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Abstract This paper reflects some research outcome denoting as to how Lotka–Volterra prey

predator model has been solved by using the Runge–Kutta–Fehlberg method (RKF). A comparison

between Runge–Kutta–Fehlberg method (RKF) and the Laplace Adomian Decomposition method

(LADM) is carried out and exact solution is found out to verify the applicability, efficiency and

accuracy of the method. The obtained approximate solution shows that the Runge–Kutta–Fehlberg

method (RKF) is a more powerful numerical technique for solving a system of nonlinear differential

equations.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The Lotka–Volterra model describes an arbitrary number of
ecological competitors (or predator–prey) model which is
dynamic by nature [1]. This model, based on the ecological sys-
tem was framed and gradually gained its popularity in the

technological arena. The simple prey–predator model is among
the most popular models, being frequently used to demon-
strate a simple non-linear control system.

In the concerned field of science and technology, numerous
significant physical phenomenons are frequently modeled by
nonlinear differential equations. Such equations are often stiff
or impractical to solve analytically. Yet, analytical approxi-

mate methods to obtain fairly accurate solutions have gained
much significance in recent years [18]. There are numerous
methods, undertaken to find out approximate solutions to

nonlinear problems: Homotopy Perturbation method
(HPM), Homotopy Analysis method (HAM) [21], Differential
Transform method (DTM) [15–17], Variational Iteration

method (VIM) [22], Adomian Decomposition method
(ADM), Laplace Adomian Decomposition method (LADM)
and Runge–Kutta–Fehlberg method (RKF) and Chebyshev
Spectral methods [19,20] are some proven instances. The pur-

pose of this paper was to bring out the analytical expressions
of Lotka–Volterra prey predator model and the solution of
nonlinear differential equations by using the new approach
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to Runge–Kutta–Fehlberg method (RKF) in an elegant way.
Thus all these methods entail to multidimensional aspects.

In the recent period, much interest is focused on [6,7,9] the

application of Laplace Adomian Decomposition method
(LADM) in order to solve an extensive variety of linear and
nonlinear problems. Unlike in numerical methods, Laplace

Adomian decomposition method is free from rounding off
errors. So we emphasize on this method. The Laplace Ado-
mian Decomposition method (LADM) [4,5] was first intro-

duced by Khuri [8] and has been successfully used to find the
solution of linear and nonlinear system of differential equa-
tions. This method has yielded dependable results in the cases
of nonlinear models and its wide range application is found in

deterministic and stochastic problems, linear and nonlinear, in
physics, biology and chemical reactions, etc. So this method is
magnificent and easily affordable.

One of the most popular methods with a constant step size
is the fourth order Runge–Kutta method (RK4). Reasonably
the Runge–Kutta method can obtain [10,11,14] the accuracy

of a Taylor Series approximation without the need of higher
derivative calculations. This method can be considered as the
basic form of other methods. However, in terms of error esti-

mation, the one-step method with an adaptive step size like the
Runge–Kutta Fehlberg method (RKF) [12,13] gives better
error estimation than that of one-step method with a constant
step size like the Runge–Kutta method. The Fehlberg Runge–

Kutta method is a method derived out of the calculation of
two Runge–Kutta methods of different order. Where subtract-
ing the results from each other an estimate of the error is

obtained. The one-step Algorithm method with an adaptive
step size automatically organizes the step size as a recompose
to the calculation truncation errors. This method has shown

dependable results in the case of nonlinear models and hence,
its application is found in wide range of deterministic and
stochastic problems, linear and nonlinear, in physics, biology

and chemical reactions, etc.
The main aim of this paper was to carry out systematic

analysis of the comparisons among exact solution, Laplace
Adomian Decomposition method (LADM) and Runge–

Kutta–Fehlberg method (RKF) on the Lotka–Volterra prey
predator model.

2. Laplace Adomian Decomposition method (LADM)

To consider the following system of nonlinear differential
equation

y01 ¼ f1ðt; y1; . . . ; ynÞ;
y02 ¼ f2ðt; y1; . . . ; ynÞ;
..
.

y0n ¼ fnðt; y1; . . . ; ynÞ;
where each equation represents the first derivative of each

unknown function as a mapping depending on the indepen-
dent variable t and n unknown functions f1, f2, . . ., fn and the
initial conditions y1(0), y2(0), . . ., yn(0) are prescribed.

Now we can present the above system of differential

equation by using the ith equation term as

y0i ¼ Fiðt; y1; . . . ; ynÞ þNiðt; y1; . . . ; ynÞ þ giðt; y1; . . . ; ynÞ;
i ¼ 1; 2; . . . ; n; ð1Þ
where Fi is a linear operator of the 1st-order derivative which is

assumed to be invertible easily, gi is a source term and Ni is a
nonlinear operator of fi(t, y1, . . ., yn).

Taking Laplace transform on both sides of Eq. (1), we get

L½y0iðtÞ� ¼ L½Fiðt; y1; . . . ; ynÞ� þ L½Niðt; y1; . . . ; ynÞ�
þ L½giðt; y1; . . . ; ynÞ�; i ¼ 1; 2; . . . ; n: ð2Þ

Using the differential property of Laplace transform and

using the initial condition, we get

sL½yiðtÞ� � yið0Þ ¼ L½Fiðt; y1; . . . ; ynÞ� þ L½Niðt; y1; . . . ; ynÞ�
þ L½giðt; y1; . . . ; ynÞ�; i ¼ 1; 2; . . . ; n;

or,

L½yiðtÞ� ¼
1

s
yið0Þ þ

1

s
L½Fiðt; y1; . . . ; ynÞ�

þ 1

s
L½Niðt; y1; . . . ; ynÞ�

þ 1

s
L½giðt; y1; . . . ; ynÞ�; i ¼ 1; 2; . . . ; n: ð3Þ

Now we represent the unknown functions yi(t) by an
infinite series of the form

yiðtÞ ¼
X1
n¼0

yinðtÞ; i ¼ 1; 2; . . . ; n: ð4Þ

Here the components yin(t) are usually determined recur-
rently and the nonlinear operator Ni(t, y1, . . ., yn) can be

decomposed into an infinite series of polynomials given by

Niðt; y1; . . . ; ynÞ ¼
X1
n¼0

AinðtÞ; i ¼ 1; 2; . . . ; n;

where Ain, i = 1, 2, . . ., n are Adomian polynomials of
y0, y1, . . .. . .. . ., yn defined by

Ain ¼ 1

n!

dn

dkn
N t;

Xn
k¼0

kky1k;
Xn
k¼0

kky2k; . . . ;
Xn
i¼0

kkynk;

 !" #
k¼0

;

n ¼ 0; 1; 2; . . . ; i ¼ 1; 2; . . . ; n:

Therefore,

L
X1
n¼0

yinðtÞ
" #

¼ yið0Þ
s

þ 1

s
L giðt; y1; . . . ; ynÞ½ �

þ 1

s
L Fi

X1
n¼0

y1n;
X1
n¼0

y2n; . . . ;
X1
n¼0

ynn

 !" #

þ 1

s
L
X1
n¼0

Ain

" #
; i ¼ 1; 2; . . . ; n:

In general, the recursive relation is given by

L½yi0ðtÞ� ¼
yið0Þ
s

þ 1

s
L giðt; y1; . . . ; ynÞ½ �; i ¼ 1; 2; . . . ; n; ð5Þ

and

L½yinþ1ðtÞ� ¼
1

s
L Fi

X1
n¼0

y1n;
X1
n¼0

y2n; . . . ;
X1
n¼0

ynn

 !" #

þ 1

s
L
X1
n¼0

Ain

" #
; i ¼ 1; 2; . . . ; n: ð6Þ
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Applying the inverse Laplace transform to both sides of (5)
and (6), we obtain yin; ðn P 0Þ, i = 1, 2, . . ., n, which is then
substituted into (4).

For numerical computation, we get the expression as

/nðtÞ ¼
Xn
k¼0

yikðtÞ; i ¼ 1; 2; . . . ; n;

which is the nth term approximation of yi(t).

3. Runge–Kutta–Fehlberg method (RKF)

To consider the following system of ith equation with initial
value problem

y0i ¼ fiðt; y1; . . . ; ynÞ; yiðt0Þ ¼ y0; i ¼ 1; 2; . . . ; n; ð7Þ
where each equation is first order differential equation.

The RKF is one way to try to resolve this problem.
The problem is to solve the initial value problem in above

equation by means of ([14], [15]) Runge–Kutta methods of
order 4 and order 5.

First we need some definitions:

k1 ¼ hfi t; y1; . . . ; ynð Þ;

k2 ¼ hfi tþ 1

4
h; y1 þ

1

4
k1; y2 þ

1

4
k1; . . . ; yn þ

1

4
k1

� �
;

k3 ¼ hfi tþ 3

8
h; y1 þ

3

32
k1 þ 9

32
k2; y2 þ

3

32
k1

�

þ 9

32
k2; . . . ; yn þ

3

32
k1 þ 9

32
k2

�
;

k4 ¼ hfi tþ 12

13
h; y1 þ

1932

2197
k1 � 7200

2197
k2 þ 7296

2197
k3; y2

�

þ 1932

2197
k1 � 7200

2197
k2 þ 7296

2197
k3; . . . ; yn þ

1932

2197
k1

� 7200

2197
k2 þ 7296

2197
k3

�
;

k5 ¼ hfi tþ h; y1 þ
439

216
k1 � 8k2 þ 3680

513
k3 � 845

4104
k4; y2

�

þ 439

216
k1 � 8k2 þ 3680

513
k3 � 845

4104
k4; . . . ; yn

þ 439

216
k1 � 8k2 þ 3680

513
k3 � 845

4104
k4

�
;

k6 ¼ hfi tþ h; y1 �
8

27
k1 þ 2k2 � 3544

2565
k3 þ 1859

4104
k4

�

� 11

40
k5; y2 �

8

27
k1 þ 2k2 � 3544

2565
k3 þ 1859

4104
k4

� 11

40
k5; . . . ; yn �

8

27
k1 þ 2k2

� 3544

2565
k3 þ 1859

4104
k4 � 11

40
k5

�
;

where i= 1, 2, . . ., n.
Then an approximation to the solution of initial value

problem is made using Runge–Kutta method of order 4:

yi kþ1 ¼ yk þ
25

216
k1 þ 1408

2565
k3 þ 2197

4101
k4 � 1

5
k5; i ¼ 1; 2; . . . ; n:

ð8Þ
Here the local error �O(h5).
A better value for the solution is determined using a

Runge–Kutta method of order 5:

yi kþ1 ¼ yk þ
16

135
k1 þ 6656

12; 825
k3 þ 28; 561

56; 430
k4 � 9

50
k5 þ 2

55
k6;

i ¼ 1; 2; . . . ; n: ð9Þ
with local error �O(h6) and global �O(h5).

A formula for the estimation of error of the Runge–Kutta–
Fehlberg method is

E ¼ 1

360
k1 þ 128

4275
k3 þ 2197

7524
k4 þ 1

50
k5 þ 2

55
k6:

Since the k1; k2; . . .; k6 are known in every step we can
always test the accuracy of the method.

The optimal step size sh can be determined by multiplying
the scalar s times the step size h. The scalar s is

s 6 �h

2 yi kþ1 � yi kþ1

�� ��
 !1=4

¼ 0:0840896
�h

yi kþ1 � yi kþ1

�� ��
 !1=4

;

where � is the specified error control tolerance.

Note: RK4 method requires four function evaluations and
RK5 method requires six evaluations, i.e., total ten for RK4
and RK5 methods. Fehlberg devised a method to get RK4

and RK5 methods results using only six function evaluations

by using some of k values in both methods where k ¼ @f
@y
.

4. Analysis of multispecies Lotka–Volterra model

Mathematical models of population growth have been formed

to provide an inconceivable significant angle of true ecological
situation. The meaning of each parameter in the models has
been defined biologically. For n species, we consider the
following [2,3] general Lotka–Volterra model:

dNi

dt
¼ Ni ai �

Xn
j¼1

bijNj

 !
; i ¼ 1; 2; . . . ; n; i– j: ð10Þ

These above cited equations may represent either predator–
prey or competition cases.

Lotka–Volterra model (two species):
The Lotka–Volterra model in case of two species is a prey

predator equation which is defined as follows:

dN1

dt
¼ N1ða� bN2Þ;

dN2

dt
¼ N2ðdN1 � cÞ;

where the parameters a, b, c, d are all positive and N(0) > 0
and N1 is a population size of prey species and N2 is a popula-
tion size of predator species. a is the per capita reduction in

prey per predator and c denotes the per capita increase in
predator per prey. b and d are mortality rate of prey and

predator species respectively. dx
dt

and dy
dt

represent the growth

rates of the prey and predator species over time t.

5. Numerical results and discussion

A comparison of the numerical solutions, so obtained from
RKF and LADM is made with exact solutions (for multiple



Table 1 Numerical comparison when initially we have N1(0) = 4, N2(0) = 9, a= 0.1, b= 0.0014, c = 0.0012, d= 0.08, h= 1.

t Exact LADM (4th iteration) RKF

N1 N2 N1 N2 N1 N2

0 4.00000000 9.00000000 4.00000000 9.00000000 4.00000000 9.00000000

1 4.36734648 8.34983166 4.36423471 8.34470435 4.36733225 8.34981749

2 4.77260007 7.75022106 4.76588351 7.74074456 4.77236772 7.74999782

3 5.21966481 7.19734593 5.20875110 7.18416528 5.21846454 7.19623279

4 5.71285281 6.68767985 5.69703097 6.67132682 5.70898082 6.68421422

5 6.25692620 6.21797028 6.23534323 6.19887998 6.24727466 6.20963389

6 6.85714350 5.78521821 6.82877602 5.76374307 6.83670418 5.76818362

7 7.51931075 5.38665958 7.48293069 5.36308097 7.48062749 5.35555521

8 8.24983784 5.01974814 8.20397089 4.99428600 8.18240270 4.96744045

9 9.05580068 4.68213978 8.99867598 4.65496056 8.94538793 4.59953116

10 9.94500969 4.37167823 9.87449896 4.34290125 9.77294127 4.24751914

11 10.92608546 4.08638201 10.83962917 4.05608454 10.66842086 3.90709618

12 12.00854112 3.82443260 11.90305989 3.79265371 11.63518479 3.57395409

13 13.20287427 3.58416389 13.07466132 3.55090713 12.67659119 3.24378468

14 14.52066904 3.36405263 14.36525868 3.32928773 13.79599815 2.91227974

15 15.97470369 3.16271017 15.78671596 3.12637363 14.99676380 2.57513108
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Figure 1 Evaluation between the exact solution and the

solutions obtained by using LADM and RKF methods in 2D.
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Figure 2 Evaluation between the exact solution and the

solutions obtained by using LADM and RKF methods in 3D.

Table 2 Error term of Laplace Adomian Decomposition

method (ELADM) and Error term of Runge–Kutta–Fehlberg

method (ERKF).

t ELADM ERKF

N1 N2 N1 N2

0 0.00E+00 0.00E+00 0.00E+00 0.00E+00

1 3.11E�03 5.13E�03 1.42E�05 1.42E�05

2 6.72E�03 9.48E�03 2.32E�04 2.23E�04

3 1.09E�02 1.32E�02 1.20E�03 1.11E�03

4 1.58E�02 1.64E�02 3.87E�03 3.47E�03

5 2.16E�02 1.91E�02 9.65E�03 8.34E�03

6 2.84E�02 2.15E�02 2.04E�02 1.70E�02

7 3.64E�02 2.36E�02 3.87E�02 3.11E�02

8 4.59E�02 2.55E�02 6.74E�02 5.23E�02

9 5.71E�02 2.72E�02 1.10E�01 8.26E�02

10 7.05E�02 2.88E�02 1.72E�01 1.24E�01

11 8.65E�02 3.03E�02 2.58E�01 1.79E�01

12 1.05E�01 3.18E�02 3.73E�01 2.50E�01

13 1.28E�01 3.33E�02 5.26E�01 3.40E�01

14 1.55E�01 3.48E�02 7.25E�01 4.52E�01

15 1.88E�01 3.63E�02 9.78E�01 5.88E�01

Note: The above table shows that the results are free from any error

in respect of calculations between exact solution and RKF but,

some errors do exist between calculations of LADM and exact

solution. That is why RKF is a high accurate numerical technique

to adopt.
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species). Table 1 shows comparison among the RKF, 3-term

LADM and the exact solution for the single species in the case
N1(0) = 4, N2(0) = 9, a = 0.1, b = 0.0014, c = 0.0012,
d= 0.08, h= 1 (see Figs. 1 and 2 and Table 2).

The graphical representations of this model reveal that the
exact solution and RKF are overlapping with each other
whereas there is a least difference between exact solution and
that of LADM. So, from the above evaluation we can reach

to the decision that RKF is a trustworthy numerical technique
and the above figure shows that the growth rate of prey species
increases and the growth rate of predator species decreases

whereas initially we have N1 = 4 and N2 = 9.

6. Conclusions and future research scope

This article highlights the numerical solutions of Lotka–
Volterra prey predator model where a well established method,
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called multistep RKF method, is introduced. This numerical
technique is having high accuracy rate compared to LADM.
So we can conclude that the RKF is more accurate and reliable

numerical technique for solutions of linear and nonlinear sys-
tem of differential equations in population models. The graph-
ical representation makes it clear that RKF gives quite good

results after a considerable time interval. This method is mag-
nificently very useful and will undoubtedly be applicable in
broad arena. The advantage of the RKF over the LADM is

that there is no need for the evaluations of the Adomian poly-
nomials and it provides an efficient numerical solution. In our
present activities the RKF method has successfully been
applied to system of nonlinear differential equations applica-

tion in prey predator model. Hence, introduction of this
method in population dynamics may pave the way of a new
horizon in the days to come. In future, we shall be able to solve

nonlinear differential equations application as different popu-
lation dynamics model by using some methods such as Homo-
topy Analysis Method (HAM), Chebyshev Spectral Method

(CSM) and Differential Transform method (DTM).
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