CONCLUSIONS: Resource utilization and costs associated with migraine increased with greater headache frequency. Treatments that reduce headache frequency have the potential to have a positive economic impact by reducing costs associated with migraine care.

PND3

UNIVERSITY OF HEALTH IN PATIENTS WITH HEMOPHILIA B
Loa M1, Zhou ZL2, Owadally-Sridhar F3, Poon JL1, Doctor J1, Koerper M3, Ullman M4, Johnson K5
1USC School of Pharmacy, Los Angeles, CA, USA; 2University of Western Ontario, London, ON, Canada; 3UCSF HTF, San Francisco, CA, USA; 4University of Texas Health Science Center at Houston, Houston, TX, USA

OBJECTIVES: To conduct a pilot study examining the validity and reliability of a paper-and-pencil standard gamble instrument (PSG) to administer and to validate the PSG among persons with hemophilia B enrolled in the Hemophilia Utilization Group Study (HUGS-Vb).

METHODS: Fifteen pharmacy students were enrolled in this pilot. We presented a hypothetical scenario describing a patient with severe hemophilia to each participant, followed by three tests: 1) Standard Gamble using the probability wheel, 2) PSG and 3) Visual Analog Scale (VAS), each administered in random order. PSG was re-administered after two weeks to assess test-retest reliability. The validated PSG was subsequently administered to participants enrolled in HUGS-Vb, a prospective, multicenter study collecting utilization and other data associated with hemophilia B in the United States. Participants or their parent(s) completed a demographic questionnaire, the PSG and the EQ-5D. The mean difference between PSG and VAS did not differ significantly from 0 (0.124). PSG was significantly correlated with VAS (r = 0.769; p = 0.0008) and VAS (r = 0.534; p = 0.0405). PSG re-test score was 0.79 ± 0.13 and test-retest ICC was 0.85 (95% CI: 0.63-0.94; p < 0.0001). Of 71 HUGS-Vb participants, 32 (45%) were adults; 38 (54%) had severe hemophilia. Mean age was 21.8 years (range 2-61). Mean PSG and VAS scores were 0.91 ± 0.15 and 0.94 ± 0.16 respectively, with weak correlation between the two (r = 0.242; p = 0.0452) in the full sample. Adult PSG and EQ-5D scores were 0.87 ± 0.18 and 0.85 ± 0.16 respectively, with correlation r = 0.348 (p = 0.0506). CONCLUSIONS: A paper-based standard gamble instrument may be a valid, reliable alternative to SG for measuring health utility in hemophilia patients.

PND4

MAPPING THE INSOMNIA SEVERITY INDEX (ISI) TO THE EQ-5D UTILITIES
Gu NY1,2,3, Bell C2, Bottaman M1
1Pharmacist North America, LLC, Bethesda, MD, USA; 2ClinicalSmithKline, Research Triangle Park, NC, USA

OBJECTIVES: To map the Insomnia Severity Index (ISI) to the EQ-5D utilities.

METHODS: A cross-sectional, online survey was conducted among adult US residents with self-reported sleep problems. Respondents provided demographic, comorbidities, self-rated and sleep-related information, and completed the ISI and the EQ-5D and the ISI, a seven-item instrument measuring perceived insomnia severity. Each ISI item is scored from 0-4 with minimum total score of 0 (no insomnia) and a maximum of 28 (most severe insomnia). Respondents can be classified into four ISI categories (0-7: no clinically significant insomnia, 8-14: subthreshold insomnia, 15-21: moderate insomnia, 22-28: severe insomnia). Interviews were used to map the seven ISI items (Model 1), the ISI summary scores (Model 2), and the four ISI clinical categories (Model 3) onto EQ-5D utilities. Predictions were estimated using 50/50 split sample validation. Model fits were assessed using means squared error (MSE) and distributional quality of predicted values. RESULTS: Respondents (n = 2,842) were predominantly middle-aged, female, Caucasian, with ≥1 comorbidity. Mean sleep duration was 7.8 (± 1.9) hours, mean ISI score was 14.1 (± 4.8). Predicted utility values were 0.765 ± 0.08 across all models, overlapping with observed utilities (0.765 ± 0.18). Using Model 1, predicted utilities increased linearly with improving ISI (0.493 if ISI = 28; 1.00 if ISI = 0; p < 0.001). In Model 2, each unit decrease in ISI summary was associated with a 0.022 (p = 0.001) increase in utility. Predicted utilities were 0.868, 0.809, 0.722 and 0.579 for no clinical, sub-threshold, moderate and severe insomnia respectively (Model 3). The MDCs between predicted and observed utilities were good in all models (Model 1: 0.255, Model 2: 0.144, Model 3: 0.026). Especially when predicting utilities ≥0.40 (MSE: 0.016-0.056). MSEs were higher when predicting lower utilities (MSEs: 0.138-0.156). CONCLUSIONS: Linear relationships were found between the ISI and utilities. These relationships could be used to estimate the impact of insomnia-associated treatment effects on utilities.

PND5

CREATION OF A WEB-BASED MULTIPLE SCLEOROSIS PATIENT-REPORTED OUTCOMES RESEARCH PROGRAM
Dezynski D1,2,3,4,5,6,7,8,9, Hawcock Q1, Shillington AC1
1Elks Rehabilitation Hospital, Nampa, ID, USA; 2Biogen Idec, Wellesley, MA, USA; 3Kantar Health, Princeton, NJ, USA; 4Kantar Health, New York, NY, USA

OBJECTIVES: To create and implement a web-based research program that collects and tracks validated patient-reported outcomes (PROs) for multiple sclerosis (MS) and related health conditions while improving health care provider (HCP) engagement. METHODS: The My MS Health program can be accessed through a HIPAA secure website, www.mymshlandscape.org. A pilot study to evaluate the My MS Health program was IRB-approved. Assessment of inclusion/exclusion criteria, enrollment, and informed consent with an electronic signature occurs through this secure web