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Abstract

Here we consider a gravitational action having local Poincaré invariance which is given by the dimensional cont
of the Euler density in ten dimensions. It is shown that the local supersymmetric extension of this action requires t
bra to be the maximal extension of theN = 1 super-Poincaré algebra. The resulting action is shown to describe a
theory for the M-algebra, and is not the eleven-dimensional supergravity theory of Cremmer–Julia–Scherk. The th
mits a class of vacuum solutions of the formS10−d × Xd+1, whereXd+1 is a warped product ofR with a d-dimensional
spacetime. It is shown that a nontrivial propagator for the graviton exists only ford = 4 and positive cosmological constan
Perturbations of the metric around this solution reproduce linearized General Relativity around four-dimensional de Sitte
spacetime.
 2004 Elsevier B.V.Open access under CC BY license.
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1. Introduction

A consensus has emerged in the high energy c
munity that a consistent unified theory of all inte
actions and matter should be formulated in some
mension higher than four. Strong theoretical eviden
both in supergravity and in string theory, leads to c
jecture the existence of an underlying fundamen
theory in eleven dimensions[1–3]. This is nowadays
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called M-theory (see, e.g.,[4]). The standard proce
dure to link the higher-dimensional theory with fou
dimensional physics has been either to compactify
extra dimensions by the Kaluza–Klein reduction (s
e.g.,[5]), or through some more recent alternatives[6].

In these frameworks, however, the physical spa
time dimension is an input rather than a prediction
the theory. In fact, in standard theories whose gr
tational sector is described by the Einstein–Hilbert
tion, there is no obstruction to perform dimensional
ductions to spacetimes of dimensionsd �= 4. Then the
question arises, since eleven-dimensional Minkow
space is a maximally (super)symmetric state, and
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theory is well-behaved around it, why the theory do
not select this configuration as the vacuum, but
stead, it chooses a particular compactified space
less symmetry. An ideal situation, instead, would
that the eleven-dimensional theory dynamically p
dicted a low energy regime which could only be
four-dimensional effective theory. In such a scena
a background solution with an effective spaceti
dimensiond > 4 should be expected to be a false v
uum where the propagators for the dynamical fie
are ill-defined, lest a low energy effective theory cou
exist in dimensions higher than four.

In this Letter, a new eleven-dimensional theo
sharing some of these features is constructed.
deed, for this theory, eleven-dimensional Minkow
spacetime is a maximally supersymmetric solut
that would be a natural candidate for the vacuu
However, propagators around this background are
defined and hence it is a sort of false vacuum.
the other hand, the theory admits vacuum geo
tries of the formS10−d × Xd+1, where Xd+1 is a
domain wall whose worldsheet is ad-dimensional
constant curvature spacetimeMd . These solutions
exist only if Md has a non-negative cosmologic
constant, and the graviton can only propagate p
vided Md is a four-dimensional de Sitter spac
Moreover, the gravitational perturbations reprodu
linearized General Relativity in four dimension
Thus, the resulting four-dimensional effective th
ory is indistinguishable from gravity with positiv
cosmological constant in perturbation theory. O
motivation to choose eleven dimensions is to
plore new geometrical and dynamical structures
are expected to exist ind = 11, and could be re
garded as new “cusps” of M-theory (see, e.g.,[7]).
The theory presented here is not equivalent to
Cremmer–Julia–Scherk supergravity in eleven dim
sions[1].

The gravitational action we propose is selected
requiring local Poincaré invariance and is given
the dimensional continuation of the Euler density
ten dimensions. Its local supersymmetric extension
quires the algebra to be the maximal extension of
N = 1 super-Poincaré algebra in eleven dimensio
commonly known as the M-algebra. This algebra
spanned by the setGA = {Jab,Pa,Qα,Zab,Zabcde},
whereJab andPa are the generators of the Poinca
group andQα is a Majorana spinor supercharge w
anticommutator[8]

{Qα,Qβ} = (
CΓ a

)
αβ

Pa + (
CΓ ab

)
αβ

Zab

(1)+ (
CΓ abcde

)
αβ

Zabcde.

The charge conjugation matrixC is antisymmetric,
and the “central charges”Zab andZabcde are tensors
under Lorentz rotations but otherwise Abelian ge
erators.1 As shown below, the algebra fixes the fie
content to include, apart from the gravitonea

µ, the
spin connectionωab

µ and the gravitinoψµ, two one-
form fieldsbab

µ , babcde
µ , which are rank two and five

antisymmetric tensors under the Lorentz group,
spectively. The local supersymmetry transformati
close off-shell without requiring auxiliary fields. As
will be seen below, the supersymmetric Lagrang
can be explicitly written as a Chern–Simons for
It is known that for Chern–Simons theories boso
and fermionic degrees of freedom do not necessa
match, since there exists an alternative to the in
duction of auxiliary fields (see, e.g.,[9]). Indeed, the
matching may not occur when the dynamical fields
assumed to belong to a connection instead of a m
plet for the supergroup[10].

2. Gravitational sector

In dimensions higher than four, under the same
sumptions of General Relativity in four dimensio
(i.e., general covariance, second order field equat
for the metric), the so-called Lovelock actions a
obtained[11], which include the Einstein–Hilbert La
grangian as a particular case. In general, these
grangians are linear combinations of the dimensio
continuations of the Euler densities from all lower
mensions[12] and therefore contain higher powers
the curvature. Since the action can be expresse
terms of differential forms without using the Hodg
dual, it is easy to see why these theories do not y
higher derivative field equations. In the first order f
malism (analogous to Palatini’s) the field equatio

1 In standard eleven-dimensional supergravity, these generato
correspond to the “electric” and “magnetic” charges of the M2
M5 branes, respectively. Note that, contrary to the case in stan
supergravity, the generators of diffeomorphisms (Hµ) are absent
from the right-hand side of(1).
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can only involve first order derivatives of the dynam
cal fields (for more on this, see[13]). Furthermore, if
one then imposes the torsion to vanish the field eq
tions become at most second order. In the vanish
torsion sector, the theory has the same degrees of
dom as General Relativity[14].

Without imposing the torsion constraint, the fie
equations remain first order, even if one couples
theory to otherp-form fields without involving the
Hodge. In fact, in this way it is impossible to gene
ate higher derivative terms in this theory.

An action containing(1) as a local symmetry mus
be, in particular, invariant under local translations,

(2)δea = Dλa = dλa + ωa
bλ

b, δωab = 0.

The only gravitational action in eleven dimensio
constructed out of the vielbeinea and the spin connec
tion ωab, leading to second order field equations
the metric, invariant under diffeomorphisms and lo
Poincaré transformations is given by[13,15]

(3)IG[e,ω] =
∫

M11

εa1...a11R
a1a2 · · ·Ra9a10ea11.

HereRab = dωab +ωa
cω

cb is the curvature two-form
and wedge product between forms is understood.2 For
the reason given above, we takeIG as the gravitationa
sector of our theory rather than the Einstein–Hilb
action which, is not invariant under(2).3 The La-
grangian in(3) is the ten-dimensional Euler densi
continued to eleven dimensions and contains the
grees of freedom of eleven-dimensional gravity[14].

A local Poincaré transformation acting on the d
namical fields is a gauge transformationδλA = dλ +
[A,λ], with parameterλ = λaPa + 1

2λabJab, provided
ea andωab are the components of a single connect
for the Poincaré group,A = eaPa + 1

2ωabJab. This

2 We do not consider Lorentz–Chern–Simons forms which
also invariant under(2), because they lead to third order field equ
tions for the metric in the second order formalism, as it occur
three dimensions. See, e.g., Ref.[16].

3 Under the transformations(2), the Einstein–Hilbert action
IEH = ∫

εa1...a11Ra1a2ea3 · · · ea11 changes by a term proportiona
to

∫
εa1...a11Ra1a2T a3ea4 · · · ea10λa11, which vanishes only if the

torsionT a = Dea does. However, this last condition is incompa
ble with the transformations becauseωab would be a function ofea

and hence, its variation could not vanish. See Ref.[17].
-

observation will be the guiding principle for the co
struction of a locally supersymmetric extension ofIG.

3. Supersymmetric extension

A natural way to construct a locally supersymm
ric extension of(3) without breaking local Poincar
invariance is that the extra fields required by sup
symmetry enter on a similar footing with the origin
fields. In other words, all dynamical fields will b
assumed to belong to a connection for a supers
metric extension of the Poincaré group. This appro
strongly deviates from the standard assumption in
pergravity, where the fields are assumed to belong
multiplet. As we shall see now, the M-algebra emer
naturally from our approach. The simplest tentat
option would be to consider theN = 1 super-Poincaré
algebra without central extensions. However, this p
sibility must be ruled out. Indeed, in this case, t
connection would be extended by the addition o
gravitino asA → A + ψQ/

√
2, and the gauge gen

erator would change asλ → λ + εQ/
√

2, whereε is
a zero-form Majorana spinor. This would fix the s
persymmetric transformations to beδea = ε̄Γ aψ/2,
δψ = Dε andδωab = 0. Then the variation of(3) un-
der supersymmetry can be cancelled by a kinetic t
for the gravitino of the form

(4)Iψ = −1

6

∫

M11

Rabcψ̄Γ abc Dψ,

whereRabc := εabca1...a8R
a1a2 · · ·Ra7a8. However, the

variation ofIψ produces, in turn, an extra piece whi
cannot be cancelled by a local Lagrangian forea,
ωab, andψ , and hence the super-Poincaré algebr
not rich enough to ensure the off-shell supersymm
try of the action. Nevertheless, following the Noeth
procedure, it can be seen that supersymmetry ca
achieved introducing additional bosonic fields. Thes
fields can only be either a second-rank or a fifth-ra
tensor one-formsbab, andbabcde, that transform like
ε̄Γ abψ and ε̄Γ abcdeψ , respectively. Assuming tha
the dynamical fields belong to a single connection
a supersymmetric extension of the Poincaré group
only option that brings in these extra bosonic fields
to consider the M-algebra(1), which also prescribe
their supersymmetry transformations in the expec
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form. This means that the field content is given
the components of a single fundamental field, the
algebra connection,

A = 1

2
ωabJab + eaPa + 1√

2
ψαQα

(5)+ babZab + babcdeZabcde,

and hence, the required local supersymmetry trans
mations are obtained from a gauge transformatio
the M-connection(5) with parameterλ = 1/

√
2εαQα ,

δεe
a = 1

2
ε̄Γ aψ, δεψ = Dε, δεω

ab = 0,

(6)δεb
ab = 1

2
ε̄Γ abψ, δεb

abcde = 1

2
ε̄Γ abcdeψ.

Thus, the supersymmetric extension of(3), invariant
under(6) is found to be

Iα = IG + Iψ − α

6

∫

M11

RabcRdeb
abcde

+ 8(1− α)

×
∫

M11

[
R2Rab − 6

(
R3)

ab

]

(7)× Rcd

(
ψ̄Γ abcd Dψ − 12R[abbcd]),

where R2 := RabRba and (R3)ab := RacRcdRdb.
Here α is a dimensionless constant whose mean
will be discussed below.

This action is invariant under(2), (6), local Lorentz
rotations, and also under the local Abelian transform
tions

(8)δbab = Dθab, δbabcde = Dθabcde.

Invariance under general coordinate transformati
is guaranteed by the use of forms. It is simple
see that the local invariances of the action, incl
ing Poincaré transformations, supersymmetry(6) to-
gether with(8), are a gauge transformation for the M
connection(5) with parameterλ = λaPa + 1

2λabJab +
θabZab + θabcdeZabcde + 1/

√
2εαQα . As a conse-

quence, the invariance of the action under the su
symmetry algebra is ensured by construction with
invoking field equations or requiring auxiliary fields
3.1. Manifest M-covariance

The action(7) describes a gauge theory for t
M-algebra with fiber bundle structure, which can
seen explicitly by writing the Lagrangian as a Cher
Simons form[18] for the M-connection(5). Indeed,
the Lagrangian satisfiesdL = 〈F 6〉, where the curva
tureF = dA + A2 is given by

F = 1

2
RabJab + T̃ aPa + 1/

√
2DψαQα

+ F̃ [2]Z[2] + F̃ [5]Z[5],

with T̃ a = Dea − (1/4)ψ̄Γ aψ and F̃ [k] = Db[k] −
(1/4)ψ̄Γ [k]ψ for k = 2, 5. The bracket〈· · ·〉 stands
for an invariant multilinear form of the M-algebra ge
eratorsGA whose only non-vanishing components a
given by

〈Ja1a2, . . . , Ja9a10,Pa11〉 = 16

3
εa1...a11,〈

Ja1a2, . . . , Ja9a10,Zabcde

〉

= −α
4

9
εa1...a8abcη[a9a10][de],〈

Ja1a2, Ja3a4, Ja5a6, J
a7a8, J a9a10,Zab

〉

= (1− α)
16

3

[
δa7...a10ab
a1......a6

− δa9a10ab
a1...a4

δa7a8
a5a6

]
,

〈
Q,Ja1a2, J

a3a4, J a5a6, J a7a8,Q
〉

= 32

15

[
CΓa1a2

a3...a8

+ (1− α)
(
3δ

a3...a6
a1a2abCΓ a7a8ab

+ 2CΓ a3...a6δa7a8
a1a2

)]
,

where (anti-)symmetrization under permutations
each pair of generators is understood when all the
dices are lowered. The existence of this bracket all
writing the field equations in a manifestly covaria
form as

(9)
〈
F 5GA

〉 = 0.

In addition, if the eleven-dimensional spacetime is
boundary of a twelve-dimensional manifold,∂Ω12 =
M11, the action(7)can also be written asI = ∫

Ω12
〈F 6〉,

which describes a topological theory in twelve dime
sions. In spite of its topological origin, the action do
possess propagating degrees of freedom in eleve
mensions and hence it should not be thought of a
topological field theory.
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4. Gravitons and four-dimensional spacetime

We now turn to the problem of identifying the tru
vacuum of the theory. Obviously, a configuration w
a locally flat connection,F = 0, solves the field equa
tions and would be a natural candidate for vacu
in a standard field theory. However, no local degr
of freedom can propagate on such background
cause all perturbations around it are zero modes. N
that eleven-dimensional Minkowski spacetime is max
imally supersymmetric by virtue of(6), however as it
obeysF = 0, the propagators on it are ill-defined, a
hence it is a sort of false vacuum.

In a matter-free configuration, Eq.(9) is a set of
quintic polynomials for the Riemann two-formRab.
The dynamical field equations take the form

(10)ε0ij1...j9
〈
Fj1j2 · · ·Fj7j8(∂tAj9 − ∇j9A0)GA

〉 = 0.

So, in order to have propagation forAj , the spatial
componentsFij cannot be small. Hence, a deviati
aroundF = 0 that propagates cannot be infinitesim
and is therefore non-perturbativeand non-local. A n
essary condition to have well-defined perturbation
that the background solution be a simple zero o
least one of the polynomials. In particular, this requi
the curvature to be non-vanishing on a submanifold
a large enough dimension.

Let us consider a torsionless spacetime with a pr
uct geometry of the formXd+1 × S10−d , whereXd+1
is a domain wall whose worldsheet is ad-dimensional
constant curvature spacetimeMd . The line element is
given by

ds2 = exp
(−2a|z|)(dz2 + g̃(d)

µν (x) dxµ dxν
)

(11)+ γ (10−d)
mn (y) dym dyn,

where g̃
(d)
µν stands for the worldsheet metric wi

µ,ν = 0, . . . , d − 1; γ
(10−d)
mn is the metric ofS10−d

of radiusr0 anda is a constant.
This Ansatz solves the vacuum field equations p

vided the projection of the Riemann tensor along
worldsheet,

Rij = R̃ij − a2ẽi ∧ ẽj ,

vanishes (herẽei andR̃ij stand for the vielbein and th
Riemann curvature of the worldsheet, respective
This means thatMd is either locally de Sitter space
time of radiusa−1, or locally Minkowski fora = 0.
The requirement that the curvature of(11)be a sim-
ple zero, implies, after a straightforward computati
thatd cannot be greater than four. Then, the condit
of having well-defined propagators singles out the
mension of the worldsheet to bed = 4, anda2 > 0.
Indeed, ford = 4, the only relevant equation for th
perturbations is the one that arises from the varia
with respect tõei ,

(12)aδ(z)εijklδ
(
R̃jk − a2ẽj ẽk

)
ẽl = 0.

Since fora = 0 this equation becomes empty, Minko
ski spacetime must be ruled out. Thus, the existe
of the propagator requires the four-dimensional c
mological constant to be strictly positive and given
Λ4 = 3a2.

Note that Eq.(12) has support only on thez = 0
plane. Perturbations along the worldsheet,δg̃µν =
hµν(x) reproduce the linearized Einstein equations
four-dimensional de Sitter spacetime. The modes
depend on the coordinates transverse to the wo
sheet fall into two classes. Those of the formδg̃µν =
hµν(x, y) are massive Kaluza–Klein modes with a d
crete spectrum, whileδg̃µν = hµν(x, z) correspond
to Randall–Sundrum-like massive modes whose s
trum is continuous and has a mass gap. The pe
bations of the remaining metric components are z
modes, which is related to the fact that the eq
tions are not deterministic for the compact spa
A detailed analysis of this, as well as of the p
turbations of matter fields will be presented el
where[19].

5. Discussion

We have presented a framework in which t
spacetime dimension is dynamically selected to
four. The mechanism is based on a new elev
dimensional action of the Chern–Simons type, wh
is a gauge theory for the M-algebra. The possibility
dynamical dimensional reduction arises because th
theory has radically different spectra around ba
grounds of different effective spacetime dimensio
Thus, in a family of product spaces of the for
Xd+1 × S10−d , the only option that yields a well
defined low energy propagator for the graviton
d = 4 and Λ4 > 0. It should be stressed that f
all gravity theories of the type discussed here, p
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sessing local Poincaré invariance in dimensionsD =
2n + 1 � 5, four-dimensional de Sitter spacetim
is also uniquely selected by the same mechan
as the background for the low energy effective t
ory.

The action discussed in this Letter has a free p
meterα, which reflects the fact that the theory conta
two natural limits which correspond to different sub
gebras of(1). Forα = 0, the actionI0 in Eq. (7) does
not depend onb[5] and corresponds to a gauge theo
for the supermembrane algebra, while forα = 1, the
bosonic fieldb[2] decouples, andI1 is a gauge theory
for the super five-brane algebra as discussed in[20].
It is interesting to note that the linear combination
both limits, Iα = I0 + α(I1 − I0), is not only invari-
ant under the intersection of both algebras, but un
the entire M-algebra. As the termI1 − I0 does not
couple to the vielbein and is invariant under supersy
metry by itself,α is an independent coupling consta
A similar situation occurs in nine dimensions whe
in one limit, the theory corresponds to the super fi
brane algebra, while for the other it is a gauge the
for the super-Poincaré algebra with a central ext
sion[21].

In the presence of negative cosmological const
the eleven-dimensional AdS supergravity presente
Ref. [10] can be written as a Chern–Simons the
for osp(32|1), which is the supersymmetric exte
sion of AdS11. It is natural to ask whether there is
link between that theory in the vanishing cosmolo
cal constant limit, and the one discussed here. S
the M-algebra has 55 bosonic generators more
osp(32|1), these theories cannot be related throug
Inönü–Wigner contraction for a generic value ofα.
However, it has been recently pointed out in[22],
generalizing the procedure of[23], that it is possi-
ble to obtain the M-algebra from an expansion
osp(32|1). In this light, applying this procedure t
the eleven-dimensional AdS supergravity theory
should be expected that the action presented here
be recovered up to some additional terms decou
from the vielbein, that are supersymmetric by the
selves.
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