Note

Quasifields of symplectic translation planes

N. Knarr

Institute of Geometry and Topology, University of Stuttgart, 70550 Stuttgart, Germany

A R T I C L E I N F O

Article history:
Received 15 August 2008
Available online 20 March 2009
Communicated by William M. Kantor

Keywords:
Symplectic spread
Quasifield
Invariant bilinear form
Kernel
Nuclei

A B S T R A C T

We show that a translation plane is symplectic if and only if at least one of its associated quasifields admits a non-degenerate invariant symmetric bilinear form. As an application we prove that a proper desarguesian, Moufang or nearfield plane can never be symplectic. Moreover, we give a purely algebraic characterization of the quasifields which coordinatize symplectic translation planes.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

A spread Σ of a vector space V over a field F is a collection of mutually complementary subspaces of V such that each element of $V \setminus \{0\}$ is contained in precisely one element of Σ. With each spread one can associate an affine translation plane $A(\Sigma)$ whose points are the elements of V and whose lines are the cosets of the elements of Σ. The spread Σ and its associated translation plane are called symplectic if there exists a (non-degenerate) symplectic bilinear form $S : V \times V \rightarrow F$ such that all elements of Σ are totally isotropic with respect to S. If V is of finite dimension over F, it was recently shown by Kantor [3] that the kernel K of a non-desarguesian symplectic spread is commutative and that the form is unique up to a constant if $F = K$. The same holds true for pappian spreads.

We show that the translation plane over a quasifield Q is symplectic if and only if Q admits a non-degenerate invariant symmetric bilinear form, cf. Theorem 2.2. We use this to prove that the kernel of such a plane is commutative. This implies in particular that every desarguesian symplectic spread is actually pappian. Moreover, we show that the right and the middle nuclei of a quasifield Q which coordinatizes a symplectic translation plane coincide and that these nuclei are contained in the center of Q.

E-mail address: norbert.knarr@mathematik.uni-stuttgart.de.
We also give a purely algebraic characterization of the quasifields associated with symplectic translation planes by showing that the translation plane over a quasifield Q is symplectic if and only if the subgroup of the additive group of Q generated by all elements of the form $(xy)z - x(zy)$, $x, y, z \in Q$ is different from Q, cf. Corollary 4.3.

2. Symplectic spreads and invariant forms on quasifields

Basic information on spreads, translation planes and quasifields can be found in [4] or [5]. A quasifield is an algebraic structure $(Q, +, \cdot)$ which satisfies all axioms for a skew field with the possible exception of the associative law for the multiplication and the distributive law $x(y + z) = xy + xz$. Every quasifield Q is a left vector space over its kernel $K = K(Q) = \{c \in Q \mid c(xy) = (cx)y$ and $c(x + y) = cx + cy \text{ for all } x, y \in Q\}$, which is a skew field. With each quasifield Q one can associate the spread $\Sigma = \Sigma(Q)$ in the K-vector space $Q \times Q$, consisting of $\{0\} \times Q$ and of the sets $\{(x, xm) \mid x \in Q\} \subset Q \times Q$ with $m \in Q$. Every spread can be obtained from a, usually not unique, quasifield. The right and the middle nucleus of Q are defined by $N_r(Q) = \{c \in Q \mid (xy)c = x(yc)$ for all $x, y \in Q\}$ and $N_m(Q) = \{c \in Q \mid x(cy) = (xc)y$ for all $x, y \in Q\}$. The center of Q is the set $C(Q) = \{c \in K \mid cx = xc$ for all $x \in Q\}$. Note that the center is contained in the kernel of Q.

Let Q be a quasifield with kernel K and let F be a subfield of K. A symmetric bilinear form $B : Q \times Q \to F$ is called invariant if we have

$$B(xa, y) = B(x, ya) \quad \text{for all } a, x, y \in Q.$$

An equivalent formulation is that all right multiplication mappings of Q are self adjoint with respect to B.

Every F-linear combination of invariant symmetric bilinear forms is also an invariant symmetric bilinear form, and so the invariant symmetric bilinear forms constitute a vector space over F. The set consisting of the zero form and of all symplectic forms on $Q \times Q$ which turn Σ into a symplectic spread also forms a vector space over F.

Lemma 2.1. Let Q be a quasifield with kernel K and let F be a subfield of K. Let $B : Q \times Q \to F$ be an invariant symmetric bilinear form. Then B is either non-degenerate or zero.

Proof. Assume that B is degenerate. Then there exists $x \in Q \setminus \{0\}$ such that $B(x, y) = 0$ for all $y \in Q$. Let $y, z \in Q$, then we get $B(xy, z) = B(x, zy) = 0$. Since $x \neq 0$ this implies $B = 0$. □

Theorem 2.2. Let Q be a quasifield with kernel K and let F be a subfield of K. Let $B : Q \times Q \to F$ be an invariant symmetric bilinear form. Then $S_B : \{(x, y) \mid x \in Q\} \to F$ with $S_B((x_1, x_2), (y_1, y_2)) = B(x_1 y_2) - B(x_2 y_1)$ is a symplectic form and the spread Σ associated with Q is symplectic in the F-vector space $Q \times Q$ with respect to S_B. The form S_B is non-degenerate if and only if B is. Any symplectic form on $Q \times Q$ which turns Σ into a symplectic spread is obtained in this way.

The mapping $B \mapsto S_B$ is an F-linear bijection between the vector space of all invariant symmetric bilinear forms on Q and the vector space of all symplectic forms on $Q \times Q$ for which Σ is a symplectic spread.

Proof. Let $S : (Q \times Q) \times (Q \times Q) \to F$ be a symplectic form such that all elements of Σ are totally isotropic with respect to S. There exist bilinear forms $B_1, \ldots, B_4 : Q \times Q \to F$ such that $S((x_1, x_2), (y_1, y_2)) = B_1(x_1 y_1) + B_2(x_1 y_2) + B_3(x_2 y_1) + B_4(x_2 y_2)$ for all $x_1, \ldots, y_2 \in Q$. The vertical subspace $\{0\} \times Q$ is an element of Σ and hence totally isotropic. This yields $S((0, x_2), (0, y_2)) = B_4(x_2 y_2) = 0$ for all $x_2, y_2 \in Q$ and hence $B_4 = 0$. Similarly, the horizontal subspace $Q \times \{0\}$ is contained in Σ, which implies $B_3 = 0$. The diagonal subspace $\{(x, x) \mid x \in Q\}$ is also contained in Σ. This yields $S((x, x), (y, y)) = B_2(x, y) + B_3(x, y) = 0$ for all $x, y \in Q$ and hence $B_3 = -B_2$. Now S is symplectic and so $S((x, y), (x, y)) = B_2(x, y) - B_2(y, x) = 0$, i.e. $B = B_2$ is symmetric. Obviously, $S = S_B$.

For each $a \in Q$ the spread element $L(a) = \{(x, xa) \mid x \in Q\}$ is totally isotropic and hence $S((x, xa), (y, ya)) = B(x, ya) - B(xa, y) = 0$ for all $a, x, y \in Q$. It follows that B is an invariant bilinear form.
Assume that B is degenerate, then $B = 0$ by 2.1 and hence $S = 0$. If B is non-degenerate then $S = S_B$ also is.

Assume now that $B : Q \times Q \to F$ is an invariant symmetric bilinear form. Reversing the above arguments, one sees that S_B is a symplectic form on $Q \times Q$ and that all elements of Σ are totally isotropic with respect to S_B.

Obviously, the mapping $B \mapsto S_B$ is F-linear, and we just have proved that it is bijective. \qed

Corollary 2.3. Let Q be a quasifield, then the translation plane associated with Q is symplectic if and only if Q admits a non-degenerate invariant symmetric bilinear form.

Remark 2.4.

(1) Assume that Q is only a prequasifield, i.e. Q satisfies all axioms for a quasifield except the existence of a multiplicative identity element. Then one can still construct the spread $\Sigma(Q)$, but it will not contain the diagonal subspace. Inspection of the proof of 2.2 shows that there is still a non-degenerate bilinear form $B : Q \times Q \to F$, but it will not necessarily be symmetric and the invariance property becomes $B(x, ya) = B(y, xa)$ for all $x, y, a \in Q$.

(2) The question if a spread is symplectic is independent of the quasifield used for its coordinatization. This means that if a quasifield Q admits a non-degenerate invariant symmetric bilinear form then any other quasifield which coordinatizes the same translation plane as Q also does.

3. Kernel and nuclei

In this section we investigate the kernel and the nuclei of the quasifields associated with a symplectic translation plane. In particular, we prove that they are all commutative.

Proposition 3.1. Let Q be a quasifield which admits a non-degenerate invariant bilinear form $B : Q \times Q \to F$ with respect to some subfield F of the kernel K of Q, then K is commutative.

Proof. Let $x, y \in Q$, $c \in K$, then we get

$$B(cx, y) = B((cx)y, 1) = B(c(xy), 1) = B(c, xy) = B(cy, x).$$

If also $x \in K$, then we get

$$B(cx, y) = B(cy, x) = B(1, xc) = B(1, xc) = B(y, xc)$$

and since B is non-degenerate this implies $xc = cx$. \qed

Remark 3.2. Proposition 3.1 was already proved by Kantor [3] under the assumptions that Q is a finite-dimensional F-vector space and that the translation plane associated with Q is non-desarguesian.

Lemma 3.3. Let Q be a quasifield with kernel K and let $B : Q \times Q \to F$ be a non-degenerate invariant symmetric bilinear form, where F is a subfield of K. Let $c \in Q \setminus \{0\}$. Then $B_c : Q \times Q \to F$, $(x, y) \mapsto B(xc, y)$ is also a non-degenerate symmetric bilinear form. B_c is invariant if and only if c is contained in center of Q.

Proof. For all $x, y \in Q$ we have

$$B_c(x, y) = B(xc, y) = B(x, yc) = B(yc, x) = B_c(y, x)$$

and hence B_c is symmetric. B_c is certainly linear in the second argument and by symmetry also in the first, so it is a symmetric bilinear form. It is non-degenerate since B is.

Assume that B_c is invariant. Let $a, x, y \in Q$, then we get

$$B((xa)c, y) = B(xc, ya) = B_c(x, ya) = B_c(xa, y) = B((xa)c, y)$$
and since B is non-degenerate this implies $(xc)a = (xa)c$. Setting $x = 1$ we see that c commutes with every element of Q. But then we also get $(cx)a = (xa)c = c(xa)$ and $c(a + x) = (a + x)c = ac + xc = ca + cx$, which implies $c \in C(K)$.

Assume now that c belongs to the center of Q, then the reverse argument shows that B_c is invariant. □

Proposition 3.4. Let Q be a quasifield with kernel K and assume that there exists a non-degenerate invariant symmetric bilinear form $B : Q \times Q \to F$ for some subfield F of K. Then we have $N_r(Q) = N_m(Q) \subseteq C(Q)$, in particular $N_r(Q) = N_m(Q)$ is commutative.

Proof. Let $c \in N_r(Q)$ and let $a, x, y \in Q$, then we have

$$B_c(xa, y) = B((xa)c, y) = B(x(ac), y) = B(x, y(ac)) = B(x, (ya)c) = B_c(x, ya).$$

So B_c is invariant and 3.3 implies that $N_r(Q) \subseteq C(Q)$.

Let $c \in N_m(Q)$, then we also have $c^{-1} \in N_m(Q)$, cf. [4], proof of 1.22. Let $a, x, y \in Q$, then we have

$$B_c(x, ya) = B(xc, (yc)(c^{-1}a)) = B((xc)(c^{-1}a), yc) = B(xa, yc) = B_c(xa, y).$$

Thus we also have $N_m(Q) \subseteq C(Q)$.

Let $c \in N_r(Q)$ and let $x, y \in Q$, then we get

$$(xc)y = (cx)y = c(xy) = (xy)c = x(y)c = x(cy).$$

and hence $c \in N_m(Q)$.

Analogously, for $c \in N_m(Q)$ and $x, y \in Q$ we get

$$(xy)c = c(xy) = (cx)y = (xc)y = x(y)c = x(cy),$$

and hence $c \in N_r(Q)$.

It follows that $N_r(Q) = N_m(Q) \subseteq C(Q)$, which proves the proposition. □

Corollary 3.5. Let A be a symplectic translation plane, let p_1, p_2 be distinct points on the translation axis and let L_1, L_2 be lines distinct from the translation axis with $p_i \in L_i$, $i = 1, 2$. Then the groups of (p_1, L_1)- and (p_2, L_1)-homologies are isomorphic and abelian.

Proof. If one coordinatizes A by a quasifield Q such that $L_1 \setminus \{p_1\} = Q \times \{0\}$ and $L_2 \setminus \{p_2\} = \{0\} \times Q$, then the homology groups in question are isomorphic to $N_m(Q) \setminus \{0\}$ and $N_r(Q) \setminus \{0\}$, respectively, cf. e.g. [4], 1.22. So the result follows from 3.4. □

Remark 3.6. For finite quasifields, 3.4 has already been proved by Johnson and Vega [1], Theorem 2, and for finite semifields also by Lunardon [6], Theorem 3.

Proposition 3.7. Let Q be a nearfield or a skew field which admits a non-degenerate invariant symmetric bilinear form with respect to some subfield F of K. Then Q is commutative and hence a field.

Proof. If the multiplication of Q is associative, then $N_r(Q) = N_m(Q) = Q$, and so the result follows from 3.4. If Q is a skew field one can also use 3.1. □

Corollary 3.8. If the translation plane associated with a symplectic spread is desarguesian, then it is pappian.

Since every proper Moufang plane contains proper desarguesian subplanes we also have the following

Proposition 3.9. Every symplectic Moufang plane is pappian.
Proof. Let Q be a proper alternative field with kernel K and assume that there exists a non-degenerate invariant symmetric bilinear form $B : Q \times Q \to K$. If there exists a quaternion subalgebra H of Q such that the restriction of B to H is not the zero form then the result follows from 3.7.

So we may assume that the restriction of B to any quaternion subalgebra of Q is zero. Each element $x \in Q$ is contained in a quaternion subalgebra H of Q with $K \subset H$, where K denotes the kernel of Q, cf. e.g. [7], 6.15. This implies that K is contained in the radical of Q, contradicting the non-degeneracy of B. □

4. Algebraic characterization of symplectic spreads

An invariant bilinear form $B : Q \times Q \to F$ on a quasifield Q is completely determined by the linear form $\varphi : Q \to F, x \mapsto B(1, x)$ since $B(x, y) = B(1, xy)$ holds for all $x, y \in Q$. In this section we investigate the question which linear forms on the F-vector space Q yield invariant bilinear forms, where F is a subfield of Q.

Lemma 4.1. Let Q be a quasifield with kernel K and let F be a subfield of K. Then the F-subspace and the subgroup of the additive group of Q generated by the set $A = \{(xy)z - x(zy) \mid x, y, z \in Q\}$ coincide.

Proof. It is sufficient to show that for all $x, y, z \in Q$ and for all $c \in F \subseteq K$ there holds $c((xy)z - x(zy)) \in A$. This follows from

$$c((xy)z - x(zy)) = c((xy)z) - c(x(zy)) = ((cx)y)z - (cx)(zy).$$ □

Theorem 4.2. Let Q be a quasifield with kernel K and let F be a subfield of K. Put $A = \{(xy)z - x(zy) \mid x, y, z \in Q\}$ and $W = \langle A \rangle$. Let $\varphi : Q \to F$ be linear with $W \subseteq \ker \varphi$, and define $B_\varphi : Q \times Q \to F$ by $B_\varphi(x, y) = \varphi(xy)$. Then B_φ is an invariant symmetric bilinear form on Q, and every invariant symmetric bilinear form on Q is obtained in this way.

The form B_φ is degenerate if and only if $\varphi = 0$.

The mapping $\varphi \mapsto B_\varphi$ is an F-linear bijection between the vector space of all linear forms on Q which contain W in their kernel and the vector space of all invariant symmetric bilinear forms on Q. In particular, there exists a non-degenerate invariant symmetric bilinear form on Q if and only if $W \neq Q$.

Proof. Let $B : Q \times Q \to F$ be an invariant symmetric bilinear form and define the linear form $\varphi : Q \to F$ by $\varphi(x) = B(1, x)$. Let $x, y, z \in Q$, then we get

$$B(x, y) = B(xy, 1) = B(1, xy) = \varphi(xy)$$

and

$$\varphi((xy)z - x(zy)) = B(1, (xy)z) - B(1, x(zy)) = B(z, xy) - B(zy, x) = 0.$$ It follows that $B = B_\varphi$ and that W is contained in the kernel of φ.

Let now $\varphi : Q \to F$ be a linear form with $W \subseteq \ker \varphi$, and let $B = B_\varphi : Q \times Q \to F$ be defined by $B(x, y) = \varphi(xy)$ for $x, y \in Q$. Setting $x = 1$ we get $(xy)z - x(zy) = yz - zy \in W \subseteq \ker \varphi$ for all $y, z \in Q$. This implies

$$B(y, z) = \varphi(yz) = \varphi(zy) = B(z, y),$$

and so B is symmetric.

Let $x, y, z \in Q$ and $c \in F$, then we get

$$B(x + y, z) = \varphi((x + y)z) = \varphi(xz + yz) = B(x, z) + B(y, z)$$

and

$$B(cx, y) = \varphi(cx) = \varphi(cxy) = c\varphi(xy) = cB(x, y).$$

It follows that B is linear in the first argument and then by symmetry also in the second.
Finally, we compute
\[B(xy, z) = \varphi((xy)z) = \varphi(x(zy)) = B(x, zy), \]
and so \(B \) is an invariant symmetric bilinear form.

Obviously, \(\varphi = 0 \) if and only if \(B_\varphi = 0 \).
The mapping \(\varphi \mapsto B_\varphi \) is linear, and we just have proved that it is bijective. \(\square \)

Corollary 4.3. The translation plane associated with \(Q \) is symplectic if and only if \(W \neq Q \).

Remark 4.4.

1. Since \(W \) does not depend on \(F \) the question of whether or not a spread is symplectic in the \(F \)-vector space \(Q \times Q \) does also not depend on \(F \), a fact already noted by Kantor [3], Theorem 3 and Lunardon [6], Theorem 1.
2. The question if a spread is symplectic is independent of the quasifield used for its coordinatization. So if the condition \(W \neq Q \) is satisfied for one quasifield \(Q \) it also holds for any quasifield which coordinatizes the same translation plane as \(Q \).
3. For a proper skew field \(Q \) an alternative proof for 3.7 runs as follows. \(W \) contains all elements of the form \((xy)z - x(zy) = x(yz) - x(zy) = x(yz - zy) \) for \(x, y, z \in Q \), which comprise all of \(Q \) since \(Q \) is not commutative. So \(W = Q \) and by 4.2 the corresponding spread is not symplectic.

Proposition 4.5. Let \(Q \) be a quasifield with kernel \(K \) and let \(F \) be a subfield of \(K \). Put \(A = \{(xy)z - x(zy) \mid x, y, z \in Q\} \) and \(W = (A) \). Let \(B : Q \times Q \to F \) be a non-degenerate invariant symmetric bilinear form. Then we have \(W^\perp = K \), where \(\perp \) denotes the orthogonality relation induced by \(B \).

If the dimension of \(Q \) as an \(F \)-vector space is finite, then \(Q/W \) and \(K \) are isomorphic as \(F \)-vector spaces.

Proof. Let \(x, y, z \in Q \) and let \(c \in K \), then we get
\[
B(c, (xy)z - x(zy)) = B(c, (xy)z) - B(c, x(zy)) = B(cz, xy) - B((cz)y, x) = 0
\]
and hence \(K \subseteq W^\perp \).

Let now \(c \in W^\perp \) and let \(x, y, z \in Q \), then we get
\[
0 = B(c, (xy)z - x(zy)) = B(c, (xy)z) - B(c, x(zy)) = B(cz, xy) - B(c(zy), x) = B((cz)y, x) - B(c(zy), x).
\]
Since \(B \) is non-degenerate this implies \(c \in K \) and hence \(W^\perp \subseteq K \).

If the dimension of \(Q \) as an \(F \)-vector space is finite, then \(Q/W \) is isomorphic to \(W^\perp \) and hence to \(K \). \(\square \)

Proposition 4.6. Let \(Q \) be a quasifield and let \(F \) be a subfield of the kernel \(K \) of \(Q \) such that the dimension of \(Q \) as an \(F \)-vector space is finite. Assume that there exists a non-degenerate invariant symmetric bilinear form \(B : Q \times Q \to F \). Then the space of all invariant symmetric \(F \)-valued bilinear forms on \(Q \) is isomorphic to the dual space of \(K \) viewed as a vector space over \(F \). By 2.2 the same holds true for the space of all \(F \)-valued symplectic forms on \(Q \times Q \) for which \(\Sigma(Q) \) is symplectic.

Proof. By 4.2 the space in question is isomorphic to the \(F \)-dual of \(Q/W \) and by 4.5 the space \(Q/W \) is isomorphic to \(K \). \(\square \)

Proposition 4.7. Assume that the conditions from 4.6 are satisfied. Then for each invariant symmetric bilinear form \(B' : Q \times Q \to F \) there exists \(c \in K \) with \(B'(x, y) = B(cx, y) \) for all \(x, y \in Q \).
Proof. By 3.1 the kernel K is commutative, and hence the mapping $B^c : Q \times Q \to F$, $(x, y) \mapsto B(cx, y)$ is a bilinear form for each $c \in K$. It is also symmetric since

$$B^c(x, y) = B(cx, y) = B(c, xy) = B(c(yx), 1) = B((cy)x, 1) = B(cy, x) = B^c(y, x)$$

for all $x, y \in Q$. The invariance of B^c follows from

$$B^c(xy, z) = B(c(xy), z) = B((cx)y, z) = B(cx, zy) = B^c(x, zy)$$

for all $x, y, z \in Q$. The set $\{B^c | c \in K\}$ forms an F-vector space isomorphic to K. The result now follows from 4.6 and the fact that a finite-dimensional vector space and its dual space are isomorphic. □

Remark 4.8.

(1) In the special case $F = K$, proposition 4.7 says that two non-degenerate symplectic forms on $Q \times Q$ for which the spread $\Sigma(Q)$ is symplectic differ only by an element of K. This was already proved by Kantor [3], Theorem 3.

(2) Kantor [2] has discovered a connection between semifields which coordinatize symplectic translation planes and commutative semifields. In our setting this can be described as follows. Let Q be a semifield with kernel K and let F be a subfield of $N_F(Q)$ such that Q is of finite dimension over F. Let $B : Q \times Q \to F$ be a non-degenerate invariant symmetric bilinear form. From 3.4 we infer that for each $a \in Q$ the left multiplication with a, given by $\lambda_a : Q \to Q$, $x \mapsto ax$, is linear over F and hence has an adjoint $\lambda^*_a : Q \to Q$, defined by $B(ax, y) = B(x, \lambda^*_a(y))$ for all $x, y \in Q$. Define a new multiplication $\circ : Q \times Q \to Q$ by $x \circ y = \lambda^*_a(y)$ for $x, y \in Q$. This multiplication is bilinear over F since $\lambda^*_a = c\lambda^*_a$ for all $c \in F$, $x \in Q$. From

$$B(x \circ y, z) = B(\lambda^*_a(y), z) = B(y, xz) = B(yz, x) = B(z, \lambda^*_a(x)) = B(z, y \circ x)$$

for all $x, y, z \in Q$ we infer that \circ is commutative. For all $c \in F$, $x, y \in Q$ we have $B(cx, y) = cB(x, y) = B(x, cy)$ and hence $\lambda^*_a = \lambda^*_c$. This implies in particular that $1 \circ x = x \circ 1 = x$ for all $x \in Q$. Thus Q with this new multiplication is a commutative semifield.

Conversely, let Q be a commutative semifield of finite dimension over its kernel K, and let $\varphi : Q \to K$ be a non-trivial linear form. Define $B : Q \times Q \to K$ by $B(x, y) = \varphi(xy)$, then B is a non-degenerate symmetric bilinear form. Define a new multiplication $\ast : Q \times Q \to Q$ by $x \ast y = \lambda^*_a(y)$. This new multiplication is bilinear over K, and the form B is invariant. This follows from

$$B(x \ast y, z) = B(\lambda^*_a(y), z) = B(y, xz) = B(y, zx) = B(\lambda^*_a(y), x) = B(z \ast y, x)$$

for all $x, y, z \in Q$. Setting $x = 1$ respectively $z = 1$, we see that $1 \ast y = y \ast 1 = y$ for all $y \in Q$. It follows that Q with the new multiplication is a semifield which admits an invariant bilinear form.

If the dimension of Q over F or K is infinite the construction will not work in general since it is not clear if each left multiplication mapping has an adjoint.

References