebraic action of the torus T on M; and such that

for lAX ; the action of Ki ;m
t

� �
di
on the subspace of M of weight lAX is given by the

scalar /$ai ;lSþm
t

� �
di
: (Note that the elements m

t

� �
di
ACðvÞ all belong to R; and hence they

are well defined in C ¼ R=ðv � zÞ:)
The category Uc-mod is a monoidal category endowed with a forgetful functor to

the category of finite-dimensional C-vector spaces. Hence, there exists a Hopf
algebra, such that the category Uc-mod is equivalent to the category of finite-
dimensional co-modules over it. We will denote this Hopf algebra by AG:
One should think ofAG as of a quantization of the algebra of regular functions on

the group G: It is known that AG is finitely generated as an associative algebra.
Moreover, we will see thatAG contains a large commutative subalgebra, over which
it is finitely generated as a module.

1.3. Quantum Frobenius homomorphism. Let ðI ;Xn;Y nÞ be the Langlands dual root
data. In other words, X n :¼ Y and Yn :¼ X are the weight and the coweight lattices

of the Langlands dual torus Ť: The corresponding semi-simple group Ǧ is by

definition of the adjoint type. Let $g denote the Lie algebra of Ǧ: Let Ǧ-mod denote

the category of finite-dimensional Ǧ-modules and let O
Ǧ
be the algebra of functions

on Ǧ: We will denote by Uð$gÞ the usual universal enveloping algebra of $g:
The canonical inner form ð�; �Þ on X gives rise to the inner form on Y ; which is not

necessarily integral-valued, since jj$aijj ¼ 2
di
: However, if we multiply the latter by c;

we obtain an integral valued form ð�; �Þc : Y � Y-Z: By construction,

jj$aijj2c ¼ 2 � ci and ð $m; $aiÞc ¼ ci �/ $m; aiS:

Using the pairing ð�; �Þc we obtain the map f : Y-X given by $m/ð $m; �Þc and the map
fT : T-Ť:
Following Lusztig [13, Theorem 35.1.9] one defines the quantum Frobenius

morphism. For us, this will be a functor

Frn : Ǧ-mod-Uc-mod;

constructed as follows:

Starting with a Ǧ-module V ; we define a Uc-action on it by letting the torus T act
via

T -
fT

Ť+Ǧ;

which defines the action of the Kt’s and the Ki ;m
t

� �
di
’s.

The generators Ei;Fi will act by 0, and E
ðciÞ
i ;F

ðciÞ
i will act as the corresponding

Chevalley generators ei and fi of Uð$gÞ:
It is essentially a theorem of Lusztig [13, Theorem 35.1.9] that the above formulae

indeed define an action of Uc on V : Moreover, from [13] it follows that the functor
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Frn preserves the tensor structure and is full. Hence, we obtain an injective
homomorphism of Hopf algebras fG : O

Ǧ
-AG:

Let Ǧsc be the simply connected cover of the group Ǧ and let X n
sc; Y n

sc and Ťsc be

the corresponding objects for Ǧsc: In particular, Y identifies with the coroot lattice

inside the coweight lattice Xn
sc; and Y n

sc ¼ SpanðaiÞ:
Since fð$aiÞ ¼ ci � ai; we obtain that the map f gives rise to a map fsc : Xn

sc-X :

Therefore, we have a map fT ;sc : T-Ťsc and the functor Frn : Ǧ-mod-Uc-mod

can be extended to a tensor functor Frnsc : Ǧsc-mod-Uc-mod by the same formula.

1.4. The small quantum group. Following Lusztig, we first define the graded version

of the small quantum group, denoted
.
uc:

By definition, this is a sub-algebra of Uc generated by Ei;Fi; iAI and all the Kt’s.

From the formula for coproduct of the above generators, it follows that
.
uc is in

fact a Hopf subalgebra of Uc:
We define the category

.
uc-mod to consist of all finite-dimensional uc-modules M;

on which the action of the Kt’s comes from an algebraic action of T on M:
The restriction functor Uc-mod-

.
uc-mod corresponds to a map of Hopf algebras

AG-
.
aG:

Finally, we are ready to introduce our main object of study–the small quantum

group, uc: One would want it to be a Hopf subalgebra of Uc; universal with the

property that it acts trivially on representations of the form FrnðVÞ:
When one works with a root of unity of an odd order, the corresponding

subalgebra is just generated by Ki;Ei and Fi; iAI : However, in the case of a root of
unity of an even order considered in the present paper, it appears that a Hopf

subalgebra with such properties does not exist.
In our definition, uc will be just an associative subalgebra of Uc; generated by

KiEi;Fi; iAI and Kt for KtAkerðfTÞ: It is easy to see that uc is finite-dimensional.
We define the category uc-mod to have as objects all finite-dimensional uc-modules.
By construction, we have a restriction functor Res : Uc-mod-uc-mod. It

corresponds to a homomorphism of co-algebras AG-aG:

Note that although the co-product on Uc does not preserve uc; it maps it to
uc#Uc: This means that aG has a structure of a right AG-module. In categorical
terms, we have a well-defined functor ðMAuc-mod;NAUc-modÞ/M#
ResðNÞAuc-mod:

Remark. As we shall see later, although aG is not a Hopf algebra, the category uc-
mod will be in fact a monoidal category. The ‘‘paradox’’ is explained as follows: the
tautological forgetful functor uc-mod-fVector spacesg cannot be made into a
tensor functor so that the composition

Uc-mod-
Res

uc-mod-fVector spacesg

is the standard fiber functor on Uc-mod:
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Consider now the restriction of the quantum Frobenius to uc; i.e. the
composition

Ǧ-mod-
Frn

Uc-mod-
Res

uc-mod:

From the formula for Frn it is easy to see that it factors through the forgetful functor

V/
%
V from Ǧ-mod to vector spaces, i.e.

Ǧ-mod-fVector spacesg -
co-unit

uc-mod:

Moreover, we have the following assertion [13, Theorem 35.1.9]:

Proposition 1.5. Let M be an object of Uc-mod: Then

(1) The subspace of uc-invariants MucCM (i.e. mAMuc if u � m ¼ eðuÞ � m for

uAucÞ is Uc-stable.
(2) If the uc-action on M is trivial, there exists a (unique up to a unique isomorphism)

Ǧ-module V such that MCFrnðVÞ:

For completeness, let us sketch the proof of the second part of this proposition.

Proof. From the short exact sequence 1-kerðfTÞ-T-Ť-1 we obtain the

T-action on M comes from a Ť-action.

In particular, the element Ki ;0
ci

h i
di

acts on M as the Lie algebra element hiA$g:

We define the action of ei and fi as E
ðciÞ
i and F

ðciÞ
i ; respectively, and we need just to

check that the relation ½ei; fi� ¼ hi holds. But this follows from the formula

½EðciÞ
i ;F

ðciÞ
i � ¼

X
0pkoci

1

½k�di
!

 !2

�ðEiÞk �
Ki; 2k

ci � k

" #
di

�ðFiÞk;

and all the terms but Ki ;0
ci

h i
di

belong to the two-sided ideal generated by the Ei’s and

the Fi’s. &

In a similar fashion one defines the ‘‘simply connected’’ version of uc; which we
will denote by uc;sc: By definition, this is an associative subalgebra of uc generated by

KiEi; Fi; iAI and Kt for KtAkerðfT ;scÞ:
The category uc;sc-mod and the co-algebra aGsc are defined in a similar way. The

analog of Proposition 1.5 holds for uc replaced by uc;sc and Ǧ replaced by Ǧsc;
respectively.
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2. The main result

2.1. The category CðAG;OǦ
Þ. We now come to the definition crucial for this paper.

To avoid redundant repetitions, we will work with uc (resp., Ǧ), while the case of uc;sc

(resp., Ǧsc) can be treated similarly.

Let us consider the ind-completions of the categories Uc-, uc- and Ǧ-mod. Each of
these categories consists of all co-modules over the corresponding co-algebra, i.e.
AG; aG or O

Ǧ
; respectively.

We define the category CðAG;OǦ
Þ to have as objects vector spaces M endowed

with an action of the algebra O
Ǧ

and with a co-action of the co-algebra AG

compatible in the following natural way:

co-acð f � mÞ ¼ Dð f Þ � ðco-acðmÞÞ:

Here fAO
Ǧ
; mAM; co-ac :M-AG#M denotes the co-action map, the element

Dð f Þ belongs to O
Ǧ
#O

Ǧ
CAG#AG and acts on AG#M: Morphisms in this

category are the ones preserving both the action and the co-action.
In other words, we need that the action map O

Ǧ
#M-M is a map of AG-

comodules, or equivalently, that the co-action map M-AG#M is the map of O
Ǧ
-

modules.
An example of an object of CðAG;OǦ

Þ is M ¼ O
Ǧ
; with the natural AG-co-action

(coming from the fact that O
Ǧ
is a Hopf subalgebra in AG) and the O

Ǧ
-action.

Another basic example is M ¼ AG:

2.2. A reformulation. Here is a more ‘‘geometric’’ way to formulate this definition.
We claim that the category CðAG;OǦ

Þ is equivalent to the category of pairs

ðMAAG-comod; faV ; 8VAǦ-modgÞ;

where each aV is a map of AG-comodules (i.e., of Uc-modules)

aV : FrnðVÞ#M-
%
V#M

(recall that for VAǦ-mod, the notation
%
V stands for the underlying vector space),

such that

* For V ¼ C; aV : M-M is the identity map.
* For a map V1-V2; the diagram

commutes.
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* A compatibility with tensor products holds in the sense that the map

FrnðV1Þ#FrnðV2Þ#M-FrnðV1#V2Þ#M -
aV1#V2

V1#V2#M-V2#V1#M

equals FrnðV1Þ#FrnðV2Þ#M -
id#aV2

FrnðV1Þ#V2#M

CV2#FrnðV1Þ#M -
id#aV1

V2#V1#M:

Morphisms in this category between ðM; aV Þ and ðM 0; a0V Þ are Uc-module maps

M-M 0; such that each square

commutes.
Indeed, given M as above we define the action of O

Ǧ
on it as the composition map

FrnðO
Ǧ
Þ#M -

aO
Ǧ
O

Ǧ
#M -

e#id
M;

where e is the co-unit f/f ð1Þ in O
Ǧ
: Conversely, given MACðAG;OǦ

Þ; the map aV

comes by adjunction from the map

FrnðVÞ#Vn#M -
matr:coef :#id

FrnðO
Ǧ
Þ#M-M:

Let us make the following observation:

Proposition 2.3. For ðM; aV ÞACðAG;OǦ
Þ; the maps aV are automatically isomorph-

isms.

Proof. Let N be the kernel of the map FrnðVÞ#M-
%
V#M and let VnAǦ-mod be

the dual of V : From the axioms on the aV ’s, we obtain that the composition

FrnðVnÞ#N-FrnðVn#VÞ#M-Vn#V#M-M

is on the one hand zero, and on the other hand equals the natural map

FrnðVnÞ#N-M; which is a contradiction. The surjectivity of aV is proved in the
same way. &

Our main result is the following theorem:
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Theorem 2.4. The category CðAG;OǦ
Þ is naturally equivalent to the category of aG-

comodules. Objects in CðAG;OǦ
Þ; which are finitely generated over O

Ǧ
; correspond

under this equivalence to finite-dimensional aG-comodules.

This theorem has the following interesting corollary:

Corollary 2.5. The Langlands dual group Ǧ acts on the category uc-mod by endo-

functors. In other words:

(1) for every gAǦ there is a functor Tg : uc-mod-uc-mod;

(2) for each pair g1; g2AǦ there is an isomorphism of functors Tg1 3 Tg2 ) Tg1�g2 ;

(3) for each triple g1; g2; g3 the two natural transformations Tg1 3 Tg2 3 Tg3 ) Tg1�g2�g3
coincide.

Proof. Let us view uc-modules as objects of CðAG;OǦ
Þ via Theorem 2.4.

Given an object ðM; aV ÞACðAG;OǦ
Þ and an element gAǦ we define a new object

TgðM; aV Þ as follows:
The underlying Uc-module is the same, i.e. M: However, the corresponding

morphism

FrnðVÞ#M-
%
V#M

is the old aV composed with
%
V#M -

g#id

%
V#M; where gAǦ is viewed as an

automorphism of the vector space
%
V:

It is clear that in this way we indeed obtain an action of Ǧ on CðAG;OǦ
Þ; and

hence on aG-comod, by endo-functors. &

Another corollary of Theorem 2.4 is as follows:

Corollary 2.6. The category uc-mod has a natural monoidal structure.

Proof. Given two objects ðM; aV Þ and ðM 0; a0V Þ in CðAG;OǦ
Þ we have to define their

tensor product ðM 00; a00V Þ as a new object of CðAG;OǦ
Þ:

Consider first their naive tensor product M#M 0 as a Uc-module. We claim that
the algebra O

Ǧ
acts on it by endomorphisms. Indeed, to define such an action, it is

enough to define Uc-module maps

%
V#ðM#M 0Þ-

%
V#ðM#M 0Þ

for every VAǦ-mod, compatible with the tensor structure on Ǧ-mod in the same
sense as in the definition of CðAG;OǦ

Þ:

S. Arkhipov, D. Gaitsgory / Advances in Mathematics 173 (2003) 114–143 123



The sought-for maps are defined as follows:

%
V#M#M 0 C

aV ðFrnðVÞ#MÞ#M 0CM#ðFrnðVÞ#M 0Þ

C
a0

V

%
V#M#M 0;

where the second arrow comes from the braiding on the category Uc-mod.

The Uc-module M 00 is defined as the fiber at 1AǦ of M#M 0 viewed as a quasi-

coherent sheaf on Ǧ: It comes equipped with a data of a00 by construction.
It is easy to see that the functor ðM; aV Þ; ðM 0; a0Þ/ðM 00; a00V Þ admits a natural

associativity constraint, which makes CðAG;OǦ
Þ into a monoidal category.

Moreover, if both M and M 0 are finitely generated as O
Ǧ
-modules, then so is M 00:

Hence, this monoidal structure preserves the sub-category of finite-dimensional aG-
comodules, which is the same as uc-mod. &

2.7. The general setting. It will be convenient to generalize our setting as follows. Let
O; A be two Hopf algebras and let O-A be an embedding.
In addition, let a be a co-algebra and a right A-module, and let A-a be a

surjection respecting both structures.
We impose the following conditions on our data:

(i) The composition O-A-a factors as O -
co-unit

C-
unit

a:

(ii) The inclusion OCAa is an equality.2

(iii) The inclusion m �ACKerðA-aÞ is an equality, where m is the augmentation
ideal in O:

In addition, we impose the following technical condition, that one of the following
two properties is satisfied (compare with [16, Section 3.4]):

(iva) Either A is faithfully-flat as an O-module,
(ivb) or the induction functor Ind : a-comod-A-comod (cf. Section 3.1 for the

definition of Ind) is exact and faithful.

Of course, we will prove that our triple ðO
Ǧ
;AG; aGÞ satisfies conditions (i)–(iv).

We define the category CðA;OÞ to have as objects vector spaces M endowed with
a left action of the algebra O and a left co-action of the co-algebra A which are
compatible in the same sense as in the definition of CðAG;OǦ

Þ: The following is a

generalization of Theorem 2.4:

2For a co-algebra B co-acting on M; the notation MB will mean ‘‘invariants’’, i.e.

MB ¼ HomB-comodðC;MÞ ¼ KerðM -
co-ac�1#id

B#MÞ:

For example, for a uc-module M (which is the same as an aG-comodule) Muc ¼ MaG :
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Theorem 2.8. The categories CðA;OÞ and a-comod are naturally equivalent.

2.9. The ‘‘classical’’ case. The general Theorem 2.8 models the following familiar
situation. Let

1-H 0-H 00-H-1

be a short exact sequence of linear algebraic groups. Take O ¼ OH ; A ¼ OH 00 and
a ¼ OH 0 : Conditions (i)–(iv) obviously hold and we claim, that the assertion of
Theorem 2.8 in this case is following well-known phenomenon:
First, by definition, the category CðA;OÞ is naturally equivalent to the category

QCohH 00 ðHÞ of H 00-equivariant quasi-coherent sheaves on H: By taking the fiber of a
sheaf at 1AH we obtain a functor

QCohH 00 ðHÞ-QCohH 0 ðptÞ;

which is known to be an equivalence of categories. However,

QCohH 0 ðptÞCH 0-modCa-comod:

The proof of Theorem 2.8 in the general case will be essentially a translation of the
above two-line proof into the language of Hopf algebras.

Remark. Suppose that in the setting of Theorem 2.8, O is in fact commutative, i.e. O
is the algebra of functions on an affine group-scheme G:

Then we have an analog of dual group action, that G acts on the category a-comod
by endo-functors. In the above example of ðA ¼ OH 00 ; a ¼ OH 0 Þ; this action
corresponds to the natural map of G ¼ H to the group of outer automorphisms of
H 0:

3. Proof of the main theorem

We will first prove the general Theorem 2.8. Then we show that conditions (i)–(iv)
are satisfied for AG;OǦ

and aG:

3.1. The functor of ( finite) induction. Now we proceed to the proof of Theorem 2.8 in
general.
Let us recall the definition of the (finite) induction functor a-comod /A-comod.

Recall that if Mr
1 is a right co-module and M l

2 is a left co-module over a co-algebra a;

it makes sense to consider the vector space ðMr
1#M l

2Þ
a; equal by definition to the

equalizer of the two maps

D1#id; id#D2 :Mr
1#M l

2-Mr
1#a#M l

2:
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For MAa-comod consider A as a left A-comodule and a right a-comodule, and set

IndðMÞ :¼ ðA#MÞa; which carries a left A-coaction by functoriality.
By construction, this functor is left exact, and it is the right adjoint of the natural

restriction functor Res :A-comod-a-comod:
Note now that since O-A-a factors through the augmentation map, the action

of O on A#M by left multiplication maps the subspace ðA#MÞa to itself.
Moreover, this action O-action on IndðMÞ is compatible with the A-coaction.
Therefore, the functor Ind can be extended to a functor from a-comod to CðA;OÞ;
which we will denote by Ind:
Let us consider two examples. First, it is easy to see that IndðaÞCA: Secondly,

IndðCÞCO; and more generally, for M is of the form ResðNÞ for NAA-comod, we
have: IndðResðNÞÞCO#N; with the diagonal A-coaction and the O-action on the
first factor.

3.2. The adjoint functor. Now we will define a functor CðA;OÞ-a-comod.
Given an object NACðA;OÞ; consider the vector space CðNÞ :¼ C#ON; where

O-C is the co-unit map.
Since the O-action on N commutes with the a-coaction, CðNÞ carries a natural co-

action of a:
Thus, we obtain a functor, denoted Res : CðA;OÞ-a-comod. By construction,

this functor is right exact.
By definition, for O viewed as an object of CðA;OÞ; ResðOÞCC: Property (iii) of

Section 2.7 implies that ResðAÞCa: More generally, for objects of CðA;OÞ of the
form O#ResðNÞ; we have: ResðO#ResðNÞÞCResðNÞ:

Proposition 3.3. The functor Res is the left adjoint to Ind:

Proof. We need to construct the adjunction maps

Res 3 IndðMÞ-M and N-Ind 3ResðNÞ

for M and N in a-mod and CðA;OÞ; respectively.
Let M be as above. Consider the composition ðA#MÞa+A#M -

e#id
M: By

construction, this is a map of a-comodules and it obviously factors through

ðA#MÞa-CððA#MÞaÞ-M:

Therefore, we obtain a map Res 3 IndðMÞCCððA#MÞaÞ-M:
For NACðA;OÞ; consider the map

N -
D ðA#NÞA+ðA#NÞa-ðA#CðNÞÞa:

This map respects the A-coaction and the O-action by construction.
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Thus, we obtain a map

N-ðA#CðNÞÞaCInd 3ResðNÞ: &

Now we are ready to prove Theorem 2.8. We will give two proofs corresponding
to the two variants of condition (iv).

3.4. Proof 1. Let us first prove Theorem 2.8 under the assumption that ðO;A; aÞ
satisfies condition (ivb) of Section 2.1, i.e. that the induction functor Ind is exact and
faithful.

We claim that the adjunction map

N-IndðResðNÞÞ

is an isomorphism for any NACðA;OÞ:
Since the functor Res is right-exact and Ind is exact, the composition Ind 3Res is

also right exact. Hence, it suffices to show that for any N as above there exists
another object N 0ACðA;OÞ with a surjection N 07N; for which the map
N 0-IndðResðN 0ÞÞ is an isomorphism.
We set N 0 ¼ O#N; where O acts on O#N via

a0 � ða#nÞ/a0 � a#n;

and the A-coaction is the diagonal one. The map O#N-N is given by the original
O-action on N:
Now, ResðN 0ÞCResðNÞ; and IndðResðN 0ÞÞCO#N; such that the above

adjunction map for N 0 becomes the identity map on O#N:
Thus, to prove Theorem 2.8, it suffices to check that the other adjunction map

ResðIndðMÞÞ-M is an isomorphism for any MAa-comod. However, since the
functor Ind (and hence Ind) is faithful, it suffice to check that

IndðResðIndðMÞÞÞ-IndðMÞ

is an isomorphism. However, we know that the composition

IndðMÞ-IndðResðIndðMÞÞÞ-IndðMÞ

is the identity map on IndðMÞ; and the first arrow is an isomorphism by what we
have proved above. Hence, the second arrow is an isomorphism as well.

3.5. Proof 2. Now let us prove Theorem 2.8 under the assumption that ðO;A; aÞ
satisfies condition (iva) of Section 2.7.

Proposition 3.6. The functor Res : CðA;OÞ-a-comod is exact and faithful.
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Proof. For an object NACðA;OÞ; consider the tensor productA#ON: This is a left
A-module and a left A-comodule via the diagonal co-action.

Thus, we obtain a functor CoindAO : CðA;OÞ-CðA;AÞ; which is exact and

faithful, since A was assumed faithfully flat over O:
Now, the functor N/CðNÞ considered as a functor from CðA;OÞ to the category

of vector spaces can be factored as

CCCA 3CoindAO ;

where CA is the corresponding functor for CðA;AÞ: Therefore, it suffices to show
that CA is exact and faithful.
However, the triple ðA;A;CÞ satisfies assumption (iiib), and we already know

that CA induces an equivalence between CðA;AÞ and the category of vector spaces.
In particular, C is exact and faithful. &

The rest of the proof proceeds very much in the same way as Proof 1 above.
First, we claim that Proposition 3.6 above implies that the adjunction morphism

Res 3 IndðMÞ-M

is an isomorphism for every MAa-comod. Indeed, every object in a-comod can be
embedded into a direct sum of several copies of a; viewed as a co-module over itself.
Hence, every MAa-comod admits a resolution of the form:

M-a#W0-a#W1-;y;

where Wi are some vector spaces. Since the composition Res 3 IndðMÞ is left-exact, it
is enough to prove that Res 3 IndðaÞ-a is an isomorphism. However, this is obvious,
since this map is the composition Res 3 IndðaÞCResðAÞCa:
Thus, it remains to show that the adjunction map N-Ind 3ResðNÞ is an

isomorphism. However, since the functor Res is faithful, it is enough to show that

ResðNÞ-Res 3 Ind 3ResðNÞ

is an isomorphism. But we already know that Res 3 Ind 3ResðNÞ-ResðNÞ is an
isomorphism and the composition

ResðNÞ-Res 3 Ind 3ResðNÞ-ResðNÞ

is the identity map.

Remark. Note that Theorem 2.8 implies that under the assumption that A is
faithfully flat over O; the induction functor Ind : a-comod-A-comod is auto-
matically exact. I.e., condition (iva) in fact implies condition (ivb).
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3.7. Finiteness properties ofA. Thus, Theorem 2.8 is proved. Let us now describe the
image of the category of finite-dimensional a-comodules under our equivalence of
categories.

Proposition 3.8. An a-comodule M is finite-dimensional if and only of IndðMÞ is

finitely generated as an O-module.

Proof. One direction is clear: if NACðA;OÞ is finite as an O-module, then ResðNÞ ¼
CðNÞ is finite-dimensional.
Conversely, assume that M is finite-dimensional, and let M 0CIndðMÞ be a finite-

dimensional A-subcomodule, which surjects onto M under

ResðIndðMÞÞ-ResðIndðMÞÞCM:

Then the O-submodule N 0 in IndðMÞ generated by M 0 is stable under both the O-
action and A-coaction, and ResðN 0Þ surjects onto M: Hence, N 0 ¼ IndðMÞ: &

This proposition implies among the rest, that if a is finite-dimensional, then
ACIndðaÞ is finitely generated as a module over O: In particular, we obtain that in
the quantum group setting, AG is a finite O

Ǧ
-module.

3.9. Verification of properties (i)–(iv) for quantum groups. First, the map O
Ǧ
-AG is

injective because the quantum Frobenius homomorphism is surjective.
To show that AG-aG is surjective is equivalent to showing that every object

MAuc-mod appears as a sub-quotient of one of the form ResðNÞ for some NAUc-
mod. We will prove a stronger assertion, namely, that any M as above is in fact a
quotient of some ResðNÞ:

Proposition 3.10. For any MAuc-mod; the canonical map ResðIndðMÞÞ-M is

surjective.

Proof. First, it is known (cf. [4, Theorem 4.8] or [2, Proposition 3.15])
that the functor Ind : uc-mod-Uc-mod is exact. Therefore, it is sufficient
to show that the map ResðIndðMÞÞ-M is surjective when M is an irreducible uc-
module.
However, it is known (cf. [14, Proposition 5.11]) that every irreducible uc-module

is of the form ResðNÞ for an irreducible NAUc-mod.
Now, for N as above, the co-action map defines a map N-IndðResðNÞÞ; and the

composition

ResðNÞ-ResðIndðResðNÞÞÞ-ResðNÞ

is the identity map.
Hence, ResðIndðMÞÞCResðIndðResðNÞÞÞ-ResðNÞCM is a surjection. &
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Condition (i) of Section 2.7 follows immediately from the fact that uc acts trivially

on any module of the form FrnðVÞ for VAǦ-mod. To verify condition (ii) we will use
Proposition 1.5:
Indeed, we know that if M is aAG-comodule, then the co-action map restricted to

MaG factors as

MaG-O
Ǧ
#MaG+AG#M:

By taking M ¼ AG and evaluating ðid#eÞ 3 D on aAAaG

G ; we obtain that

a ¼ ðid#eÞ 3 DðaÞAO
Ǧ
:

Let us now verify (iii). This follows from the next proposition:

Proposition 3.11. Let ðA;O; aÞ be satisfying properties (i), (ii). Suppose that the

adjunction map ResðIndðMÞÞ-M is surjective for any a-comodule M: Then m �A ¼
KerðA-aÞ:

Proof. Set I 0 ¼ m �A; I ¼ KerðA-aÞ: Set a0 :¼ A=I 0: Then a0 is a co-algebra and a
right A-module, and we have a sequence of epimorphisms A-a0-a respecting
both structures.
We must show that the inclusion I 0CI is an equality. For this, it is enough to show

that I is a0-stable, i.e. that the composition

I-A-
D

A#A-a0#A

maps to a0#I : Indeed, by applying ðid#eÞ 3 D to aAI we then obtain that a ¼
ðid#eÞ 3 DðaÞ projects to the 0 element in a0; i.e. belongs to I 0:
Using the fact that ResðIndðMÞÞ-M i surjective for any a-comodule, we can find

an A-comodule B with a surjection N7I :
However, from condition (ii), we obtain that in

O+Aa0+Aa

the composition is an isomorphism. Hence Aa0 ¼ Aa; which implies that Na0 ¼ Na

for any NAA-comod. In particular, if N1 and N2 are two A-comodules, any map
N1-N2 respecting the a-co-action, respects also the a0-co-action.
Applying this to the composition N7I+A; we obtain that I ¼ ImðNÞCA is an

a0-subcomodule. &

Finally, as was mentioned above, the functor Ind is exact, hence ðAG;OǦ
; aGÞ

verifies condition (ivb).
For completeness, we will show that in fact ðAG;OǦ

; aGÞ verifies also condition

(iva). More generally, we will prove the following proposition:

S. Arkhipov, D. Gaitsgory / Advances in Mathematics 173 (2003) 114–143130



Proposition 3.12. Let O-A be an embedding of Hopf algebras, with O being

commutative. Then A is faithfully flat as an O-module.

3.13. Proof of Proposition 3.12. Let us denote SpecðOÞ by G; and view A as a quasi-
coherent sheaf on G:
We have the following lemma:

Lemma 3.14. For every gAG; the pull-back gnðAÞ of A under the translation map

g0-g � g0 is (non-canonically) isomorphic to A as a quasi-coherent sheaf.

Proof. Let gAG be a point over which the embedding O-A induces an injection on
fibers Og-Ag: We will call such g’s ‘‘good’’. First, we claim that for a ‘‘good’’ g we
do obtain an isomorphism

gnðAÞCA:

Indeed, let xg be any linear functional Ag-C which extends the evaluation map

O-C corresponding to g: Consider the map

A-
D
A#A -

xg#id
A:

It is easy to see that this map defines the sought-for isomorphism gnðAÞCA:
Now let us show that all gAG are ‘‘good’’. Suppose not. Since O-A is an

embedding, there exists a collection ,kYk of proper sub-schemes of G defined over
C; such that all points in G\,kYk are ‘‘good’’. By what we proved above, the
translation by a ‘‘good’’ g maps the collection ,kYk to itself.
Let us make a field extension C/CðGÞ: Over this field, G has the canonical

generic point, which is clearly ‘‘good’’. However, this generic point cannot map a
proper sub-scheme defined over C to another proper sub-scheme defined over C;
which is a contradiction. &

This lemma implies Proposition 3.12:

To prove that A is flat over O; we must show that Tor1OðA;CgÞ ¼ 0; for every

gAG: (Here Cg denotes the sky-scraper sheaf at g:) As in the above argument,

Tor1OðA;CgÞ ¼ 0 for all g’s lying outside ,kYk:

However, by Lemma 3.14, all points of G are ‘‘the same’’ with respect to A:

Hence, Tor1OðA;CgÞ ¼ 0 everywhere.

To complete the proof of the proposition, we must show that the fiber of A at
any gAG is non-zero. But this has been established in the course of the proof of
Lemma 3.14.

4. Further properties of the equivalence of categories

4.1. Definition by the universal property. In this section, we will make several
additional remarks about the equivalence of categories established in Theorem 2.4.
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When our discussion applies to any triple ðO;A; aÞ; we will work in this more general
context. Let us denote by Fn the natural functor from O-comod to A-comod.
By condition (i) of Section 2.7, we have an isomorphism of functors

O-comod�A-comod-a-comod : acanV : ResðFnðVÞ#NÞC
%
V#ResðNÞ:

Let C be an abelian C-linear category and let R :A-comod-C be a C-linear functor
with the property that for each VAO-comod and NAA-comod there is a natural
transformation

aC
V :RðFnðVÞ#NÞ/

%
V#RðFnðNÞÞ;

which satisfies the three properties of Section 2.2.

Proposition 4.2. There exists a functor r : a-comod-C and an isomorphism of

functors RCr 3Res; such that aC
V ¼ rðacanV Þ:

The meaning of this proposition is, of course, that the forgetful functor
Res :A-comod-a-comod is universal with respect to the property that it

transforms FnðVÞ#N to
%
V#N:

Proof. Using Theorem 2.8 we will think of a-comod in terms of CðA;OÞ and we will
construct a functor r : CðA;OÞ-C:

Let O#M -
act

M be the action map. By assumption, we obtain the map

O#RðMÞCRðO#MÞ-RðMÞ:

The axioms on the aC
V ’s imply that O acts on RðMÞ as an associative algebra. We set

rðMÞ :¼ C#ORðMÞ:
Let us show now that R is canonically isomorphic to r 3Res: Under the

equivalence of Theorem 2.4, the functor Res goes over to N/O#N: Therefore,

r 3ResðNÞCC#
O
RðO#NÞCRðNÞ: &

4.3. Reconstruction of A-comod from a-comod. For ðO;A; aÞ with O being
commutative, let us recall from Corollary 2.5 that the group G ¼ SpecðOÞ acts on
the category a-comod by endo-functors.

Thus, it makes sense to introduce the category (a-comodÞG of G-equivariant
objects of a-comod.

Proposition 4.4. The category ða-comodÞG is naturally equivalent to A-comod.

Proof. Let M be a G-equivariant object in CðA;OÞ: By definition, the under-
lying A-comodule has an additional commuting structure of a G-equivariant
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quasi-coherent sheaf on G: By taking its fiber at the point 1AG; we obtain
an A-comodule.
Thus, we have constructed a functor

ðCðA;OÞÞG-A-comod;

and it is easy to see that it is an equivalence. &

Thus, given A; the category of a-comodules is a ‘‘de-equivariantization’’ of A-
comod.

4.5. Other versions of quantum groups. Let us discuss briefly the generalization of

Theorem 2.4 in the context of uc;sc and
.
uc:

Consider the triple A ¼ AG; O ¼ O
Ǧsc

and a ¼ aGsc
: In a way completely

analogous to what we did in the previous section, one shows that these co-algebras
satisfy conditions (i)–(iv) of Section 2.7.

Let CðAG;OǦsc
Þ denote the corresponding category CðA;OÞ: We have the

following version of Theorem 2.4:

Theorem 4.6. The categories CðAG;OǦsc
Þ and aGsc

-comod are naturally equivalent.

Now let us consider the case of
.
uc: In what follows, for a Ǧ-module V ; we will

regard ResǦ

Ť
ðVÞ as a Y -graded vector space.

We introduce the category
.

CðAG;OǦ
Þ as follows: its objects are Y -graded AG-

comodules M ¼ "nAY Mn; each endowed with a collection of grading-preserving

maps aV ; VAǦ-mod

FrnðVÞ#MCResǦ

Ť
ðVÞ#M

(as in Section 2.2) where the Y -grading on the left-hand side comes from the
grading on M and on the right-hand side the grading is diagonal. Maps in
this category are grading preserving Uc-module maps, which intertwine the
corresponding aV ’s.

Theorem 4.7. The category
.

CðAG;OǦ
Þ is equivalent to

.
aG-comod.

Proof. First, let us observe that if we put A ¼ .
aG; O ¼ OŤ; a ¼ aG; the

corresponding triple would satisfy conditions (i)–(iv) of Section 2.7. Hence, the
general Theorem 2.8 is applicable as well as Proposition 1.1.

Therefore, the category
.

CðAG;OǦ
Þ is equivalent to the category of Ť-equivariant

objects in CðAG;OǦ
Þ: However, the latter is by definition the same as

.

CðAG;OǦ
Þ: &
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Finally, let us characterize the category
.
uc-mod by a universal property. For an $l

in Y ¼ X n (or even in X n
sc) let us denote by C

$l the corresponding one-dimensional

module over
.
uc; and by P$l :

.
uc-mod/

.
uc-mod the translation functor M/C

$l#M:

Let now C be an abelian C-linear category and let PC
$l
: C-C be an action of Y on

C by endo-functors. Let R :AG-comod -C be a C- linear functor with the property
that for each VAO

Ǧ
-comod there is a natural transformation

aC
V :RðFrnðVÞ#MÞ/"

n %
Vð$nÞ#PC

$n ðRðMÞÞ;

which satisfies the three properties of Section 2.2. (In the above formula, for a Ǧ-
module V and $nAY ;

%
Vð$nÞ denotes the corresponding weight subspace.)

Proposition 4.8. There exists a functor r :
.
aG-comod -C and an isomorphism of

functors

RCr 3Res:

Moreover, the functor r commutes with the translation functors in the obvious sense.

We omit the proof, since it is completely analogous to the proof of Proposition
4.2.

5. The regular block

5.1. Blocks in the categories A-comod and a-comod. Recall that any Artinian
abelian category C is a direct sum of its indecomposable abelian sub-categories called
blocks or linkage classes of C: Obviously, a block of a category is completely
described by the set of irreducible objects contained in it. We will denote the set of
blocks of C by BlðCÞ:

Note that the categories of finite-dimensionalA- and a-comodules (denoted below

by A-comodf and a-comodf ; respectively) are Artinian, therefore, they admit
decompositions into blocks. We will use the notation BlðAÞ and BlðaÞ for the sets of
blocks of A-comodf and a-comodf ; respectively.
Evidently, we have

A-comod ¼ ind: comp:ðA-comodfÞ and a-comod

¼ ind: comp:ða-comodfÞ:

For aABlðAÞ (resp., a0ABlðaÞ) let us denote byA-comoda (resp., a-comoda0) the ind-

completion of the corresponding block of A-comodf (resp., a-comodf).
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We will call the block of A-comod (resp., a-comod) which contains the
trivial representation C the regular block and will denote it by A-comod0 (resp.,
a-comod0).
Assume that the category A-comod has the following additional property with

respect to O-comod:

ð*Þ For any aABlðAÞ and VAO-comod, the functor FnðVÞ#�: A-comod-A-
comod maps A-comoda to itself.

Let us compare the block decompositions of A-comod and a-comod.

Proposition 5.2. There is a one-to-one correspondence between the sets BlðAÞ and

BlðaÞ determined by the following properties:

(a) NAA-comoda if and only if ResðNÞAa-comoda:
(b) MAa-comoda if and only if IndðMÞAA-comoda:

Proof. First, observe that Ind 3Res :A-comod-A-comod preserves each

A-comoda; by assumption, since Ind 3ResðNÞCFnðOÞ#N:
Secondly, let us show that Res 3 Ind maps each a-comoda to itself. Indeed, let

MAa-comoda and let N 0 be an a-stable direct summand of Ind(M), which belongs to
some a-comodb: Then N 0 is preserved by the O-action, and thus defines a sub-object

of IndðMÞACðA;OÞ: But then ResðN 0ÞAa-comodb is a non-zero direct summand of

M; which means that b ¼ a:
Let N be an object of A-comod. Let ResðNÞ ¼ ResðNÞ0"ResðNÞ00 be a block

decomposition in a-comod. Let us show that ResðNÞ0 and ResðNÞ00 are in
fact A-sub-comodules. Without restricting the generality, we can assume that N

is a sub-comodule of Ind(M) for some MAa-comod. However, as we have just
seen, the block decomposition of Res 3 IndðMÞ coincides with the block decomposi-
tion of M:
Therefore, the block decomposition of a-comod is ‘‘coarser’’ than that of A-

comod.
However, by our assumption on A; its block decomposition is ‘‘coarser’’ than the

block decomposition of CðA;OÞ: This implies the assertion of the proposition in
view of Theorem 2.8. &

5.3. The category CðA;OÞ0. We define the category CðA;OÞ0 as the preimage of A-
comod0 under the tautological forgetful functor CðA;OÞ-A-comod: This
definition makes sense due to condition ð*Þ above. In the course of the proof of
Proposition 5.2 we have established the following assertion:

Corollary 5.4. Under the equivalence of categories CðA;OÞCa-comod, the sub-

category CðA;OÞ0 goes over to the regular block a-comod0:
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5.5. The case of uc. For a regular dominant lAX ; let WðlÞAUc-mod denote the
corresponding Weyl module. It is well-known that WðlÞ has a unique simple
quotient, denoted LðlÞ and that each simple object in Uc-mod is isomorphic to LðlÞ
for some l:
The following facts about the block decomposition of the category Uc-mod were

established in [3]:
Let Waff be the affine Weyl group YrW : It acts on the lattice X as follows: the

translations by Y act via the homomorphism f :Y-X and the action of the finite
Weyl group W is centered at �r :¼ �

P
iAI oi; where oi’s are the fundamental

weights.

Theorem 5.6. Two simple modules Lðl1Þ and Lðl2Þ are in the same block if and only if

l1 and l2 belong to the same Waff -orbit.

Moreover, we have the following statement (cf., [15, Theorem 7.4 and Proposition
7.5]):

Proposition 5.7. Let l ¼ l1 þ l2 be the unique decomposition, with l2 ¼ fscð $mÞ; where

$mAXn
sc is a dominant integral weight of the group Ǧsc and l1 is such that

0p/l1; $aiSoci for all iAI : Then:

(i) Lðl2ÞCFrnscðV $mÞ; where V $m is the corresponding irreducible representation of Ǧsc:
(ii) The restriction of Lðl1Þ to uc remains irreducible.
(iii) LðlÞCLðl1Þ#Lðl2Þ:

This proposition combined with Theorem 5.6 implies that the category Uc-mod
satisfies condition ð*Þ:
Let CðAG;OGÞ0 denote the corresponding sub-category of CðAG;OǦ

Þ:
By applying Proposition 5.2 and Corollary 5.4, we obtain the following
theorem:

Theorem 5.8. We have a bijection between the sets BlðUc-modÞCBlðuc-modÞ and an

equivalence of categories:

aG-comod0CCðAG;OǦ
Þ0:

Recall (cf. [14] or [4]) that to every element lAX we attached an irreducible object
of uc-mod, denoted LðlÞ; which depends only on the image of l in the quotient
X=fðYÞ; and Proposition 5.7(ii) implies that if l satisfies /l; $aiSoci; then
LðlÞCResðLðlÞÞ:

The following corollary repeats in fact Section 2.9 of [4]:
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Corollary 5.9. For two elements l1 and l2 of X ; the modules Lðl1Þ and Lðl2Þ belong to

the same block of uc-mod if and only if l1 and l2AX are Waff -conjugate.

5.10. The graded case. For completeness, let us analyze the block decomposition of

the category
.
uc-mod in light of Theorem 5.2. However, all that we are going to

obtain is already contained in [4].

Recall that for lAX ;
.

LðlÞ denotes the corresponding irreducible object of .
uc-mod,

and LðlÞ ¼ Res
.
uc
uc
ð

.

LðlÞÞ:

The following is known, due to [4]:

Proposition 5.11. The translation functors P$l;
$lAY preserve the block decomposition

of
.
uc-mod.

Using this proposition, we can apply Proposition 5.2 to the category
.
uc-mod and

the group Ť: Thus, we obtain the following result of [4]:

Corollary 5.12. There is a natural bijection Blð .
uc-modÞCBlðuc-modÞ: The modules

.

Lðl1Þ and
.

Lðl2Þ belong to the block in
.
uc-mod if and only if l1 and l2 are Waff -

conjugate.

Let
.

CðAG;OǦ
Þ0 denote the preimage of Uc-mod0 under the obvious forgetful

functor. From Proposition 5.2 and Theorem 4.7, we obtain the following theorem
(cf. [1] for the first assertion):

Theorem 5.13. There is an isomorphism of sets BlðUc-modÞCBlð .
uc-modÞ and an

equivalence of categories:
.
aG-comod0C

.

CðAG;OǦ
Þ0:

5.14. The case of uc;sc. Observe that if we consider the triple A ¼ AG; O ¼ O
Ǧsc

;

a ¼ aGsc
; then condition (n) above will not be satisfied. Instead, we have the following

assertion:

Proposition 5.15. The natural restriction functor uc-mod -uc;sc-mod induces an

equivalence uc-mod0-uc;sc-mod0:

Proof. For lAX ; let us denote by LðlÞsc the restriction of LðlÞ to uc;sc: By

construction, it depends only on the class of l in X=fðXn
scÞ:

Let us consider the forgetful functor Resuc
uc;sc

: uc-mod-uc;sc-mod. Note that in

terms of CðAG;OǦ
Þ and CðAG;OǦsc

Þ; it acts as follows:

MACðAG;OǦ
Þ/O

Ǧsc
#
O

Ǧ

MACðAG;OǦsc
Þ:
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This functor has a right adjoint, which we will denote by Induc
uc;sc

: On the level of

CðAG;OǦsc
Þ; Induc

uc;sc
is the natural forgetful functor.

Note that for MA .
uc-mod we have:

Induc
uc;sc

3Resuc
uc;sc

ðMÞC "
$lAXn

sc=X n

M#C
$l:

(Recall that C
$l is a one-dimensional

.
uc-module, and, hence, we are allowed to tensor

any uc-module by it on the right.) In particular, Induc
uc;sc

ðLðmÞscÞ ¼ "$lAXn
sc=X nLðmþ

fscð$lÞÞ:
Therefore, two irreducible objects Lðm1Þsc and Lðm2Þsc of uc;sc-mod belong to the

same block if and only if there exists $lAX n
sc; such that Lðm1 þ fscð$lÞÞ and Lðm2Þ

belong to the same block of uc-mod, i.e. m1 and m2 belong to the same orbit of the

extended affine Weyl group W ext
aff CXn

scrW :

Thus, we obtain that the functor Resuc
uc;sc

maps uc-mod0 to uc;sc-mod0: We claim

now that this functor has a left quasi-inverse. Namely, it is given by

N/pr0ðInduc
uc;sc

ðNÞÞ;

where pr0 denotes the functor of projection onto the regular block in uc-mod.
Indeed, for MAuc-mod0 we have

pr0ðInduc
uc;sc

3Resuc
uc;sc

ðMÞÞCM;

because for $lAXn
sc; the object pr0ðM#C

$lÞ is non-zero only if $lAXn; which follows

from the description of blocks of uc-mod in terms of Waff :
To finish the proof of the proposition it remains to show that if N is a non-zero

object in uc;sc-mod0; then pr0ðInduc
uc;sc

ðNÞÞ is non-zero either. For that, it is enough to
suppose that N is irreducible, i.e. of the form LðlÞsc; and our assertion follows from

the explicit description of uc;sc-mod0 given above. &

6. Geometric interpretation

6.1. Affine flag variety. Our goal in this section is to give a geometric descrip-
tion of the category uc-mod0: Namely, we will show that it can be described as
the category of certain perverse sheaves on the affine flag variety corresponding
to the group G; which have the Hecke eigen-property. It is via this description
that one can link uc-mod0 to certain categories which appear in the geometric
Langlands correspondence and to other interesting categories arising in representa-
tion theory.
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First, we will briefly recall several definitions concerning the affine Grassmannian
and the affine flag variety. We refer the reader to [5,17] or [9] for a more detailed
discussion.
Consider the ring C½½t�� of Taylor series and the field CððtÞÞ of Laurent series. The

loop group GððtÞÞ (resp., the group of positive loops G½½t��) has a structure of an
group-indscheme (resp., of a group-scheme). The quotient GððtÞÞ=G½½t�� is an ind-
scheme of ind-finite type, called the affine Grassmannian of the group G; denoted Gr.
By definition, the group-scheme G½½t�� acts (on the left) on Gr. The orbits of this

action are finite-dimensional quasi-projective varieties and they are in a natural

bijection with the dominant elements YþCY : For $lAYþ; we will denote by Gr
$l
the

closure of the corresponding orbit. Thus, it makes sense to talk about the category of
G½½t��-equivariant perverse sheaves on Gr. By definition, every such perverse sheaf is

supported on Gr
$l
for $l sufficiently large. We will denote this category by PG½½t��ðGrÞ:

This is an abelian category and it possesses an additional structure of the convolution

product PG½½t��ðGrÞ%PG½½t��ðGrÞ-PG½½t��ðGrÞ; which makes PG½½t��ðGrÞ into a tensor

category.

We have the following fundamental theorem [10,17]:

Theorem 6.2. There is an equivalence of tensor categories Ǧ-modCPG½½t��ðGrÞ: Under

this equivalence, the intersection cohomology sheaf IC
Gr

$l goes over to the highest

weight module V
$l:

Now we pass to the definition of the affine flag variety.
Let IwCG½½t�� be the Iwahori subgroup. By definition, Iw is the preimage of the

Borel subgroup BCG under the natural evaluation map G½½t��-G: The quotient
GððtÞÞ=Iw is also an ind-scheme of ind-finite type, called the affine flag variety of G;
denoted Fl. By definition, we have a projection Fl7Gr; whose fibers are (non-
canonically) isomorphic to the usual flag manifold G=B:
Let NIw be the unipotent radical of Iw. By definition, NIw is the preimage of NCB

under Iw-B: Since NIw is normal in Iw and Iw=NIwCT ; the quotient eFFl :¼
GððtÞÞ=NIw is a principal T-bundle over Fl :¼ GððtÞÞ=Iw: We will call eFlFl the enhanced
affine flag variety. The group-scheme G½½t�� acts on the left on both Fl and eFlFl:
We define the category PG½½t��ðFlÞ to be the abelian category of G½½t��-equivariant

perverse sheaves on Fl. We define the category ePPG½½t��ðFlÞ to be the subcategory of the
category of G½½t��-equivariant perverse sheaves on eFlFl; which consists of T-
monodromic objects.3 Note that the pull-back functor identifies PG½½t��ðFlÞ with the

sub-category of ePPG½½t��ðFlÞ consisting of T-equivariant objects.

3Recall that a perverse sheaf is called T-monodromic when it has a filtration, whose subquotients are T-

equivariant perverse sheaves.
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It is known (cf. [9] for details) that the convolution tensor structure on the
category PG½½t��ðGrÞ extends to an action of PG½½t��ðGrÞ on PG½½t��ðFlÞ:
Similarly, one can define an action

PG½½t��ðGrÞ% ePPG½½t��ðFlÞ-ePPG½½t��ðFlÞ:

6.3. Hecke eigen-sheaves. Let ePPG½½t��ðFlÞ denote the ind-completion of the categoryePPG½½t��ðFlÞ: We define the category U as follows: its objects are pairs

ðFAePPG½½t��ðFlÞ; faV 8VAǦ-modgÞ;

where each aV is a map

FV%F-
%
V#F;

where FVAPG½½t��ðGrÞ is the perverse sheaf corresponding to VAǦ-mod via the

equivalence of categories of Theorem 6.2. The maps aV must satisfy the three

conditions of Section 2.2. Morphisms in U between ðF; aV Þ and ðF0; a0V Þ are maps
F-F0; which intertwine between aV and a0V : As in Proposition 2.3, one shows that
the maps aV as above are automatically isomorphisms.

The rest of this section (and of the paper) is devoted to the proof of the following
theorem.

Theorem 6.4. For c sufficiently large, there is an equivalence of categories between U

and uc-mod0:

Unfortunately, the proof relies on two results, whose proofs are unavailable in the
published literature. Therefore, the reader may regard Theorem 6.4 as a conjecture,
which can be deduced from Theorems 6.7 and Theorem 6.12 stated below.

6.5. Twisted D-modules on eFlFl. The first step in the passage U-uc-mod0 is the
functor from perverse sheaves on Fl to modules over the Kac–Moody algebra due to
[12].
Recall that to an invariant symmetric from c : g#g-C; which is integral (i.e.

induces an integral-valued form on the cocharacter lattice Y ), we can associate a line

bundle Lc on Gr (cf. [12]). By pulling it back to Fl and eFlFl we obtain the
corresponding line bundles on the latter ind-schemes.

Thus, we can consider the category of Lc-twisted right D-modules on eFlFl; cf.
[5,12]. As Lc is G½½t��-equivariant, it makes sense to consider the category DG½½t��

c ð eFlFlÞ
of G½½t��-equivariant T-monodromic Lc-twisted right D-modules on eFlFl:
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Let us now consider the Kac–Moody algebra #g corresponding to g:

0-C-#g-gððtÞÞ-0;

defined with respect to the pairing g#g-C given by c: Let us denote by #gc-mod the
category of continuous representations of #g on which 1ACC#g acts as identity.

Let us denote by #g
G½½t��
c -mod the subcategory of #gc-mod consisting of finite length

representations, on which the action of g½½t��C#g integrates to the action of the group-
scheme G½½t��: According to [11], this is an Artinian category and we will denote by

#g
G½½t��
c -mod0 its regular block.
From now on let us suppose that c is such that ccrit � c is positive definite on Y ;

where ccrit corresponds to �1
2 (the Killing form). When g is simple, ccrit is �ȟ times the

canonical integral from on Y ; where ȟ is the dual Coxeter number.

The following theorem has been established in [5,12].

Theorem 6.6. The functor of global sections of a twisted D-module defines an exact and

faithful functor:

DG½½t��
c ð eFlFlÞ-#gG½½t��

c -mod0:

However, a stronger statement is true:4

Theorem 6.7. The above functor DG½½t��
c ð eFlFlÞ-#g

G½½t��
c -mod0 is in fact an equivalence of

categories.

The Riemann–Hilbert correspondence yields an equivalence of categories between

DG½½t��
c ð eFlFlÞ and ePPG½½t��ðFlÞ; cf. [12]. Therefore, we obtain the following corollary:

Corollary 6.8. There is an equivalence of categories ePPG½½t��ðFlÞC#g
G½½t��
c -mod0:

6.9. The Kazhdan–Lusztig equivalence of categories. Now let c be as in Section 1.2
and set c ¼ ccrit � ð�; �Þc; where ð�; �Þc has been introduced in Section 1.3. Again, when
g is simple, c is �ȟ � c

d
times the canonical form, where d ¼ maxðdiÞ:

The following theorem has been established in [11]:

Theorem 6.10. When c is sufficiently large, there is an equivalence of categories

Uc-modC#g
G½½t��
c -mod:

4This result is probably well-known to many experts. The proof that we have in mind has been

explained to us by M. Finkelberg and R. Bezrukavnikov.
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By combining this theorem with Corollary 6.8, we obtain the following corollary:

Corollary 6.11. There is an equivalence of categories: ePPG½½t��ðF1ÞCUc-mod0:

To prove Theorem 6.4, we will need the following property of the equivalence
stated in Corollary 6.11:

Theorem 6.12. Under the above equivalence of categories ePPG½½t��ðF1ÞCUc-mod0 the

functors Ǧ-mod� ePPG½½t��ðF1Þ-ePPG½½t��ðF1Þ given by

V ;F/FV%F and V ;M/FrnðVÞ#M

are naturally isomorphic.

This result has not been stated explicitly in [11]. We will supply the proof in a later
publication.

Now, by passing to the ind-completions of the categories ePPG½½t��ðF1Þ and Uc-mod0;

we obtain that Theorem 6.4 is a consequence of Theorem 2.4 and Theorem 6.12.
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