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ABSTRACT 

Given a Hermitian matrix H, a matrix U is said to be H-unitary if U"HU = H. 
We consider the following extension problem: If Uo is a rectangular matrix such that 
UoHHUo = A, where A is a leading principal submatrix of H, can U, be extended to an 
H-unitary matrix? After presenting necessary conditions for a more general situation, 
we state a necessary and sufficient criterion for this problem and give a description of 
all its solutions. Finally, these results are used to derive some properties of factoriza- 
tions of Hermitian Toeplitz matrices. 

1. INTRODUCTION 

Let H be a Hermitian n X n matrix. An n X n matrix U is called 
H-unitary if 

UHHU= H 

(cf. [ 10, p. 211). We consider the following extension problem: 

(P) Given an n X m matrix V, (1 Q m < n) such that 

UoHHUo = A, 
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where 
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find an n x (n - m) matrix Vi such that U = (V, Vi) is an H-unitary matrix. 

If H is nonsingular, (P) has a solution iff V, has full column rank m. 
Obviously, this condition is necessary, since H-unitary matrices are nonsingu- 
lar in this case. The fact that rank I.& = m guarantees the solvability of (P) 
follows from more general results [13, p. 671 on unitary operators in nonde- 
generate indefinite inner product spaces which were extensively studied by 
Krein, Iohvidov, and others (see [13] and the references quoted therein). 

We are especially interested in the case of singular H. Here the condition 
rank U, = m is no longer sufficient, as the example 

shows. 
In this note, a criterion for the solvability of (P) for arbitrary Hermitian 

matrices H is presented. In Section 2, we first consider a more general 
situation and formulate necessary conditions. In Section 3, we return to the 
matrix case and state a criterion which is necessary and also sufficient. 
Moreover, a description of all solutions of (P) is given. Finally, in the last 
section, we apply these results to extension problems of the form (P) which 
arise in connection with factorizations of Hermitian Toeplitz matrices. 

2. A NECESSARY CONDITION 

Let d be a linear space over C with positive definite inner product ( -, -). 
Given a Hermitian linear operator H: 6 --f 8, we define by 

an additional inner product which is in general indefinite and which may be 
degenerate (see Bog&r [2] for notations). Let V,: 9(U,) + 8, where 9(V,) 
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c 8, be a linear operator which is an isometry, i.e. 

We wish to extend U, to an operator U: d + d which is an isometry on the 
whole space 9(U) = 6’. For finite dimensional spaces d this problem reduces 
to (P). 

Denote by 

(1) 

the isotropic part of 8, and set 

8: = go n 9(U,). (2) 

Note that 8” is just the kernel of H, and thus b” = {0}, i.e. [ 3, -1 is 
nondegenerate, iff H is injective. One can find subspaces 6’: and 8: 
complementary to 8: such that 

and finally a subspace ~5’~ complementary to b”@&~ leading to the decom- 
position 

Then U. can be represented as the operator matrix 

and we define 

(5) 

(6) 

Roughly speaking, 0, is just U. considered modulo 8”. 
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Now suppose that U, admits an extension to an isometric operator 

on the whole space 8. Obviously, 

l7:b’+b’ (7) 

is an isometric extension of U0 on El. Since 6l is a complementary subspace 
to the isotropic part b”, the restriction of the inner product [ -, *] to 8’ X 6l 
is nondegenerate (see [2, p. ll]), and therefore any isometry on 8’ is 
injective [2, p. 311. In particular, o. has to be injective. If in addition, the 
operator (7) is surjective, then V,, = 0 in (5). This follows from 

o= [r,y] = [ux,uy] = [fkVlOY]> XE&l, y E fg c &O. 

Thus, we have proved the following 

THEOREM 1. Let IJ,: 9(Uo) 2 d be an isomety with respect to the 
inner product [ -, *I, and c?‘:, d’, U, be defined by (l)-(6). Then U, can be 
@ended to an &metric (with respect to [. , .I) operator on E only if 
U,: C# + 8’ is an injective operator. 

Moreover, if U, admits an isonaetric extension on d such that the operator 
(7) is surjective, then Vlo = 0 in (5). 

REMARK 1. In general, the necessary condition given in Theorem 1 is not 
sufficient. The injectiveness of U. does not even guarantee that Go can be 
extended to 8’. Sufficient conditions for this nondegenerate extension prob- 
lem on 8” for the special case that 8’ is a Krein space [2, p. NO] can be 
found in Azizov [l], Iohvidov, Krein, and Langer [13], Bog&r [2], and Young 

P71* 

REMARK 2. If 8’ is of finite dimension, then I? is always surjective and 
thus necessarily V,, = 0 in this case. 
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3. THE COMPLETE SOLUTION OF (P) 

217 

Now we return to problem (P). Throughout this section let H be a given 
Hermitian nXn matrixand v, an flXm matrix(llm<n)with 

U,HHU, = A, (8) 

The ranks of H and A are denoted by no and mO, respectively. We will solve 
problem (P) completely by first reducing it to a normal form which then 
admits a simple description of all solutions. We start with the following 

LEMMA 1. There is a nonsingukxr n X n matrix 

such that 

THHT = 

(9) 

where A, and A, are real signature matrices, i.e. diagonal matrices with 
diagonal elements f 1. In particular, 

(11) 
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The normal foTn (10) is uniquely determined up to permutations of the 
diagonal elements of A, and A,, respectively. 

Proof. Using the eigenvalue decomposition of A, one can find a nonsin- 
g&r m x m matrix W, such that 

where A, is an m, X m, signature matrix. Let 

k = rank E, and set d, = m - m, - k. There exist a nonsingular matrix R and 
a permutation matrix P such that 

By multiplying H, from the right by 

and by its corresponding Hermitian matrix from the left, we transform H, 
into 

i 

A, 0 0 

0 0 0 

H,= 0 0 0 

0 0 I, 

I 0 0 FH 

0 01 
0 0 1 do 

1, F 
G, G, 
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Setting 

z= 

one further obtains 

0 zmo 0 0 0 

'do o o 0 0 

0 0 I, -;G, -G,+G,F 

0 0 0 I, -F 

000 0 Z n-m-k 

where 

G = G” = G, + F”G,F - G,HF - F”G,. 

Finally, the matrix 

where the nonsingular matrix W, satisfies 

W,“G W, = A, a signature matrix, 

is of the desired form (lo), and the product T of all used transformation 
matrices is of the type (9). 
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From (10) 

000000 

A, 0 0 0 

0 0 I, 0 0 

and thus 

&(A B)=m,+k=rankA+k. 

Hence k (and therefore d,, d,) in (10) are independent of the transformation 
matrix. This concludes the proof of the lemma. n 

In view of Lemma 1, (8) is equivalent to 

U;“H’U,I = A’, (12) 

where V< = T-‘U&f,,, and H’ and A’ are given by (10) and (ll), respec- 
tively. We wish to extend U,’ to an H’unitary n x n matrix. According to the 
previous section, such an extension can only exist if a corresponding nonde- 
generate extension problem has a solution. Obviously, one obtains such a 
nondegenerate probIem by simply deleting the first d, and the last d, rows 
and columns of H’ and the first d, rows and columns of A’. Thus we arrive 

at 

where 

‘A, 0 0 0’ 

fi= 

0 

\-i- 0 0 I, A”= i Al 0 I, 0 0 ’ 0 0 i 0’ 
0 0 0 A,, 

and fla is the no x(mO + k) matrix defined by 

do 
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Note that (12) implies 

o~Hzw,, = 0, v$w,, = 0. (14) 

In view of Theorem 1 and Remark 2, (P) can only have a solution if 

v,,=o. 05) 

A simple calculation shows that if (15) holds, the set of all n X (n - m) 
matrices Vi’ which extend UO’ to an W-unitary matrix U’ = (VO’ Vi’) is given 

by 

(1% 

where Z, Z,, Z,, Z,, and 4 are arbitrary complex matrices with o= 
(V, Vi) H-unitary. In particular, the extension problem (12) has a solution iff 
(13) has one. 

From now on, we assume that 

(17) 

In view of Theorem 1, this is a necessary condition for the solvability of (P). 

REMARI( 3. (13) implies the linear independence of the first m, columns 
of 4. Therefore (17) is always fulfilled if k = 0. 

Next, we show that & can be extended to an Z%unitary matrix. 

LEMMA 2. There is a rwr~ingulur n, x no matrix S such that 

Proof. In a first step, we construct an &nitary matrix S, such that 

4=s,(i ;), R an upper triangular mc X m. matrix. (IS) 
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Diagonalizing fi with 

lZ 0’ 

P= 
om, ;z, -;1. 0 

’ 0 l/gZk EZk 0 

0 0 0 z/ 

we get 

and 

stHI?!J = diag( A,, I,, - I,, AZ) =: A 

YHE?Y = A,. (19) 

Here Y=(y, a.0 y,,), and yj denotes the jth column of GHt&. From (19), 
yf@yl = (A1)11 z 0, and therefore there exists a A-unitary hyperbolic 
Householder matrix .I1 (see [3] and [4]) such that 

I 
r11' 
0 

J,v1= : 3 r,, # 0. 

\O, 

Continuing this process, one can find further A-unitary Householder matrices 
I 2”“’ J*, with 

R upper triangular and nonsingular. 

The matrix 

is &mitary, and 

Furthermore, (13) implies W = 0, and therefore S, fulfills (18). 



EXTENSION PROBLEM FOR H-UNITARY MATRICES 223 

Equation (17) ensures rankV = k, and there exists a nonsingular 
(n, - m,)X(n, - ma) matrix 2 with 

v=z 

Using (18) and setting Ss = diag( A, Z), we obtain 

oo=slsz 
Z 

i i 
m”+k . 
0 

(20) 

The &mitarity of S,, (13), and (20) imply that & := SffiSs has the form 

Finally, one can find a nonsingular matrix 

with SFfisSs = fi. Then, S := S,S,S, is I?-unitary and, in view of (20) the 
first ma + k columns of S are just those of 0,. 

REMARK 4. For the special case that Z? and A” are certain diagonal 
matrices, the result of Lemma 2 was also given by Glover [9]. 

_. By Lemmas 1 and 2, (P) is reduced to the problem of finding all 
ZLmitary extensions of 

z 0 *o 

o ‘k 
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A simple calculation shows that these are given by 

iz 0 “0 0 0 \ 

0 I, N-+YHA,Y -YHA,X 

0 0 ‘k 0 ’ 

\o 0 Y X I 

where N, X, Y are arbitrary complex matrices with N = - NH and X AS- 
unitary. Thus, in view of (16), we have proved the following 

THEOREM 2. The exten.sion problem (P) has a solution iff (15) and (17) 
are satisfied. The set of all matrices U, which extend U, to an H-unitary 
U=(U, U,) isgiven by 

where 

M= 

I 0 0 

N- ;YHA2Y - Y*A,X 

I 
Z 0 
Y X 

Y 
- 

1 

‘> Jr0 
lk 

j }l:=n,-mo-2k 

and N, X, Y, Zj, j=l,..., 4, are arbitray complex m&rices of appropriate 

dimension with N = - NH skew-Hermitian and X AZ-unitary. The transfor- 
mation matrices T and S are as in Lemma 1 and 2. 

COROUARY 1. (P) has a solution, if one of the conditions 

(a) rank A = rank H, 
(b) rankA = rankH - 1, 
(c) H and A have the same number of negative (positive) eigenvalues, 
(d) H is positive (negative) semidefinite, 
(e) A is non&g&r 

is satisfied. 
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Proof of the coroZZuy. Since (a), (b), and (d) each imply (c), we only 
have to consider the conditions (c) and (e). From (10) we deduce that in both 
cases k = 0, and thus (17) is satisfied in view of Remark 3. Moreover, d, = 0 
in the case (e) and (15) is trivially fulfilled. Now assume that (c) holds. It 
follows from (10) that either no = m, or A, = f 1. Using the matrix S from 
Lemma 2, it follows from 

q = s 
I 

mfJ 

i 1 0 

and the first relation in (14) that 

s-‘v~,= 0 jrno i i w, }n,-m,’ 

Therefore V,, = 0 if no = m,. Otherwise the second equation in (14) implies 
f W,“W, = 0 and thus again Vi, = 0. This concludes the proof of the 
corollary. m 

4. APPLICATIONS TO HERMITIAN TOEPLITZ MATRICES 

There is a close connection between ZZ-unitary matrices and block Toeplitz 
matrices with block size q >, 1. Let H and U be given nq x nq matrices 
where H is Hermitian and U is H-unitary. For an arbitrary nq x q matrix 
R,, we define 

Rj=URj+ j=2,...,n, (21) 

andset R=(R, R, .- . R,). It follows from the ZZ-unitarity of U that 

T,, = RHHR (22) 

has the form 

‘Cl 
T,, = 

c2 

. . . 

(W 
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with 9 x 9 matrices Cj and C, = C, , H i.e. T is an Hermitian block Toeplitz 
matrix. Conversely, given any matrix (23) with a factorization (22), one 
would like to find an associated H-unitary matrix U. Equation (21) defines U 
only on the subspace spanned by the columns of R,, . . . , R, _ Ir and the wish 
to obtain an H-unitary matrix on the whole space Q= “q leads to an extension 
problem of the form (P). Note that this problem does not occur when 
studying sin&r probiems for infinite dimensional spaces, where equations of 
the type (21) (but now with n = 00) are sufficient to define an isometric 
operator on the whole space (see Krein and Langer 1141 and Sz.-Nagy and 
Kor&nyi [ 151). This is typical for many questions concerning Toeplitz matrices, 
where very often the infinite dimensional case is the more natural one (cf. 
Widom [16]). 

THEOREM 3. Let T, be a Hermitian block Toeplitz matrix of the fm 
(23) with a factorization 

T,,= RHHR 

where R =(R, R, - - - R,) (R j nq X 9 matrices) is nonsingular. Let Q be 
an unitary matrix such that QHR is an n x n block upper triangular matrix of 
block size 9, and set 

A f? )b-1)9 Q”Ho=j,, c),q . 

Then, there exists an H-unitary matrix U such that 

R j = Uj-lR,, j=l ,...,n, (24) 

if H is nonsingular or if H is singular and one of the following conditions is 
satisfied: 

(a) rank A = rank H, 
(b) rankA = rankH - 1, 
(c) H and A have the same number of negative (positive) eigenvalues, 
(d) H is positive (negative) semidefinite, 
(e) A is nonsingular. 
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Proof. A simple transformation shows that we only need to consider the 
case Q = 1. So let 

hl Rl, -. * 
0 R, *. 

R=. . YA 

;, ..: 0’ 

(R jk q X q matrices). With the partition U = (U, U, * . - U,) (Uj nq X q 

matrices), (24) is equivalent to 

j=l,...,n-1, (25) 

and this already defines U, := (U, - * - U, _ 1). Rewriting (25) as 

U,R,=(R, ..- R,), 

we obtain 

RP 
RHUHHUR = : 00 00 

i if 

H(R g,.-.> R,) 

= 

On the other hand, 

Cl cz” *-- C,“l 
c, Cl *. : 

c$ 
c’ n-l . . : c, Cl 

(26) 

= T n-l’ 

T ; B--l= 

I I 

HP 1”“) R,_l) = RfAR,, 

R!L 

and therefore UoHHUo = A. If H is nonsingular, Theorem 2 [(26) implies that 
U, has fulI column rank] and, if H is sing&r, Corollary 1 ensure that we can 
extend U, to an H-unitary matrix U = (U, U,). n 
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For the special case of positive semidefinite Toephtz matrices (q = l), the 
result of Theorem 3 is well known (e.g. Cybenko [6]). In this case, there is 
also a close connection with the finite trigonometric moment theorem of 
Caratheodory [5] (cf. Delsarte and Genin [7]). Finally, we note that the more 
general result of Theorem 3 can be used to obtain certain generalizations of 
Caratheodory’s theorem [8]. 

In the rest of this section, only ordinary (q = 1) Toeplitz matrices (23) are 
considered. 

An infinite matrix T is Toephtz iff E HTE = T with the shift matrix 
E = (Si, j+ 1). Analogous characterizations of finite Toephtz matrices naturally 
lead to Frobenius matrices 

U= 

0 0 0.. 0 a, 

1 0 0 a2 
0 1 *. : : 

. . . . 6 a,_l 

i -0: 0' 1 a, 

(27) 

Gragg [ll] showed that for each positive definite Toephtz matrix T,, there 
exist a Frobenius matrix U and a S E R with 

'0 

T,, = UHT,,U + Se,,eE, e,= : 
0 
1 

(28) 

Here, we are interested in representations (28) with S = 0. 

THEOREM 4. Let T, be an n x n Hermitian Toeplitz matrix and T,_ I its 
(n - 1) X (n - 1) leading principal submutrix. The following conditions are 
equivalent: 

(a) There exists a matrix U of the fm (27) such that 

T,, = UHT,,U. (29) 

(b) (i) T,, is non&zgulur M 
(ii) T,, is singular and rank T,, = rank T,, _ 1. 
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Proof. Application of Theorem 3 to the trivial factorization T,, = RHHR 
with H = T,, R = Z shows that (b) guarantees the existence of a matrix U 
satisfying (29). Moreover, because of (24), U is a Frobenius matrix. Thus, (b) 
implies (a). Conversely, we now assume that (a) holds, but that (b) is not 
satisfied, i.e., T,, is singular with n, := rank T, # rank T,_ 1. It follows from 
Iohvidov’s results [ 121 on the rank of Toeplitz matrices that rank T, _ 1 = n, - 
2, n > 2, and we set s = n - no. Then, the matrix 

w= c2 i” cn (- n-l -1 
with the n - 1 last columns of T,, has rank n,, - 1, and there are linearly 
independent vectors uj E Cn-i, j = 1,. . . , s, with Wuj = 0. Thus the vectors 

span the null space 6’ of T,,. We may assume that none of the vectors 
oa,..., u, has more leading zeros than ui, and this ensures 

Setting U, = (e2 * * * e,,), where ej denotes the jth unit vector in C”, we 
have UoHT,Uo = T,_ 1, and (a) just states that the problem of extending U. by 
a vector t(, E C n to a T,-unitary matrix U = (U, u,) has a solution. However, 
the necessary condition given in Theorem 1 is violated, as easily follows from 
(30) and 

This contradiction concludes the proof. m 

REMM.K 5. Obviously, any Hermitian matrix satisfying (29) with a 
Frobenius matrix (27) is Toeplitz. 

We would like to thank Gy6rgy Sonneuend for bringing some important 
references to our attention. We are indebted to Gene Golub for pointing out 
the connection between Toeplitz and unitary matrices. We also would like to 
thank the referee for their constructive criticism. 
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