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SOME STABLE HOMOTOPY OF COMPLEX 
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81. INTRODUCTION 

IN ORDER to analyze the suspension homomorphism it is natural to study the stable homotopy 
of K(Z, n)- spaces; recently Mahowald and Williams [IO] have made detailed calculations in 
the metastable range. However, this range is negligible in the important space K(Z, 2), alias 
the complex projective space CP. 

In this paper we use some recent techniques to revitalize an old tool, the spectral sequence 
obtained from the stable homotopy exact couple. Under the usual multiplication on CP, the 
stable homotopy n*TP becomes a graded ring and the spectral sequence is a spectral sequence 
of rings. The free part of this ring is easy to obtain; the torsion seems quite complicated. 
Nonetheless, our general results give information about differentials d’for arbitrarily large r. 
Considerable calculation of n*TP is feasible. 

Using both these methods and ad hoc techniques, including comparison with the Adams 
spectral sequence, we compute, up to some group extensions, the 2-component of the groups 
$CP for k < 19. These calculations extend results of Liulevicius, who, using the Adams 
sequence as the basic tool, published the values of these groups for k < 8 [7] and obtained 
them for 9 < k < 12 (unpublished). 

By a result of Toda, our methods easily apply to calculation of metastable homotopy 
groups of unitary groups. In particular we here evaluate the 2-component of the homotopy 
group rcZn+, U(n) for n = 5 (8) and IZ = 1 (16) n # 1. While the groups nzn + 7 U(n> have been 
computed elsewhere [I 11, our results do not coincide in these two congruence classes. 

In the case of CP = K(Z, 2) = BU(l), the spectral sequence may be considered as the 
spectral sequence of a classifying space [ 131 for the generalized homology theory called stable 
homotopy, which suggests one possible method of attack on n,“K(Z, 3). 

The paper is organized as follows. In 52 we describe the free part of z*X’P and list the 
results of our calculations of the 2-torsion. Section 3 describes the spectral sequence. General 
results on differentials are to be found in $4. These results are based on the J, K, and S-theory 
of stunted complex projective spaces. 

We begin the calculation for the 2-torsion in 45 with explicit general results on d’ for 
k 4 4, while in $6 we display E” and list the remaining differentials in the range of the calcu- 
lation. The Adams spectral sequence for the 2-component appears in §7, where, both for 

t This work was partially supported by NSF grant #GP-5591. 
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completeness and for reference, we display, without proof, its E, through degree 19. The 
displays of $6 and $7 complete the calculation summarized in (2.2). 

Sections 8 through 11 contain deferred proofs. In particular, the proof of (2.4) is com- 
pleted in $9. 

We wish to thank Professors D. S. Kahn and M. E. Mahowald for their suggestions and 
Professor A. Liulevicius for showing to and discussing with us his unpublished computations. 

$2. STATEMENT OF RESULTS ON HOMOTOPY GROUPS 

The reduced integral homology H* CP is well-known to be the polynomial ring with 
divided powers on one generator x of degree 2. Let h* : z*‘CP + H* CP be the stable Hurewicz 
homomorphism; h, is a homomorphism of Pontrjagin rings. By the Hurewicz theorem, hz 
is an isomorphism. Let CI E n*$CP correspond to x. 

We now describe the “ free part ” of n,YP; let T be the ideal of torsion elements. 

THEOREM 2.1. The ring (rc*YP)/T is the polynomial ring generated by the class of cc; 
h, maps (z*‘CP)IT isomorphically onto the subring generated by x. 

(2.1) is in essence due to Toda [16], although not in this form. We include a proof in $3. 

We next summarize our results on the 2-primary torsion. 

THEOREM 2.2. The 2-primary torsion of the groups qSCP for 9 < k < 19 is given, up to 
group extensions, by Table (2.3). 

TABLE 2.3 

In (2.3) the symbol A ? B denotes a group satisfying an exact sequence 0 + A + A ? B+ 
B-,0. 

The explicit data in the calculations will enable the reader to obtain homotopy-theoretic 
descriptions of the elements of these groups and to compute many of the Pontrjagin products. 
We do not do this systematically here, but remark that (6.1) and (7.1) contain additional 
information. 

We turn now to the new results on rcZn + 7 U(n). The group rcZn U(n) is well-known to be 
cyclic of order n! ; let u, be a generator. Let c generate the stable group n,,, 7 S’“. 

THEOREM 2.4. The 2-component of n2n+7 U(n)forn=1(16),n#l,isZ,;forn~5(8) 
this group is 2,. In each case a generator is u, o. 

The proof of (2.4) is completed in $9. 

The results of (2.2) and (2.4) are not intended to represent the limit of applicability of 
the methods. The calculation in the 2-component can certainly be pressed further; odd- 
primary components can easily be obtained in comparable ranges. 
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83. DESCRIPTION OF THE SPECTRAL SEQUENCE 

The space CP has a natural filtration, namely by the subcomplexes CPp, and a natural 
basepoint CP’. The usual multiplication on CP carries CP * x CPF into CP p+4 and thus is a 
map of filtered spaces [13], where CP x CP is given the product filtration. 

Let n*s denote reduced stable homotopy; rr*’ is a multiplicative generalized homology 
theory [17]. Let {E’; d’}, r > 1, be the spectral functors, associated with the theory rr*’ for a 
filtered space. For a filtered space X, the identification of X A So with X gives E’X the struc- 
ture of right differential E’S’-module. E’S’ is concentrated in first gradation 0, and the 
graded algebra E& * So is isomorphic to G, , the graded algebra of stable homotopy groups 
of spheres [15]. 

PROPOSITION 3.1. {E’CP; d’CP), r > 1, is a convergent spectral sequence of commutative 
bigraded differential right E’S’-algebras converging to the bigraded E”So-algebra associated 
with the graded right G-algebra z*‘CP. 

(3.1) is known; see for example [13]. 

Let H denote reduced integral homology and HE the corresponding spectral functors. 
Then ,E’CP is the polynomial ring with divided powers on one generator v E HE:,lCP. The 
spectral sequence is trivial. v corresponds to x E N, CP. 

By inspection of E’CP, it is apparent that the Hurewicz homomorphism h induces an 
isomorphism E;,,(h): Ej,p CP --, aE,‘,, CP for each p > 1. Let rp E Ei,, CP correspond to 
up. We see also that Ei,p+, CP is isomorphic to G4 under right action of E&So on I,, . For 
/3 E G, = E&4 So, let pp denote the corresponding element of Ej’,,, CP. 

PROPOSITION 3.2. The correspondence carrying v, Q/l into p, is an isomorphism 
HE’CP @ E’S’ + E’CP of right E’S’-algebras. 

Proof. The diagram (3.3) shows that the map E’CPO E’CP+ E’CP is right 
E’S’ @ E’S’-linear. 

DIAGRAM 3.3 

cPAcPAs”Aso-tcPAsoAso-+cP 

I 1 
cPAsOAcPAsO-+cPAcP-cP 

It is thus sufficient to check the asserted multiplication formula on a set of generators of 

E’CP as an E’S’-module, namely the zp. But E’(h) is a ring homomorphism, whence the 
result. 

In the sequel we usually write E’ for E’CP. E’ thus has the following description. For 
each p > 1, column p contains a copy of G beginning with rp E Ej,p. We omit column 0. 
The multiplication is given by BP yq = (i’q)(Br)p+, , where /3r is computed in G. 

We now turn to the proof of (2.1). In this proof and throughout the paper, in stable 
arguments we omit to write the suspensions, even though the mappings may not exist until 
all the spaces are each suspended the same suitable number of times. Also we sometimes 
write number for elements of groups with chosen generators. 
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Proof of (2.1). Recall that we have chosen CL E nzsCP as the pre-image of x under the 
Hurewicz map. In the spectral sequence a corresponds to zl. Thus CI” corresponds to n! I, in 
the spectral sequence, maps under h to X” = n! x, , and is therefore of infinite order. It remains 
to show that a” is not divisible, and thus suffices to show that if txn is in the image of h, then 
n! divides t. Since CP” is the (2n + I)-skeleton of CP, it suffices to verify the assertion in CP”. 

To that end, let y E H’CP have value 1 on x and let p E I?c(CP”) have ch p = ey - 1. 

Suppose tx, E Im h. Then we have the stable diagram8 S’” + CP”, where H’“(f) is multi- 
plication by t. Thus ch,,f *,n = f *ch,p = t/n ! ; hence t/n! is an integer. This completes the 
proof of (2.1). 

We observe that we have proved the following. 

COROLLARY 3.4. tl, is apermanent cycle in the spectral sequence ifand only ifn! divides t. 

&4. DIFFERENTIAJS BY J, K, AND S-THEORY 

In this section we state some general formulas for the differentials on certain elements. 
The main results are (4.7), (4.9), and (4.11). 

We first recall the definition of the differential dk in the stable homotopy exact couple. 

Let f”: sn-t -+ CP”_’ be the canonical fibration, so that CP” = CP”-’ LJ e”‘, For 

/I E G, , if dk& is defined, then dk/?, = &__k , where y is defined by the stable Diagra’m (4.1). 

DIAGRAM 4.1 

szn- 1 f” 
-A CP” - 

1 

1 
B T 

szn-1+q n k -CP - 

I id 
I 

szn-1+q 
Y‘s 

Zn-2k 

By naturality, (4.1) may be replaced by (4.2). 

DIAGRAM 4.2 

szn- 1 gn ,,-pn-l/cpn-k-l 

T B T 
szn-1+q Y‘s Zn-2k 

whereg,isinducedbyf, .ThenCP”/CP”-k-l = CP”-l/CP”-k-l ~e~“.ThusdataontheS-type 

of the complexes CP”/CP”-k-l will be helpful in determining ‘il. 
Let Hk be the complex line bundle over CPk- ’ determined by z 0 1 = kHk . Then 

CP n+k-i/CPn-l is the Thorn space T(nH,). Let Mk be the Atiyah-Todd number, given 
explicitly in [5, p. 3431. Let J and the realification r be as in [3]. As usual, J may also denote 
the stable Hopf-Whitehead homomorphism. The following assembles for reference results 
of James [6], Atiyah and Todd [5], and Adams and Walker [3]. 
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THEOREM 4.3. (a) The S-type of T(nH,) = CP”‘k-l/CP”-l depends only on JrnHk. 
(b) JrnHk = 0 ifand only ifn z 0 (Mk). 
(c) Ifp + q + k z 0 (Mk), the complexes T(pH,) and T(qH,) are S-dual. 
(d) T(nH,) is S-coreducible ifand only ifn = 0 (Mk). 
(e) T(nH,) is S-reducible if and only if n + k E 0 (Mk). 

By (4.2) we have that y in the formula dkj?” = Y,,-k depends on both the S-type of 

CP”-ilCp”-k-l and the stable attaching map gn; thus y is determined by the S-type of 
CP”/CP”-k-’ = T((n - k)Hk+z). This last, by (4.3a), depends only on Jr(n - k)Hk+l. 
Applying (4.3b), it follows that y is a function of the congruence class of n mod Mk+l, rather 
than on n, except for k >n, when the differential goes off the page and is zero. Thus the 
columns of Ek are periodic with period Mk . Stated formally, we have the following. 

PROPOSITION 4.4. Suppose p 3 k - 1. Suppose s = 0 (Mk). Then Epk+s,p+s and Ep,4 are 
isomorphic, with /I, +s corresponding to j3, for p E G. Ifs 3 0 (Mk + I), the isomorphism com- 
mutes with dk. 

we next investigate the first non-trivial differential on each column. 

PROPOSITION 4.5. dkz, is dejined if and only ifs + 1 = 0 (Mk), in which case dkz, = 0 if 
and only ifs + 1 = 0 (Mk+& 

Proof. From (4.2) we see that the combined assertion d’z, is defined and zero is 
equivalent to the statement gs: S2” --f CPs-l/CPs-k-l is S-null-homotopic, which in turn 
is equivalent to the S-reducibility of CP”/CP”-k-’ = T((s - k)H,+,). This last condition 
is by (4.3e) equivalent to (s - k) + (k -I- 1) = 0 (Mk+l). The result follows. 

We wish to specifically evaluate dkz, for s + 1 E 0 (Mkf l). In the statement of the result, 
e, is the invariant defined in [I]; we also require the following notation. 

DEFINITION 4.6. Let ek be the coefficient of zk in the power series expansion of 

(log(lz+ z))Mk. 

THEOREM 4.7. Suppose s + 1 = tMk (Mk+& Then dkz, = Ps_k, where 

(a) fi E Im J 
(b) ec /? = tek mod 1 
(C) j&-k = 0 E E:_f,.+k+l if and only ifte k E 0 mod 1 ifand only ifs + 1 = 0 (Mk+z). 

(4.7) in effect locates and computes the first non-trivial differential on each column; it 
is the complex analogue of a result of Toda [14, Th. I]. The proof of (4.7) is in $8. 

We next show how the S-dual of the information of (4.7) may sometimes be used to 
evaluate higher differentials. Suppose for y E G, and a E G, it happens that d’y,, k +* is defined, 
with value a,+, , and that 6~ = 0. Then surely d’+‘(ya) ,, +k + t is defined. We consider a stronger 
condition, namely that the stable diagram (4.8) exists. 

Whenever (4.8) exists, df+k(Ya),+k+I is defined (and in fact is represented by the bottom row 
of (4.8)). Our result, stated in terms of secondary composition [15], gives a formula for 
this differential in certain congruence classes. 



184 ROBERT E.MOSHEB 

DIAGRAM 4.8 

s2”+2’+2’- 1 gn+r+t ,cpn+k+‘-‘/cpn-I 

T Y 

s2”+2k+Z’+q-1 
T 

____, cp+k/fp- 1 

T a T 
sZn+Zk+Zf+q-l+r ,s Zn 

PROPOSITION 4.9. Under the above notation, suppose that n G 0 (Mk), s s -n - 1 

(Mk+z), dkz, = /z?~_.~, and that (4.8) exists. Then d’+k(ya),+k+t may be written as +., where 

- $ E (P, 6, a>. 

The proof of (4.9) appears in $8. 

Note that under the hypotheses of (4.9) dkz, is given by (4.7). Note also that the existence 
of (4.8) is a stronger condition than that d’+k(ya),+k+, be defined ; as k increases, the veri- 
fication of the existence of (4.8) becomes more difficult. This verification invariably involves 
an analysis of the cell structure of CP”+k/CP”-l. 

Finally we state a partial result on higher differentials for elements on the diagonal, 
namely we compute e, of the differential. 

Dejinition 4.10. Let an+k,k be the coefficient of Y”+~ the power series expansion of 
(ey - l>“. 

PROPOSITION 4.11. Suppose dktz,+k is defined and suppose yn E dktz,+, . Then e, y = 
tan+k,k mod 1. 

Proof. Suppose yn E dktz,+k. Forming (4.2) and extending each row to the right in a 
cofibre sequence, we obtain the S-diagram (4.12). 

DIAGRAM 4.12 

cpn+k-l/cpn-l_ cP”+k/cP”-‘-+ s Zn+Zk 

T T s T t 
S2” , ~2” ” e2n+2k _ SZnfZk 

In (4.12) H’“(f) is an isomorphism and H2n+2k(f) is multiplication by t. Consider CL” E 
kc(CP”+k/CP”-l). ch /J” = (e’ - l>” and ch, /.P = y”. Since H’“(f) is an isomorphism, ecy 
is represented by ch,+k f * p” = t Ch,+k$’ = ta,,+k, k. This COmpleteS the PrOOf. 

$5. GENERAL CALCULATIONS IN THE 2-COMPONENT 

Let p be a prime. By the p-component of a group we mean its quotient by the subgroup 
of torsion elements of order prime top; by the p-component of an integer, the highest power 
of p dividing it. We assert without proof the validity of the following simplifications in the 
calculation of the p-compnent of x*‘CP. 

First, we replace the El-term by its p-component. Second, in the infinite cyclic terms 
EL, n we replace q in qz, with its p-component. Third, in a formula dk&+ k = qy,, , we replace q 
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by its p-component. Fourth, we replace the period Mk for the columns of Ek by the p-com- 

ponent of Mk. 

For example, computing in the 2-component, the statement d44z, = 40, is adequate, 
but, fully interpreted, asserts: there exist odd numbers s and t such that d44sl, is defined and 
has value 4ta,. Further, the statement provides the value in the 2-component of d44r, for 
n = 9 mod 26, although M, = 26325. 

We now turn to the 2-component exclusively and describe d’, d2, and d3 and the formula 
for d4 on the diagonal. The nomenclature of elements of G is as in [15]. 

Let /3 E G. 
PROPOSITION 5.1. d’j3,+, = nqfl,. 
PROPOSITION 5.2. d2&+2 = A@,, , where A is given by Table (5.3). 

TABLE 5.3 

PROPOSITION 5.4. d3&,+3 = 0 if n = 0 (2). rfn = 1 (2), then d3j?,+ 3 = yn, where y is an 
element of the secondary composition given by Table (5.5). 

TABLE 5.5 

nmod8 1 3 5 7 

YE <2v, 7, B> <v, 7, B> (7, v, B> (VP 7, s> 

PROPOSITION 5.6. The value of d4 on the diagonal is given by Table (5.7), a row of which 
asserts that d4tr,,4 = la, and that tl,+4 generates Et+,, n+4. 

TABLE 5.7 

II I Congruence class of n Congruence class of n It IA 
O (8) 

192 (16) 

9. 10 (16) 

3 (16) -- 
11 (32) I I 14 I 6, 7 (8) 

The proofs of (5.1), (5.2), (5.4), and (5.6) are in $9. 
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$6. SPECIFIC CALCULATIONS IN THE 2-COMPONENT 

Here we work entirely in the 2-component and compute E” in total degree =G 19 by 

computing all differentials on elements of total degree ,<20. 

THEOREM 6.1. Table (6.2) lists E” for the 2-component of xn*‘CP in total degree < 19. 

In (6.2) an entry at (p, q) represents a group in EE 4, together with a generator. (6.2) 

follows by direct calculation from the following evaluation of the differentials. 

TABLE 6.2 

18 

17 

16 

15 

14 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

Z&K) 

m7*) 

z&4 

-G(5) 

zdu) 

Z*(v’) 

Z&) 

Z(L) 

1 

z3(2p) 
+ 

zz(r/K) 

1 I 

2 3 4 

1 -1 

L -1 

Z4(4 I I I 
Z,(vZ) I &(4v) 

Z,(v) Z(128~) 

&(2v) Z(128~) 

Z(16~) 

Z(16~) 

Z(8d 

5 6 7 8 9 

In the remainder of this section, we consider differentials only on elements of total 

degree <20. Recall that d’ and d2 are given by (5.1) and (5.2) respectively. 
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LEMMA 6.3. The non-zero values of d3 are d32v, = E~ and d32v, = Ed. 

Recall also that d4 on the diagonal is given by (5.6). 

LEMMA 6.4. d4 vanishes on the of-diagonal elements. 

LEMMA 6.5. The non-zero values of d5 are d58z6 = ,u,, d516zs = ,u3, andd5161,, = pS. 

LEMMA 6.6. The non-zero values of d6 are d6817 = 2[,, d6321e = 2c2, d61619 = c3, and 

d6321,, = 4C4. 

8 1 

7 
! 

6 
! 

5 “‘i’ i 
4 zhco ,ho4 

3 3CO 

/’ 
2 &ohz 

1 ah 

0 

13 14 

d”h 

TABLE 7.2 

h7 8 0 

15 16 17 18 19 

i 

I 
do’ 

I 
te0 

f 
5 . 

! 
T 
i I 

4 * do4 

3 

2 

1 . 

I 

+ho’ . 
I 

sho3 * 

I 
hZ * 

I 
1 * *hoh, 

I / I 
zho h I?. do zhz h 1 3 

’ 0 11 

2 3 4 5 6 7 8 9 10 11 12 
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LEMMA 6.7. d’ = 0. 
LEMMA 6.8. The non-zero values of dg are ds6419 = 16p, and d8641,, = 16~~. 
LEMMA 6.9. The non-zero value of d9 is d9128r1,, = pi. 
This completes the evaluation of the differentials on elements of total degree <20. 
The proofs of (6.3) through (6.9) are in $10. 

g7. THE ADAMS SPECTRAL SEQUENCE FOR n,“CP 

Using the methods of [8], it is not hard to compute the &-term of the Adams spectral 
sequence [2] for the 2-component of n*‘CP in stems ~20. The differentials may then be 
evaluated by various means, including comparison with the homotopy exact couple. We do 
not reproduce the computation here, but state the result. 

THEOREM 7.1. E, of the Adams spectral sequence for the 2-component of x*‘CP in degree 
< 19 is given by Table (7.2). 

In (7.2) we have used the nomenclature and notations of [8]. In particular, the subprefix 
denotes cell filtration. The vertical axis is S, Adams filtration degree, and the horizontal axis 
is t - s, homotopy dimension. For example, the entry zP’h, at (5, 15) asserts: there is an 
element of E 5*20 having as representative in E2’20 a class in the image of Ext? 20(ii*(CP 2), 2,). 
Under the projection this class maps to P’h2 E Ext:.“(fi*(S4), 2,) = Ext216(Z2, 2,). 

The vertical and diagonal lines indicate some non-zero multiplications by ho and hI 
respectively. They do not exclude the possibility of other such, although we know of none 

While the calculations of section 6 are used in part of the deduction of (7.1), it is our 
intention to use (7.1) in the proof of (6.6) and (6.7). The portion of (7.1) so used is indeed 
obtained independently of (6.6) and (6.7). 

We remark here that interaction between the homotopy exact couple and the Adams 
spectral sequence seems a useful tool in computation; for another example, the group exten- 
sion for rc; 9 CP is determined by comparing the composition series given by the two spectral 
sequences. This type of analysis has been extensively used by Mahowald and Tangora [9]. 

We remark also that with (6.1) and (7.1), the proof of (2.2) is by inspection. 

58. PROOF OF (4.7) AND (4.9) 

Proof of (4.7). By (4.3e) there is nothing to prove if Mk = i14k+l, which is the case for 
k odd, k # 1, according to [5, p. 3441. (4.7) is well-known for k = 1 (see also (5.1)). Thus we 
assume k is even. 

To study dkl,, the Thorn complex of interest is T((s - k)H,+,) = CP”/CP”-k-‘. In 
this complex, since dkz, is defined, the attaching map for the top cell is simply i, p, where 
i: SZsmZk --f CPs-l/CPs-k-l is the inclusion. 

The S-dual to T((s - k)Hkfl) is T(nH,+,) = CP”+k/CP”-l, where n G - tMk (hfk+&. 

In this complex the only cell attached to the bottom cell is the top cell. We thus have an 
obvious map f: CP”+klCP”-l + S2” u e2n’2k = X inducing isomorphisms on Hz” and 

B 
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H2n+2k. By S-duality the attaching map in X is indeed p. We wish (a) to prove that X is a 

Thorn complex, (b) to evaluate ec p, and (c) to show that ec /I determines dkl, . 

For (a) and (c), consider Diagram (8.1) with notations as in [3]. 

DIAGRAM 8.1 

R,(CPk) 

i 
r 

&(CPk)- R,(SZk) 
1 .I 1 .I 

J(CPk-‘) t-J(CPk) d- J(SZk) 
1 1 1 B’c 

J’,(CPk) - J’,(SZk) +----- 0 

In (8.1) the homomorphisms J and 8’c are epimorphisms by definition. The upper row is 

exact by (6.3) of [3]; the lower, by (4.9) of [3]. The isomorphism is by (4.3) and (6.1) of [3], 

recalling k even. 

Consider nH,+ 1 - n, the projection of nHk + 1 into &(CP k). Applying Jr and restricting 

to J(CPk-‘), we get zero, since n E 0 (Mk). Thus there is an element y E g,(Szk) such that 

Jr(nH,+ 1 - n) = Jpy. Let c be a real vector bundle over SZk such that 5 - dim 5 = y E xJSzk). 

Then S2” u eZntZk has the S-type of T(t). Thus p = JT, and (4.7a) is proved. 
B 

While y need not be unique in r?R(Szk), the lower part of (8.1) shows that 19’cJy is a 

unique element of J’c(S”). But by [l] elements of J’,(SZk) are measured by the invariant e, . 

Since dkz, = 0 if and only if Jr(nH,+ i - n) = 0, we have by (8.1) that dkz, is determined as an 

element of E,“_ k, s +k _ 1 by ecP. This proves (4.7~). 

We turn now to (4.7b). To evaluate e,P, consider the mappingf: CPnfklCPnml 3 X, 
and as usual let y generate H’CP. Let w E I?,(X) be such that ch w = S2” + le2”+2k, where 

1 I e,-P mod 1. Then ch f *w = y” + I.Y”+~. 

Following ideas and notations of [3], we may write f *w = c wipnnfi, where 
o6iSk 

ch p = ey - 1 and wi E Z. Writing z for ch ,u, we have 

(8.2) y” + Ay”fk = z” c wi zi. 

Define Ui by 

(8.3) C aizi= (l”S(lz+ z))’ 

Nowa,=1.Forn=Mk,a,~Z,O~iikk,andak=e,.Forn=Mk+,,uk~Z.Itfollows 

that for n = - tkfk (hfkti), ak z - tek mod 1. 

On the other hand, y E z mod higher powers, and y/z = C a, zi. Computing, using (8.2) 

and (8.3), and recalling w, E Z, we find that 0,‘ = - 1 mod 1. This completes the proof of (4.7). 

Proof of (4.9). We retain the notations of the proof of (4.7) and note in particular that 

n and s satisfy the same congruences as in (4.7) and its proof. 

Under the hypotheses of (4.9), we may enlarge Diagram (4.8) to the stable Diagram (8.4). 
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DIAGRAM 8.4 
SZn+2k+2!-1 ,cpn+k+‘-l/cpn-I 

T 
Y T 

S2wtZk+Zt+q-1 _---_, cp”+k/cp”-’ + x__,s2n+2k 

T a. T T 
S2n+2k tZfiq+r-1 _-.-+S’” ____-> S2” 

The composite across the middle row of (8.4) represents 6; the bottom row is $. Recall 

that X has the cell structure S2” u e2”+2k. 

(4.9) is now a direct consequ:nce of [15, Prop. 1.81. 

fj9. PROOFS FOR (2.4) AND 85 

Proof of (5.1). CP’+‘/ CP”-’ has the cell structure S2” u e2”+‘. The attaching map is 

non-trivial, and hence q, if and only if Sq2y” = y”+‘, which is equivalent to n = 1 (2). 

Proof of (5.2). To see that d2j3,+, = Avj?, for some value of A, we observe that the stable 

cell structure of CP”+2/CP”-1 = S2” u e2”+2 u eZnf4 is as follows. For n = O(2), 

CP”‘21CP”-1 has the S-type of (S2n v S2”+2) u e2n’4, where the top cell is attached by 

~vOrEns2n+3(S2n)O~IS2,+3(S 2n+2) = G, @G,. For n = l(2), the top cell is attached to 
cp”+I~cp”-l = s2nye2n+2, but the projection of the attaching map to S2n+2 = CPnf’/CP” 

11 
iszero.Thereforethisattachingmapstablyfactorsthroughtheinclusioni: S”‘+ CP”+l/CP”-l 

and has form i&v. It remains in each case to determine A. 

Following [5], for each primep we define the function vp by n = II~‘p(“). Since v2 M3 = 3, 

A depends only on the congruence class of n mod 8. That 1~ 1 mod 2 forn = 2,3 (4) is obvious, 

since for these cases Sq”y” = Y”‘~. The assertions for the remaining congruences are the 

only ones consistent with the structure of E2 as differential ring. For example, for n = 3 

(8), we have d21,+2 = v,. Multiplying by zl, d22r,+3 = 4v,,+i, yielding the asserted result 

for n z 4 (8). 

Proof of (5.4). Using (5.1) and (5.2), one computes the cell-structure of CP”+3/CP”-1. 

(5.4) now follows by inspection, using [I 5, Prop. 1.81 to interpret the differentials in terms of 

secondary composition. 

Proof of (5.6). We need consider congruence mod 64, since v2 M, = 6. That ?I,+~ 

generates E%, 4, ,, + 4 follows by calculation, using (5.1) and (5.2). Now an element y EG, 

is known to be uniquely determined by ec y. On the other hand, by (4.11) the determination of 

ecd4tr,+4 is reduced to arithmetic. This arithmetic leads to (5.6). 

Proof of (2.4). By naturality, our general formulas for differentials are valid in the 

spectral sequence for TC*~(CP”+~/CP”-~) obtained from the stable homotopy exact couple. 

Using only the results of $5, it is a routine task to compute all differentials on elements of 

total degree 62n + 8 in the spectral sequence for CP “f4/CP”-1. For n = 1 (16), this com- 

putation is just a portion of that leading to (6.1). Thus for such n (see column 1 of (6.2)) 

n;,,+,(CPni4/CP”-‘) = Z, generated by z,~, where I,, is the basic class in n;,, . 
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A similar calculation yields for n s 5 (8) that I~&+,(CP”+~/CP”-~) = Z, generated by 
z, CJ. The crucial result is the entry of (5.7) for n s 5 (8). 

(2.4) now follows by a result of Toda [16, Th. 4.31. 

$10. PROOFS FOR $6 

Proof of (6.3). By (5.4) and (5.5), (6.3) follows in principle by inspection, provided one 
can compute the requisite secondary compositions. Most of these appear in or follow readily 
from results of [15]. However, a key step in the evaluation of d3[, is the following lemma, 
for the proof of which we are indebted to M. E. Mahowald. 

LEMMA 10.1. (C, v, r) = 0 mod qp. 

14 Proof. Let z generate rcl 1SO, so that Jz = [. Then in the diagram S” & S, -!&S 11 

‘-SO we have vq = 0 and zv = 0. By naturality it follows that (5, v, q) = 0 mod Im J. 

But qp generates Im J in G,, . This completes the proof. 

Proof of (6.4). By dimensional arguments, the only elements on which we need evaluate 
d4 are 05, 20,) and ,uLs . Now 20-, = d42z,,; thus d42a, = 0. 

We dispense with ,u~ as follows. Inspection of the cell structure of CP’ shows that 
d4p, is represented by (2v, v, P)~ E Ef, 17 = Z, generated by q*r. But by results of [I 51, 
(2v, v, p) = (c, ye, v}, which is settled by the technique of the proof of (10.1). 

We state the value of d40, as a lemma and postpone the proof until $11. 

LEMMA 10.2. d4a, = 0. 

Proof of (6.5). The three non-zero values of d5 are obtained by direct application of 
(4.9), under the substitutions t = 4, k = 1, /? = q, 6 = 80, and cx = 21 in each case. For n = 1, 

we take y = 41, while for n = 3 or 5, take y = 81. 

It remains to show that d5 vanishes on 81, and 161, . These results follow from the evalua- 
tion of d* on the preceding columns by multiplication by rl. 

Proof of (6.6). Since the 2-component of 7 ! is 16, by (3.4) it follows that d68z, has order 
precisely 2 in Ef, 12 = Z, generated by cl; hence d68z7 = 21,. The values ofd60n 321,) 161,) 
and 32r,, follow by successive multiplication by zr. 

By dimensional arguments it remains only to find d64v, ; we state the value as a lemma 
and defer the proof to $11. 

LEMMA 10.3. d64vB = 0. 

Proof of (6.7). By dimensional arguments, we need evaluate d’ only on 4v,. We prove 
the following in $11. 

LEMMA 10.4. d74v, = 0. 

Proof of (6.8). Since the 2-component of 9! is 128, it follows by (3.4) that d864z, is of 
order precisely 2 and thus is 16~~. The value of d* on 64z,, follows by multiplication by zI. 

Proof of (6.9). This differential follows from (4.9), taking n = 1, t = 8, k = 1, /3 = tf 

6 = 16p, ct = 21, and y = 641. 
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011. PROOFS FOR 810 

Proofo~(10.2). Inspection of the cell structure of C’P’ shows that d4a, is represented 
by (2v, v, G)~ E Ef, I5 = 2, + Zz generated by cl2 and x1. Now (2v, v, a) contains the two 
elements 0 and c’. To complete the proof of (10.2), we establish the following, which shows 
that d4a5 cannot be a12. 

LEMMA 11.1. Let K be the stable complex S2 v el’. Then there is no S-map f: K + CP’ 
a2 

such that H2(f; 2,) # 0. 
Proof. (See [12] for these techniques.) Let L be the stable complex Sg u el’. Let 

g: L + K be such that Sqe” : Hz(K) + H’(L) is non-zero. Let II/ be the secondary codhomology 
operation arising from the Adem relation Sq8Sq8 + Sq12Sq4 + Sq14Sq2 = 0, valid on a class 
in the image of reduction mod 2. Suppose f exists. Let h be the composition fg. By the 
Peterson-Stein formula, it follows that 0 = h* +5(y) =Sq8 Sqh8(y) + Sq12Sqk4(y) + Sq14 
Sq,,2(y) = Sq8Sq,,8(y) # 0 mod0, a contradiction. This completes the proof of (I 1 .l), and hence 
of (10.2). 

Proofof(10.3) and (10.4). This proof will be based on comparison with the Adams 
spectral sequence; see Table (7.2). 

We first observe that, regardless of d6 and d7 on 4v,, our homotopy spectral sequence 
tells the order of ~“1’ CP. It is this observation which assures us that the entries of column 18 
of (7.2) are indeed permanent cycles in the Adams spectral sequence; otherwise column 17 
would have too few non-zero elements. 

But by dimensional reasons, neither 2h32 or 2ho hs2 can be boundaries in the Adams 

sequence. It follows that n”18 CP contained an element of order 4. 

Now compare this last with the homotopy spectral sequence. The only two non-zero 

entries representing 2-torsion of total degree 18 are ?*I and CT~~. It follows that neither is 

killed in the spectral sequence, but these are the potential non-zero values of d’ and d6 on 
41,. This completes the proof. 
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