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1. Introduction and results

1.1. Amongst the long-standing conjectures in modular representation theory of finite groups is a
finiteness conjecture concerning the sources of simple modules over group algebras, due to Feit [12]
and first announced at the Santa Cruz Conference on Finite Groups in 1979:

By Green’s Theorem [15], given a finite group G and an algebraically closed field F of some prime
characteristic p, one can assign to each indecomposable F G-module M a G-conjugacy class of p-
subgroups of G , the vertices of M . Given a vertex Q of M , there is, moreover, an indecomposable
F Q -module L such that M is isomorphic to a direct summand of the induced module IndG

Q (L); such
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a module L is called a (Q -)source of M . Any Q -source of M has vertex Q as well, and is determined
up to isomorphism and conjugation with elements in NG(Q ). Vertices of simple F G-modules have a
number of special features not shared by vertices of arbitrary indecomposable F G-modules; see, for
instance, [11] and [22]. Feit’s Conjecture in turn predicts also a very restrictive structure of sources of
simple modules, and can be formulated as follows:

Conjecture (Feit). Given a finite p-group Q , there are only finitely many isomorphism classes of indecom-
posable F Q -modules occurring as sources of simple F G-modules with vertex Q ; here G varies over all finite
groups containing Q .

While the conjecture remains open in this generality, weaker versions of it are known to be true:
by work of Dade [5], Feit’s Conjecture holds when demanding the sources in question have dimension
at most d, for a given integer d. Furthermore, Puig [29,31] has shown that Feit’s Conjecture holds
when allowing the group G to vary over p-soluble groups only, and Puig [30] has also shown that
Feit’s Conjecture holds for the symmetric groups. The aim of this paper now is to pursue the idea of
restricting to suitable classes of groups further, and to prove the following:

Theorem. Feit’s Conjecture holds when letting the group G vary over the following groups only:

{Sn}n�1, {An}n�1, {S̃n}n�1, {Ŝn}n�1, {Ãn}n�1, {Bn}n�2, {Dn}n�4.

Here, Sn and An denote the symmetric and alternating groups on n letters, respectively. Moreover,
S̃n and Ŝn denote the double covers of the symmetric groups, and Ãn those of the alternating groups;
these groups are described in more detail in 5.1. Finally, Bn and Dn denote the Weyl groups of type
Bn and Dn , respectively; these groups are described in more detail in 6.1.

1.2. We will prove the above-mentioned main result by exploiting the connection between Feit’s
Conjecture and two other ingredients: Puig’s Conjecture regarding source algebras of blocks of group
algebras, and a question raised by Puig (see [34]) relating vertices to defect groups:

Conjecture (Puig). Given a finite p-group P , there are only finitely many isomorphism classes of interior P -
algebras that are source algebras of a block of F G; here G varies over all finite groups containing P .

Question. Suppose that p > 2, that G is a finite group, and that D is a simple F G-module with
vertex Q . Is the order of the defect groups of the block containing D bounded in terms of the group
order |Q |?

The corresponding question for p = 2 is known to have a negative answer, and we will elaborate
on this in Remark 3.3 in more detail. For p > 2, to the authors’ knowledge, there seem to be no exam-
ples known where Puig’s Question admits a negative answer, and Zhang [34] has proved a reduction
to quasi-simple groups. The Reduction Theorem 3.8 now shows that Puig’s Conjecture together with
a positive answer to the previous question imply Feit’s Conjecture for p > 2. A proof of Puig’s Conjec-
ture alone, however, might not suffice to prove Feit’s Conjecture; see also the remarks following [33,
Thm. 38.6].

Despite the fact that these conjectures have been around for quite a while, and belong to folklore
in modular representation theory of finite groups, we have not been able to find a reference where
they have been stated formally. Thus they are restated here as Conjectures 3.5 and 3.7, respectively,
in a category-theoretic language we are going to develop, and which will also be used to formulate
our Reduction Theorem 3.8.

Our strategy for proving our main Theorem 3.10 is as follows: by work of Kessar [19–21], Puig
[30], and Scopes [32], Puig’s Conjecture is known to be true for the groups considered here. We will,
therefore, show that Puig’s Question has an affirmative answer when allowing the groups to vary
over the groups in the theorem only, by determining in Theorem 3.9 explicit upper bounds on the
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respective defect group orders, and regardless of whether p is even or odd. It should be pointed out
that such bounds can also be derived from work of Zhang [34], which are, however, much weaker
than the ones we get, and are thus hardly useful when actually trying to compute vertices of simple
modules in practice.

The strategy to prove the bounds on defect group orders in terms of vertices, in turn, is for part
of the cases based on Knörr’s Theorem, see Remark 3.12, ensuring the existence of a self-centralizing
Brauer pair for any subgroup of a group G being a vertex of a simple F G-module. This reduces Puig’s
Question to asking, more strongly, whether defect group orders can even be bounded in terms self-
centralizing Brauer pairs. This idea turns out to be successful for the alternating groups and the double
covers of the symmetric and alternating groups. In particular, in Theorem 4.5 and the subsequent
Remark 4.6 we derive a detailed picture of the self-centralizing Brauer pairs for the alternating groups
in characteristic p = 2, which might be of independent interest.

Moreover, we would like to point out that, in particular, for the case of the alternating groups,
we have been examining various examples explicitly, where the computer algebra systems GAP [14]
and MAGMA [2] have been of great help; we will specify later on where precisely these have been
invoked.

1.3. The paper is organized as follows: in Section 2 we introduce our notational set-up, define our
notions of the category of interior algebras and vertex-source pairs of indecomposable modules over
group algebras, and recall the notion of source algebras. Then, in Section 3, we formulate Feit’s and
Puig’s Conjectures in our category-theoretic language, prove the Reduction Theorem 3.8, and state
Theorem 3.9 in order to prove the main Theorem 3.10. Sections 4–6 are then devoted to proving
Theorem 3.9 for the alternating groups, the double covers of the symmetric and alternating groups,
and the Weyl groups appearing in our main theorem, where in the former two cases we pursue the
idea of using self-centralizing Brauer pairs, while for the Weyl groups appearing in our main theorem
we are content with looking at vertices directly. Finally in Section 7 we briefly deal with semidirect
products with abelian kernel in general.

Throughout this article, let p be a prime number, and let F be a fixed algebraically closed field of
characteristic p. All groups appearing will be finite and, whenever G is a group, any F G-module is
understood to be a finitely generated left module. Hence we may assume that the groups considered
here form a small category, that is, its object class is just a set, and similarly module categories may
be assumed to be small as well. This will, for instance, allow us to speak of the set of all finite groups.
We assume the reader to be familiar with modular representation theory of finite groups in general,
and the standard notation commonly used, as exposed for example in [25] and [33]. For background
concerning the representation theory of the symmetric groups and their covering groups, we refer the
reader to [18] and [17], respectively.

2. Interior algebras, source algebras, and vertex-source pairs

In this section we introduce a category-theoretic language, which will be used to restate Feit’s
and Puig’s Conjectures later in this article. The language we use is that of interior algebras, see for
example [33, Ch. 10], where we additionally have to allow the group acting to vary.

2.1. A category of interior algebras. We define a category A whose objects are the triples (G,α, A),
where G is a finite group, A is a finite-dimensional, associative, unitary F -algebra, and α : G −→ A×
is a group homomorphism into the group of multiplicative units A× in A. Given objects (G,α, A) and
(H, β, B) in A, the morphisms (G,α, A) −→ (H, β, B) are the pairs (ϕ,Φ) where ϕ : G −→ H is a
group homomorphism and Φ : A −→ B is a homomorphism of F -algebras satisfying

Φ
(
α(g)a

)= β
(
ϕ(g)

)
Φ(a) and Φ

(
aα(g)

)= Φ(a)β
(
ϕ(g)

)
, (1)



190 S. Danz, J. Müller / Journal of Algebra 353 (2012) 187–211
for all g ∈ G and all a ∈ A. We emphasize that the algebra homomorphism Φ need not be unitary, in
general. If it additionally is, that is, if we have Φ(1A) = 1B then the above compatibility condition (1)
simplifies to

Φ
(
α(g)

)= β
(
ϕ(g)

)
, for all g ∈ G.

Anyway, whenever (ϕ,Φ) : (G,α, A) −→ (H, β, B) and (ψ,Ψ ) : (H, β, B) −→ (K , γ , C) are morphisms
in A, their composition is defined to be (ψ,Ψ ) ◦ (ϕ,Φ) := (ψ ◦ ϕ,Ψ ◦ Φ), where the compositions
of the respective components are the usual compositions of group homomorphisms and algebra ho-
momorphisms, respectively. Hence A is indeed a category, from now on called the category of interior
algebras; an object (G,α, A) in A is called an interior G-algebra, and (ϕ,Φ) : (G,α, A) −→ (H, β, B) is
called a morphism of interior algebras.

We just remark that for the conjugation automorphisms κa ∈ Aut(A) and λb ∈ Aut(B) induced
by some a ∈ (Aα(G))× and b ∈ (Bβ(H))× , respectively, we also have the morphism (ϕ,λb ◦ Φ ◦ κa) :
(G,α, A) −→ (H, β, B). This defines an equivalence relation on the morphisms of interior algebras
(G,α, A) −→ (H, β, B), and the equivalence class

(ϕ, Φ̂) := {(ϕ,λb ◦ Φ ◦ κa)
∣∣ a ∈ (Aα(G)

)×
,b ∈ (Bβ(H)

)×}
is called the associated exomorphism of interior algebras.

By the above definition, (G,α, A) and (H, β, B) are isomorphic in A if and only if there exists
a morphism (ϕ,Φ) : (G,α, A) −→ (H, β, B) such that ϕ is an isomorphism of groups and Φ is an
(automatically unitary) isomorphism of algebras. So, in particular, if (G,α, A) is an interior algebra
and ϕ : H −→ G is an isomorphism of groups then also (H,α ◦ ϕ, A) is an interior algebra, and
(H,α ◦ ϕ, A) and (G,α, A) are isomorphic via (ϕ, idA). Analogously, if (G,α, A) is an interior algebra
and if Φ : A −→ B is an isomorphism of algebras then (G,Φ ◦ α, B) is also an interior algebra, and
(G,α, A) and (G,Φ ◦ α, B) are isomorphic via (idG ,Φ).

2.2. An equivalence relation. Let G and H be groups, let M be an F G-module, and let N be an F H-
module. Let further α : G −→ E×

M and β : H −→ E×
N be the corresponding representations, where

EM := EndF (M) and EN := EndF (N). Then (G,α, EM) and (H, β, EN ) are interior algebras.
(a) We say that the pairs (G, M) and (H, N) are equivalent if there are a group isomorphism

ϕ : G −→ H and a vector space isomorphism ψ : M −→ N such that, for all g ∈ G and all m ∈ M , we
have

ψ
(
α(g) · m

)= β
(
ϕ(g)

) · ψ(m).

This clearly is an equivalence relation on the set of all such pairs.
(b) The case G = H deserves particular attention: pairs (G, M) and (G, N) are equivalent, via (ϕ,ψ)

say, if and only if we have

β
(
ϕ(g)

) · n = ψ
(
α(g) · ψ−1(n)

)
for all g ∈ G and n ∈ N , that is, if and only if M and N are in the same Aut(G)-orbit on the set of
isomorphism classes of F G-modules. Moreover, M and N are isomorphic as F G-modules if and only if
ϕ can be chosen to be the identity idG . In particular, there are at most |Aut(G)| isomorphism classes
of F G-modules in the equivalence class of (G, M).

Lemma 2.3. We keep the notation of 2.2. Then the pairs (G, M) and (H, N) are equivalent if and only if the
associated interior algebras (G,α, EM) and (H, β, EN ) are isomorphic in A.

Moreover, if G = H then M and N are isomorphic as F G-modules if and only if (G,α, E M) and (G, β, EN )

are isomorphic in A via an isomorphism of the form (idG ,?).
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Proof. If (G, M) and (H, N) are equivalent via ϕ : G −→ H and ψ : M −→ N then

Ψ : EM −→ EN , γ �−→ ψ ◦ γ ◦ ψ−1

is an isomorphism of algebras, and we have Ψ (α(g)) = ψ ◦ α(g) ◦ ψ−1 = β(ϕ(g)), for all g ∈ G , thus
the interior algebras (G,α, EM) and (H, β, EN ) are isomorphic in A via (ϕ,Ψ ).

Let, conversely, (G,α, EM) and (H, β, EN ) be isomorphic via (ϕ,Ψ ), where ϕ : G −→ H is a group
isomorphism and Ψ : EM −→ EN is an isomorphism of algebras. Then, letting i ∈ E M be a primitive
idempotent, we may assume that M = EM i and, letting j := Ψ (i) ∈ EN , we may similarly assume that
N = EN j. Moreover, Ψ (EM i) = Ψ (EM)Ψ (i) = EN j shows that ψ := Ψ |EM i : EM i −→ EN j is a vector
space isomorphism, where for all g ∈ G and γ ∈ E M we have

ψ
(
α(g) · γ i

)= Ψ
(
α(g) · γ i

)= β
(
ϕ(g)

) · Ψ (γ ) j = β
(
ϕ(g)

) · ψ(γ i),

implying that (G, M) and (H, N) are equivalent via (ϕ,ψ). This proves the first statement.
The second statement can be found in [33, La. 10.7]. It also follows from the above observations, by

recalling that M and N are isomorphic F G-modules if and only if the group isomorphism ϕ : G −→ G
inducing an equivalence of pairs can be chosen to be the identity idG . �
Lemma 2.4. We keep the notation of 2.2, and let (G, M) and (H, N) be equivalent. Then the equivalence
classes of pairs (G, M ′) where M ′ is an indecomposable direct summand of the F G-module M coincide with
the equivalence classes of pairs (H, N ′) where N ′ is an indecomposable direct summand of the F H-module N.
In particular, the F G-module M is indecomposable if and only if the F H-module N is.

Proof. Let (G,α, EM) and (H, β, EN ) be isomorphic via (ϕ,Ψ ); such an isomorphism exists, by
Lemma 2.3. Given an indecomposable direct summand M ′ of M , let i ∈ (EM)α(G) be the associated
primitive idempotent, so that M ′ = iM , with associated representation

α′ : G −→ EiM = iEM i, g �−→ iα(g)i.

Hence, for j := Ψ (i) ∈ EN we have

β
(
ϕ(g)

)
j = β

(
ϕ(g)

)
Ψ (i) = Ψ

(
α(g)i

)= Ψ
(
iα(g)

)= Ψ (i)β
(
ϕ(g)

)= jβ
(
ϕ(g)

)
,

for all g ∈ G . Thus j ∈ (EN )β(H) is a primitive idempotent, giving rise to the indecomposable direct
summand jN of N , with associated representation

β ′ : H −→ E jN = jEN j, g �−→ jβ(g) j.

Moreover, we have an isomorphism of algebras

Ψ ′ := Ψ |iEM i : iEM i −→ jEN j, ixi �−→ Ψ (ixi) = jΨ (x) j.

Then we have

Ψ ′(α′(g)
)= Ψ ′(iα(g)i

)= jΨ
(
α(g)

)
j = jβ

(
ϕ(g)

)
j = β ′(ϕ(g)

)
,

for all g ∈ G . Thus the interior algebras (G,α′, iEM i) and (H, β ′, jEN j) are isomorphic in A via
(ϕ,Ψ ′), that is, the pairs (G, iM) and (H, jN) are equivalent. �
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Remark 2.5. (a) Let (G,α, A) be an interior algebra. For any A-module M with associated represen-
tation δ : A −→ EM := EndF (M) we obtain an F G-module Resα(M) by restriction along α, that is, the
associated representation is given as δ ◦ α : G −→ E×

M . Thus we get a functor

Resα : A-mod −→ F G-mod, M �−→ Resα(M).

Let (H, β, B) be an interior algebra, and let (ϕ,Φ) : (G,α, A) −→ (H, β, B) be a morphism in A.
Hence, by restriction along β and ϕ , respectively, we similarly get functors

Resβ : B-mod −→ F H-mod and Resϕ : F H-mod −→ F G-mod.

Moreover, for any B-module N with associated representation γ : B −→ E N := EndF (N) we obtain an
A-module ResΦ(N) := Φ(1A)N whose associated representation is given as

A −→ EndF
(
Φ(1A)N

)= Φ(1A)ENΦ(1A), x �−→ Φ(1A)γ
(
Φ(x)

)
Φ(1A).

This gives rise to a functor ResΦ : B-mod −→ A-mod.
(b) If additionally Φ is unitary, that is, Φ(1A) = 1B then the representation associated with

ResΦ(N) is obtained by restriction along Φ . Moreover, from Φ(α(g)) = β(ϕ(g)), for all g ∈ G , we
infer that we have the following equality of functors

Resα ◦ResΦ = Resϕ ◦Resβ : B-mod −→ F G-mod.

In other words, for any B-module N with associated representation γ : B −→ E N , we have

(γ ◦ Φ ◦ α)(g) · n = (γ ◦ β ◦ ϕ)(g) · n,

for all g ∈ G and all n ∈ N . In particular, if ϕ is an isomorphism then (G,Resα(ResΦ(N))) and
(H,Resβ(N)) are equivalent via (ϕ, idN ).

Definition 2.6. Let G be a group, and let M be an indecomposable F G-module. Assume that V � G is
a vertex of M and that S is a V -source of M . Then the elements of the equivalence class of the pair
(V , S) are called the vertex-source pairs of (G, M).

Proposition 2.7. If G is a group and M is an indecomposable F G-module then the vertex-source pairs
of (G, M) are pairwise equivalent.

Moreover, if H is a group and N is an indecomposable F H-module such that (G, M) is equivalent to (H, N)

then the vertex-source pairs of (G, M) and (H, N) are pairwise equivalent.

Proof. Let V � G be a vertex, and let S be a V -source of M . Then the set of all vertices of M is
given as { g V | g ∈ G} and, for a given g ∈ G , the set of g V -sources of M (up to isomorphism) is
{ hg S | h ∈ NG( g V )}. For g ∈ G and h ∈ NG( g V ), let

κ : V −→ g V = hg V , x �−→ hg x = hgxg−1h−1

be the associated conjugation homomorphism, and let ψ : S −→ hg S , m �−→ hg ⊗m. Then for all x ∈ V
and m ∈ S , we have

κ(x) · ψ(m) = ( hg x
) · (hg ⊗ m) = hg ⊗ (x · m) = ψ(x · m),

hence the pairs (V , S) and ( g V , hg S) are equivalent via (κ,ψ). Since every vertex-source pair
of (G, M) is equivalent to one of the pairs ( g V , hg S), this shows that all vertex-source pairs of (G, M)

belong to the same equivalence class.
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Moreover, if (G, M) and (H, N) are equivalent via (ϕ,ψ) then ψ(α(g) · m) = β(ϕ(g)) · ψ(m) for
all g ∈ G and m ∈ M , where α and β are the representations associated with M and N , respectively.
From this we infer that ϕ(V ) is a vertex of the F H-module N having ψ(S) as a ϕ(V )-source, and
that (V , S) is equivalent to (ϕ(V ),ψ(S)) via (ϕ|V ,ψ |S). �
Remark 2.8. We remark that, given G and an indecomposable F G-module M , specifying a vertex V
as a subgroup of G amounts to restricting to those vertex-source pairs of shape (V ,?), henceforth
only allowing for isomorphisms of the form (idV ,?). The above argument now shows that these
vertex-source pairs are given by the F V -modules { h S | h ∈ NG(V )/V CG(V )}, where S is one of the
V -sources. Thus we possibly do not obtain the full Aut(V )-orbit of S , but only see its orbit under
NG(V )/V CG(V ) � Aut(V ), as the following example shows:

Example 2.9. Let p := 2, let G := S6, and let M := D(5,1) be the natural simple FS6-module of F -
dimension 4. Then, by [24], the vertices of D(5,1) are the Sylow 2-subgroups of S6. Let P6 :=
P4 × P2 ∼= D8 × C2, where P4 = 〈(1,2), (1,3)(2,4)〉 and P2 := 〈(5,6)〉. Then P6 is a Sylow 2-subgroup
of S6 and, by [24], the restriction S := ResS6

P6
(D(5,1)) is indecomposable, thus every P6-source

of D(5,1) is isomorphic to S . Since NS6 (P6) = P6, in view of Proposition 2.7 we have to show that
the Aut(P6)-orbit of S consists of more than a single isomorphism class of F P6-modules.

Let ϕ ∈ Aut(P6) be the involutory automorphism given by fixing P4 = 〈(1,2), (1,3)(2,4)〉 and map-
ping (5,6) to (1,2)(3,4)(5,6). Since ResS6

S4
(D(5,1)) is the natural permutation FS4-module, there is

an F -basis of S with respect to which the elements of P4 are mapped to the associated permutation
matrices, while

(5,6) �−→
⎡⎢⎣

. 1 1 1
1 . 1 1
1 1 . 1
1 1 1 .

⎤⎥⎦ and ϕ
(
(5,6)

)= (1,2)(3,4)(5,6) �−→
⎡⎢⎣

1 1 . 1
1 1 1 .

. 1 1 1
1 . 1 1

⎤⎥⎦ .

It can be checked, for example with the help of the computer algebra system MAGMA [2], that the
F P6-modules S and ϕ S are not isomorphic.

2.10. Source algebras. Let G be a group, and let B be a block of F G . Let further P be a p-group such
that the defect groups of B are isomorphic to P . Then we have an embedding of groups f : P −→ G
such that f (P ) is a defect group of B . The block B is an indecomposable F [G ×G]-module with vertex
� f (P ) and trivial source. Moreover, there is an indecomposable direct summand M of ResG×G

f (P )×G(B)

with vertex � f (P ), where M is unique up to isomorphism and conjugation in NG( f (P )).
So there is a primitive idempotent i ∈ B f (P ) such that M = iB , where i is unique up to taking

associates in B f (P ) and conjugates under the action of NG( f (P )). We call i and M , respectively, a
source idempotent and a source module of B , respectively; as a general reference see [33, Ch. 38]. The
embedding f gives rise to the group homomorphism

α f ,i : P −→ (iBi)×, g �−→ i f (g)i,

which turns (P ,α f ,i, iBi) into an interior P -algebra. Note that α f ,i is injective, by [33, Exc. 38.2]. We
call an interior algebra that is isomorphic to (P ,α f ,i, iBi) in A a source algebra of B .

Proposition 2.11. Let G be a group, and let B be a block of F G. Then the source algebras of B are pairwise
isomorphic in A.

Moreover, if ψ : G −→ G ′ is a group isomorphism and if B ′ := ψ(B) is the block of F G ′ obtained by
extending ψ to F G then the source algebras of B and B ′ are pairwise isomorphic in A.

Proof. Let P be a p-group isomorphic to the defect groups of B , let f : P −→ G be an embedding
such that f (P ) � G is a defect group of B , and let α f ,i : P −→ (iBi)× , g �−→ i f (g)i be the associated
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group homomorphism, where i ∈ B f (P ) is a source idempotent. Moreover, let ϕ : Q −→ P be a group
isomorphism, and let f ′ : Q −→ G be an embedding such that f ′(Q ) � G is a defect group of B , with
associated group homomorphism α f ′, j : Q −→ ( jB j)× , where j ∈ B f ′(Q ) is a source idempotent. Note
that, hence, there is some h ∈ G such that f ′(Q ) = h f (P ), and the idempotents hi = hih−1 and j are
associate in B f ′(Q ) . To show that (P ,α f ,i, iBi) is isomorphic to (Q ,α f ′, j, jB j) in A we proceed in
three steps:

(i) We first consider the particular case where Q = P , ϕ = id, and f ′ = f , and let j ∈ B f (P ) be a
source idempotent that is associate to i. Then there is some a ∈ (B f (P ))× such that j = ai = aia−1,
and κ : iBi −→ jB j, x = ixi �−→ a(ixi) = j( ax) j is an isomorphism of algebras. Hence, we obtain the
group homomorphism

κ ◦ α f ,i : P −→ ( jB j)×, g �−→ a(i f (g)i
)= j

(
af (g)a−1) j = j f (g) j,

that is, κ ◦α f ,i = α f ′, j . Moreover, κ(α f ,i(g)) = a(i f (g)i) = j f (g) j = α f ′, j(g), for all g ∈ P , shows that
the interior P -algebras (P ,α f ,i, iBi) and (P ,α f ′, j, jB j) are isomorphic via (idP , κ).

(ii) Next, let still ϕ = id, let h ∈ G be arbitrary with associated conjugation automorphism G −→ G ,
g �−→ h g = hgh−1, and let f ′ : P −→ G , g �−→ hf (g)h−1 be the associated conjugated embedding.
Since j ∈ B f ′(P ) is a source idempotent, by (i) we may assume that j = hi. This yields the iso-
morphism of algebras γ : iBi −→ jB j, x = ixi �−→ h(ixi) = j( hx) j and, associated to f ′ , the group
homomorphism

α f ′, j = γ ◦ α f ,i : P −→ ( jB j)×, g �−→ h(i f (g)i
)= j

(
hf (g)h−1) j.

Moreover, γ (α f ,i(g)) = h(i f (g)i) = j(hf (g)h−1) j = α f ′, j(g), for all g ∈ P , shows that the interior P -
algebras (P ,α f ,i, iBi) and (P ,α f ′, j, jB j) are isomorphic via (idP , γ ).

(iii) We finally consider the general case of a group isomorphism ϕ : Q −→ P and an embedding
f ′ : Q −→ G as above. By (ii) we may assume that f ′(Q ) = f (P ). Hence, there is a group automor-
phism ρ : f (P ) −→ f (P ) such that f ◦ϕ = ρ ◦ f ′. Thus, replacing ϕ by ϕ′ := ( f −1 ◦ρ−1 ◦ f )◦ϕ we get
f ◦ ϕ′ = f ′ . So we may assume that f ◦ ϕ = f ′ . Moreover, by (ii) we may assume that j = i ∈ B f (P ) .
Hence we have the associated group homomorphisms

α f ,i : P −→ (iBi)×, g �−→ i f (g)i and α f ′,i : Q −→ (iBi)×, h �−→ i f ′(h)i = i f
(
ϕ(h)

)
i.

Moreover, α f ′,i(h) = i f (ϕ(h))i = α f ,i(ϕ(h)), for all h ∈ Q , which shows that the interior algebras
(Q ,α f ′,i, iBi) and (P ,α f ,i, iBi) are isomorphic via (ϕ, idiBi). This proves the first statement.

Let ψ : G −→ G ′ be a group isomorphism, which extends to an F -algebra isomorphism ψ : F G −→
F G ′ , and let B ′ := ψ(B). Then, letting f ′ := ψ ◦ f : P −→ G ′ , we conclude that f ′(P ) is a defect group
of B ′ , and i′ := ψ(i) ∈ (B ′) f ′(P ) is a source idempotent of B ′ . Thus we get (P ,α f ′,i′ , i′B ′i′) as a source
algebra associated with B ′ , where

α f ′,i′ = ψ ◦ α f ,i : P −→ (
i′B ′i′

)× = ψ(iBi)×, g �−→ i′ f ′(g)i′ = ψ
(
i f (g)i

)
.

Then we have ψ(α f ,i(g)) = α f ′,i′(g), for all g ∈ P , that is, (P ,α f ,i, iBi) and (P ,α f ′,i′ , i′B ′i′) are iso-
morphic in A via (idP ,ψ |iBi). Since, by what we have shown above, every source algebra of B is
A-isomorphic to (P ,α f ,i, iBi) and every source algebra of B ′ is A-isomorphic to (P ,α f ′,i′ , i′B ′i′), this
completes the proof of the proposition. �
Remark 2.12. We remark that specifying a defect group P of the block B as a subgroup of G amounts
to keeping the embedding f : P −→ G fixed, and thus to restricting to the source algebras of shape
(P ,α f ,i, iBi), for some i ∈ B f (P ) , and to isomorphisms of the form (idP ,Φ). The above argument
now shows that the isomorphisms Φ realized in G are precisely those of the form Φ = γ ◦ κ , where
κ : iBi −→ iBi, x �−→ ax is the inner automorphism of iBi induced by some a ∈ (iBi)× , and where
γ : iBi −→ jB j, x �−→ hx is induced by the conjugation automorphism G −→ G afforded by some
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h ∈ NG( f (P )), where j := hi. Hence possibly not all elements of the isomorphism class of (P ,α f ,i, iBi)
are realized as source algebras in this strict sense, as the following example shows:

Example 2.13. Let p := 3 and let G = P = 〈z〉 ∼= C3 be the cyclic group of order 3; hence F P is a local
F -algebra. Letting f = idP : P −→ P , the source algebra of B = F P (by necessarily taking i := 1F P ) is
given as (P ,αidP , F P ). Thus (P ,αidP , F P ) is the only interior algebra in its isomorphism class that is
actually realized in the above strict sense.

We describe all interior algebras (P ,?, F P ) isomorphic to (P ,αidP , F P ) in A, that is, all source
algebras of F P in the sense of 2.10: note first that in this particular case any group automor-
phism of P can be extended uniquely to an algebra automorphism of F P , so that any isomorphism
(P ,αidP , F P ) −→ (P ,?, F P ) is of the form (idP ,Φ), where Φ ∈ Aut(F P ) is an algebra automorphism
of F P .

Letting y := 1 − z ∈ F P , hence y2 = 1 + z + z2, the F -basis {1, y, y2} is adjusted to the radical
series F P = J 0(F P ) > J 1(F P ) > J 2(F P ) > J 3(F P ) = {0} of F P , and it can be checked, for example
with the help of the computer algebra system GAP [14], that, with respect to this basis, we have

Aut(F P ) ∼=
{

Φa,b :=
[1 . .

. a .

. b a2

]
∈ GL3(F )

∣∣∣ a ∈ F ×, b ∈ F

}
.

Hence we have Φa,b(z) = (1 −a −b)+ (a −b)z −bz2; in particular, we have idF P = Φ1,0, and the non-
trivial automorphism of P , mapping z �−→ z2, extends to Φ−1,−1. Thus the interior algebras looked
for are given as (P ,Φa,b ◦ αidP , F P ), where (P ,αidP , F P ) = (P ,Φ1,0 ◦ αidP , F P ).

Finally note that this does not encompass all possible embeddings P −→ (F P )×: since −z − z2 ∈
(F P )× has order 3, there is an embedding of groups β : P −→ (F P )× , z �−→ −z − z2, which extends
to the unitary algebra endomorphism Φ0,1 of F P , which is not an automorphism. Anyway, this gives
rise to the interior algebra (P , β, F P ), which is not isomorphic to (P ,αidP , F P ) in A, hence is not a
source algebra of F P .

3. Reducing Feit’s Conjecture to Puig’s Conjecture

We have now prepared the language to state Feit’s Conjecture on sources of simple modules over
group algebras as well as Puig’s Conjecture on source algebras of blocks precisely. We will then prove
the reduction theorem relating these conjectures, which we will use extensively throughout this pa-
per.

3.1. Source algebras vs vertex-source pairs. (a) The relation between source algebras, in the sense of 2.10,
and vertex-source pairs, in the sense of Definition 2.6, is given as follows: let G be a group, let B
be a block of F G , let f : P −→ G be an embedding such that f (P ) � G is a defect group of B , and
let (P ,α f ,i, iBi) be a source algebra of B . Then, by [33, Prop. 38.2], we have a Morita equivalence
between the algebras B and iBi, in the language of Remark 2.5 given by the restriction functor

ResΨ : B-mod −→ iBi-mod

with respect to the natural embedding of algebras Ψ : iBi −→ B .
Suppose that M is an indecomposable F G-module belonging to the block B . Then the Morita

correspondent of M in iBi is ResΨ (M) = iM . Moreover, restricting iM along α f ,i , we get an F P -
module Resα f ,i (iM), which is, in general, decomposable. By [33, Prop. 38.3], the vertex-source pairs
of (G, M) are precisely the vertex-source pairs (Q ,?) of the indecomposable direct summands of the
F P -module Resα f ,i (iM) such that |Q | is maximal.

(b) We show that proceeding like this to determine the vertex-source pairs of (G, M) is indepen-
dent of the particular choice of a source algebra: let (D,α, A) be any source algebra of B . Hence, by
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Proposition 2.11, there is an isomorphism (ϕ,Φ) : (D,α, A) −→ (P ,α f ,i, iBi) in A. By Remark 2.5, we
have an equivalence

ResΦ : iBi-mod −→ A-mod.

Letting N := ResΦ(iM), we infer that the pairs (P ,Resα f ,i (iM)) and (D,Resα(N)) are equivalent.
Hence, by Lemma 2.4, the equivalence classes of pairs (P , M ′) where M ′ is a direct summand of the
F P -module iM coincide with the equivalence classes of pairs (D, N ′) where N ′ is a direct summand of
the F D-module N . Moreover, if the pairs (P , M ′) and (D, N ′) are equivalent then, by Proposition 2.7,
their vertex-source pairs are pairwise equivalent.

In conclusion, to find the vertex-source pairs of (G, M), we may go over from (P ,α f ,i, iBi) to an
arbitrary source algebra (D,α, A) by considering the module N instead, and check the above maxi-
mality condition by varying over the pairs (D, N ′).

Definition 3.2. Let G be a set of groups, and let Q be a p-group.
(a) We define V G (Q ) to be the set of all equivalence classes of pairs (Q , L) where L is an inde-

composable F Q -module such that (Q , L) is a vertex-source pair of some pair (G, M), where G is a
group in G and M is a simple F G-module. In the case that G is the set of all (finite) groups, we also
write V (Q ) rather than V G (Q ).

(b) We say that G has the vertex-bounded-defect property with respect to Q if there is an integer
cG (Q ) such that, for every pair (Q , L) in V G (Q ) and for every pair (G, M) consisting of a group G
in G and a simple F G-module M having (Q , L) as a vertex-source pair, M belongs to a block of F G
having defect groups of order at most cG (Q ).

Remark 3.3. The vertex-bounded-defect property, by [11], holds in the case where Q is cyclic, with
c(Q ) = |Q |, including the case Q = {1}, covering all blocks of finite representation type. But it does
indeed not hold in general, where, in particular, in the realm of blocks of tame representation type
there are prominent counterexamples:

Let p = 2. For the groups {PSL2(q) | q ≡ 1 (mod 4)}, the Sylow 2-subgroups are isomorphic to
the dihedral group D(q−1)2 , where (q − 1)2 denotes the 2-part of q − 1. Also, there is a simple
F [PSL2(q)]-module in the principal block having dimension (q − 1)/2 and whose vertices, by [10], are
isomorphic to the Klein four-group V 4 ∼= C2 × C2. Moreover, for the groups {SL2(q) | q ≡ 1 (mod 4)},
consisting of the universal covering groups of groups above, the Sylow 2-subgroups are isomorphic
to the generalized quaternion group Q2(q−1)2 , and the inflations of the above simple F [PSL2(q)]-
modules to F [SL2(q)] have vertices isomorphic to the quaternion group Q8. Finally, for the groups
{GU2(q) | q ≡ 1 (mod 4)} the Sylow 2-subgroups are isomorphic to the semidihedral group SD4(q−1)2 ,
and the identification SL2(q) ∼= SU2(q) shows that there is a simple F [GU2(q)]-module in the princi-
pal block having dimension q − 1 whose vertices are isomorphic to V 4. (Alternatively, for the groups
{PSL3(q) | q ≡ 3 (mod 4)}, the Sylow 2-subgroups are isomorphic to the semidihedral group SD2(q+1)2 ,
and there is a simple F [PSL3(q)]-module in the principal block having dimension q(q + 1) whose
vertices, by [9], are isomorphic to V 4.)

From these cases we also obtain blocks of wild representation type violating the vertex-bounded-
defect property, for example by taking direct products. Hence the question arises for which defect
groups P or groups G one might expect the vertex-bounded-defect property to hold. In particular, the
following is in [34] attributed to Puig:

Question 3.4. If p is odd, does then G always have the vertex-bounded-defect property with respect
to Q ?

We can now state Feit’s and Puig’s Conjectures, and prove the reduction theorem.

Conjecture 3.5. (See Feit [12].) Let G be a set of groups (which might, in particular, be the set of all groups),
let Q be a p-group, and let V G (Q ) denote the set of equivalence classes of vertex-source pairs introduced in
Definition 3.2. Then V G (Q ) is finite.
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In consequence of Lemma 2.3, we can reformulate Feit’s Conjecture equivalently also in the fol-
lowing way:

Conjecture 3.6. Let G be a set of groups, and let Q be a p-group. Then there are, up to isomorphism in A, only
finitely many interior algebras (Q ,α, EL), where EL = EndF (L) for an indecomposable F Q -module L with
corresponding representation α : Q −→ E×

L , such that (Q , L) is a vertex-source pair of some pair (G, M),
where G is a group in G and M is a simple F G-module.

Conjecture 3.7 (Puig). Let G be a set of groups (which might, in particular, be the set of all groups), and let
P be a p-group. Then there are only finitely many A-isomorphism classes of interior algebras of p-blocks of
groups in G whose defect groups are isomorphic to P .

As for the origin of this conjecture, see [33, Conj. 38.5], and the comment on [33, p. 340].

Theorem 3.8. Let G be a set of groups satisfying the vertex-bounded-defect property with respect to any p-
group. Suppose that Puig’s Conjecture 3.7 holds true for G . Then Feit’s Conjecture 3.5 is true for G as well.

Proof. Let Q be a p-group, and let cG (Q ) be the integer appearing in Definition 3.2. Then there are
finitely many (mutually non-isomorphic) p-groups R1, . . . , Rn such that, whenever G ∈ G and M is
a simple F G-module with vertex isomorphic to Q , the defect groups of the block containing M are
isomorphic to one of the groups in {R1, . . . , Rn}.

Let k ∈ {1, . . . ,n}. Then, by Puig’s Conjecture, there are, up to isomorphism in A, only finitely
many interior Rk-algebras occurring as source algebras of p-blocks for groups in G with defect groups
isomorphic to Rk . Denote by {(Rk,αk,1, Ak,1), . . . , (Rk,αk,lk , Ak,lk )} a transversal for these isomorphism
classes.

Let further r ∈ {1, . . . , lk}, and choose representatives {Mk,r,1, . . . , Mk,r,dk,r } for the isomorphism
classes of simple Ak,r -modules. Via restriction along αk,r we get F Rk-modules Resαk,r (Mk,r,1), . . . ,

Resαk,r (Mk,r,dk,r ). For each i ∈ {1, . . . ,dk,r} we determine a vertex-source pair (Q k,r,i, Sk,r,i) of an inde-
composable direct summand of Resαk,r (Mk,r,i) such that |Q k,r,i| is maximal. So this gives rise to the
finite set of pairs

V :=
n⋃

k=1

lk⋃
r=1

dk,r⋃
i=1

{
(Q k,r,i, Sk,r,i)

}
.

Consequently, by [33, Prop. 38.3], any vertex-source pair of some pair (G, M), with G ∈ G and M a
simple F G-module, is equivalent to one of the pairs in the finite set V . Hence V G (Q ) is finite, proving
Feit’s Conjecture. �

To prove Feit’s Conjecture for the groups listed in the main theorem, we are going to apply The-
orem 3.8. In order to do so, we will show that each of these sets satisfies the vertex-bounded-defect
property with respect to any p-group; this will be done by giving explicit bounds as in the next
theorem, whose proof will be broken up into several steps in subsequent sections.

Theorem 3.9. Let Q be a p-group, let G be a finite group possessing a simple F G-module M belonging to a
block with defect group isomorphic to P , and having vertices isomorphic to Q . Then the following hold:

(a) If G = Sn then |P | � |Q |!.
(b) If G = An and p = 2 then |P | � (|Q | + 2)!/2.
(c) If G ∈ {S̃n, Ŝn} and p � 3 then |P | � |Q |!.
(d) If G = Bn and p � 3 then |P | � |Q |!.
(e) If G = Bn and p = 2 then |P | � |Q | · log2(|Q |)!.
(f) If G = Dn and p = 2 then |P | � |Q | · (log2(|Q |) + 1)!.
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Proof. (a) follows from [6, Thm. 5.1].
(b) is proved in Proposition 4.7.
(c) is proved in Proposition 5.2.
(d) is proved in Proposition 6.5.
(e) and (f) are proved in 6.3. �
Using Theorems 3.8 and 3.9, we are now in a position to prove our main result:

Theorem 3.10. Feit’s Conjecture holds for the following groups:

{Sn}n�1, {An}n�1, {S̃n}n�1, {Ŝn}n�1, {Ãn}n�1, {Bn}n�2, {Dn}n�4.

Proof. (i) Let G = {Sn}n�1. Then Puig’s Conjecture holds for G , by work of Puig [30] and Scopes [32].
Moreover, G has the vertex-bounded-defect property with respect to any p-group, by Theorem 3.9(a).
Hence Feit’s Conjecture holds, by Theorem 3.8.

(ii) Let G = {An}n�1. Suppose first that p � 3, and let E be a simple FAn-module with vertex-

source pair (Q , L). Then there is a simple FSn-module D such that E | ResSn
An

(D). Furthermore, (Q , L)

is also a vertex-source pair of D . Hence we have V G (Q ) ⊆ V{Sn}(Q ), and we are done using (i).
Let now p = 2. Then Puig’s Conjecture holds for G , by work of Kessar [21]. Moreover, G has the

vertex-bounded-defect property with respect to any p-group, by Theorem 3.9(b). Hence Feit’s Conjec-
ture holds, by Theorem 3.8.

(iii) Let G = {S̃n}n�1, where we may argue identically for G = {Ŝn}n�1. Suppose first that p � 3.
Then Puig’s Conjecture holds for G , by work of Kessar [19]. Moreover, G has the vertex-bounded-
defect property with respect to any p-group, by Theorem 3.9(c). Hence Feit’s Conjecture holds, by
Theorem 3.8.

Let now p = 2, and let D be a simple F S̃n-module. Since Z := 〈z〉 � Z(S̃n), in the notation of 5.1,
is a normal 2-subgroup of S̃n , it acts trivially on D . Thus there is a simple FSn-module D such that

D = InfS̃n
Z (D), where Inf denotes the inflation from FSn-modules to F S̃n-modules via the normal

subgroup Z � S̃n . If (Q , L) is a vertex-source pair of D then Z � Q and Q := Q /Z is a vertex of D .
Moreover, there is an indecomposable F Q -module L such that L ∼= InfQ

Z (L) and such that (Q , L) is a
vertex-source pair of D , see [23, Prop. 2.1] and [16, Prop. 2]. Hence we have |V G (Q )| � |V{Sn}(Q )|,
and we are done by (i).

(iv) Let G = {Ãn}n�1. Letting again first p � 3, we may argue as in (ii) to show that V G (Q ) ⊆
V{S̃n}(Q ), and we are done using (iii). Moreover, letting p = 2, since Z � Ãn , again using the notation

of 5.1, we may argue as in (iii) to show that |V G (Q )| � |V{An}(Q )|, and we are done using (ii).
(v) Let G = {Bn}n�2. Then Puig’s Conjecture holds for G , by work of Kessar [20]. Moreover, G has

the vertex-bounded-defect property with respect to any p-group, by Theorem 3.9 (d) and (e). Hence
Feit’s Conjecture holds, by Theorem 3.8.

(vi) Let G = {Dn}n�4. Again suppose first that p � 3. Then we may argue as in (ii) to show that
VG (Q ) ⊆ V{Bn}(Q ), and we are done using (v). Moreover, letting p = 2, Puig’s Conjecture holds for
G , by work of Kessar [20], and G has the vertex-bounded-defect property by Theorem 3.9(f). Hence
Feit’s Conjecture holds, by Theorem 3.8. �
Remark 3.11. We remark that the list of groups in Theorem 3.10 in particular encompasses all infinite
series of real reflection groups, except the groups of type I2(m), that is, the dihedral groups D2m ,
where m � 3. We give a direct proof that Feit’s Conjecture holds for G = {D2m}m�3 as well; note that,
since D2m is soluble, this also follows from much more general work of Puig [29,31]:

Let first p be odd. Then D2m ∼= Cm : C2 has a normal cyclic Sylow p-subgroup Cmp , where mp

denotes the p-part of m. Hence, by [11], any simple F D2m-module has the normal subgroup Cmp as
its vertex, and is thus a trivial-source module. Hence Feit’s Conjecture holds for G . Note that, by [33,
Thm. 45.12], the source algebras of the blocks in question are isomorphic to F Cmp or F [Cmp : C2] ∼=
F D2mp as interior Cmp -algebras, thus Puig’s Conjecture holds for G as well.
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Let now p = 2, and let D be a simple F D2m-module. Then there are two cases: if D is relatively
Cm-projective then D has a normal subgroup Cm2 as its vertex, and is thus a trivial-source module. If
D is not relatively Cm-projective then its restriction to Cm � D2m is simple, hence one-dimensional,
implying again that D is a trivial-source module. Hence Feit’s Conjecture holds for G . Note that, since
D2m is 2-nilpotent, by [33, Prop. 49.13] the blocks in question are nilpotent, hence, by Puig’s Theorem
[33, Thm. 50.6], their source algebras are isomorphic to EndF (iD) ⊗F F P , where i denotes a source
idempotent, and the defect groups in the two cases are P = Cm2 and P = D2m2 , respectively; thus,
since D is a trivial-source module, we, moreover, conclude that iD is the trivial F P -module, hence
the source algebras are isomorphic to F P as interior P -algebras, so that Puig’s Conjecture holds for G
as well.

Thus it remains to prove Theorem 3.9. To do so, we will often argue along the lines of [6], where
Theorem 3.9(a) has already been established. The key to this line of reasoning is the following:

Remark 3.12. By a Brauer pair of a group G we understand a pair (P ,b) where P is a p-subgroup of G
and b is a block of F [P CG(P )]. Recall that the Brauer correspondent bG , a block of F G , is defined, and
if B = bG then we call (P ,b) a Brauer B-pair. Moreover, in the case that P is a defect group of the
block b we call (P ,b) a self-centralizing Brauer pair.

Let now G be a set of groups, and let Q be a p-group. We say that G has the strongly-bounded-
defect property with respect to Q if there is an integer dG (Q ) such that, for every group G in G , the
Brauer correspondent (bQ )G of any self-centralizing Brauer pair (Q ,bQ ) of G has defect groups of
order at most dG (Q ).

By Knörr’s Theorem [22], given a block B of G , a self-centralizing Brauer B-pair exists, in particular,
in the case where Q is a vertex of some simple F G-module M belonging to the block B . Hence to
prove the vertex-bounded-defect property of G with respect to a p-group Q , it suffices to show the
strongly-bounded-defect property of G with respect to Q , and we infer cG (Q ) � dG (Q ). We remark
that the converse of Knörr’s Theorem does not hold, see for example Example 4.8, but, to the authors’
knowledge, there are no general results known towards a characterization of those self-centralizing
Brauer pairs whose first components actually occur as vertices of simple modules.

Actually, we prove the strongly-bounded-defect property in the cases (a)–(c) of Theorem 3.9, while
for the cases (d)–(f) we are content with the weaker vertex-bounded-defect property.

Before we proceed, we give a lemma needed later, relating Brauer correspondence to covering of
blocks. It should be well known, but we have not been able to find a suitable reference.

Lemma 3.13. Let G be a finite group, and let H � G. Moreover, let Q � H be a p-subgroup, let (Q ,b) be a
Brauer pair of H, that is, b is a block of F [Q C H (Q )], and let b̃ be a block of F [Q CG(Q )] covering b. Then the
Brauer correspondent b̃G of b̃ in G covers the Brauer correspondent bH of b in H.

Proof. By Passman’s Theorem [25, Thm. 5.5.5], we have to show that

ωb̃G

(
hG+)= ωbH

(
hG+) for all h ∈ H,

where the ω’s are the associated central characters, hG is the G-conjugacy class of h ∈ H , and M+
denotes the sum over any subset M ⊆ G . By definition of the Brauer correspondence, and by Passman’s
Theorem again, for all h ∈ H , we have

ωbH

(
hG+)= ωb

((
hG ∩ Q C H (Q )

)+)= ωb
((

hG ∩ Q CG(Q )
)+)

= ωb̃

((
hG ∩ Q CG(Q )

)+)= ωb̃G

(
hG+),

proving the lemma. �
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4. The alternating groups An

We proceed to prove the bound given in Theorem 3.9 for the alternating groups. We begin by
fixing our notation for the Sylow p-subgroups of the symmetric and alternating groups, respectively;
for later use we do this for arbitrary p. Then we focus on the case p = 2, collect the necessary facts
about the self-centralizing Brauer pairs of the alternating groups, and use this to finally prove the
desired bound.

4.1. Sylow p-subgroups. (a) We will use the following convention for denoting the Sylow p-subgroups
of Sn and An , respectively. Let Sn act on the set {1, . . . ,n}. Suppose first that n = pm , for some
m ∈ N. Moreover, let C p := 〈(1,2, . . . , p)〉, and set P1 := 1, P p := C p and P pi+1 := P pi � C p =
{(x1, x2, . . . , xp;σ) | x1, . . . , xp ∈ P pi , σ ∈ C p} for i � 1. As usual, for any i ∈ N0, we view P pi as a
subgroup of Spi in the obvious way. Then, by [18, 4.1.22, 4.1.24], P pm is a Sylow p-subgroup of Spm ,
and is generated by the following elements, where j = 1, . . . ,m:

g j :=
p j−1∏
k=1

(
k,k + p j−1,k + 2p j−1, . . . ,k + (p − 1)p j−1). (2)

For instance, if p = 2 then P8 is generated by g1 = (1,2), g2 = (1,3)(2,4), and g3 = (1,5)(2,6)

(3,7)(4,8).
(b) Next let n ∈ N be divisible by p, with p-adic expansion n =∑s

j=1 α j pi j , for some s � 1,

i1 > · · · > is � 1, and 1 � α j � p − 1 for j = 1, . . . , s. By [18, 4.1.22, 4.1.24], Pn :=∏s
j=1
∏α j

l j=1 P
pi j ,l j

is

then a Sylow p-subgroup of Sn . Here, the direct factor P pi1 ,1 is acting on {1, . . . , pi1 }, P pi1 ,2 is acting

on {pi1 + 1, . . . ,2pi1 }, and so on. If, finally, n � p + 1 is not divisible by p then we set Pn := Pr where
r < n is maximal with p | r. So, in any case, Pn is a Sylow p-subgroup of Sn .

(c) We will examine the case p = 2 in more detail, as this will be of particular importance for
our subsequent arguments. As above, suppose that n is even, with 2-adic expansion n =∑s

j=1 2i j , for

some s � 2 and i1 > i2 > · · · > is � 1. Letting n j := 2i j , we get Pn =∏s
j=1 Pn j , where Pn j is understood

to be acting on the set

Ω j :=
{( j−1∑

l=1

nl

)
+ 1, . . . ,

j∑
l=1

nl

}
,

for j = 1, . . . , s. The corresponding generating set for Pn j given by (2) will be denoted by
{g1, j, . . . , gi j , j}, for j = 1, . . . , s. So if, for instance, n = 14 = 8 + 4 + 2 then Pn = P14 is generated
by g1,1 = (1,2), g2,1 = (1,3)(2,4), g3,1 = (1,5)(2,6)(3,7)(4,8), g1,2 = (9,10), g2,2 = (9,11)(10,12),
and g1,3 = (13,14).

(d) We now set Q n := Pn ∩ An , so that Q n is a Sylow p-subgroup of the alternating group An . If
p > 2 then clearly Q n = Pn . Thus, suppose again that p = 2. If n = 2 then Q n = Q 2 = 1. If n = 2m , for
some m � 2, then, by (2), we obtain the following generators for Q n:

h1 := (1,2)
(
2m−1 + 1,2m−1 + 2

); h j := g j, for j = 2, . . . ,m. (3)

For clearly Q := 〈h1, . . . ,hm〉 � Q n , and Q 〈(1,2)〉 = 〈(1,2)〉Q = Pn . Thus Q = Q n .
If n > 4 is even but not a power of 2 then we again consider the 2-adic expansion n =∑s

j=1 2i j ,
for some s � 2 and some i1 > · · · > is � 1. Then the following elements generate Q n:

h1, j := g1,s g1, j, for j = 1, . . . , s − 1;
hk, j := gk, j, for j = 1, . . . , s and k = 2, . . . , i j . (4)
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Namely, these elements generate a subgroup Q of Q n such that Q 〈g1,s〉 = 〈g1,s〉Q = Pn . For instance,
Q 14 = P14 ∩ A14 = (P8 × P4 × P2) ∩ A14 is generated by the elements h1,1 = (1,2)(13,14), h1,2 =
(9,10)(13,14), h2,1 = (1,3)(2,4), h3,1 = (1,5)(2,6)(3,7)(4,8), and h2,2 = (9,11)(10,12).

For the remainder of this section, let p = 2.

Proposition 4.2. Let n =∑s
j=1 2i j � 2 be the 2-adic expansion of n, where s ∈ N and i1 > · · · > is � 1, and

let again n j := 2i j for j = 1, . . . , s.

(a) If n ≡ 0 (mod 4) then

CSn (Q n) = CAn (Q n) = Z(Q n) =
{

Q 4, if n = 4,

Z(Pn) = Z(Pn1) × · · · × Z(Pns ), if n > 4.

(b) If n ≡ 2 (mod 4) then is = 1, and

CSn (Q n) = Z(Pn) = Z(Pn1) × · · · × Z(Pns ) = Z(Q n) × P2 = CAn (Q n) × P2.

Proof. We may assume that n � 4. Then Ω1, . . . ,Ωs are the orbits of Pn on {1, . . . ,n}, as well as
the orbits of Q n on {1, . . . ,n}, where Ω j is as above in 4.1(c). Since |Ω1| > · · · > |Ωs|, the Q n-sets
Ω1, . . . ,Ωs are pairwise non-isomorphic. For j = 1, . . . , s, let ω j ∈ Ω j , and set R j := StabQ n (ω j). Then
Ω j is as Q n-set isomorphic to Q n/R j , and we have the following group isomorphism, see [6, La. 4.3]:

s∏
j=1

N Q n (R j)/R j −→ CSn (Q n).

In particular, CSn (Q n) is a 2-group and, hence, so is Q nCSn (Q n). Thus there is some g ∈ Sn such
that g(Q nCSn (Q n)) � Pn . In particular, we have g Q n � Pn ∩An = Q n , that is, g ∈ NSn (Q n). Hence we
have g ∈ NSn (CSn (Q n)) as well, implying CSn (Q n) � Pn , and thus CSn (Q n) = C Pn (Q n). So it suffices
to show that

C Pn (Q n) =
{

Q 4, if n = 4,

Z(Pn), if n �= 4,

since then we also get

CAn (Q n) = Z(Q n) =
⎧⎨⎩

Q 4, if n = 4,

Z(Pn), if 4 < n ≡ 0 (mod 4),

Z(Pn1) × · · · × Z(Pns−1), if n ≡ 2 (mod 4).

The statement for n = 4 is clear. Next suppose that n = 2m , for some m � 3. We argue with
induction on m, and show that Z(Pn) = C Pn (Q n). For m = 3 this is immediately checked to be
true, so that we may now suppose that m > 3. We consider Pn again as the wreath product
P2m−1 � C2 = {(x1, x2;σ) | x1, x2 ∈ P2m−1 , σ ∈ C2}. Let x := (x1, x2;σ) ∈ C Pn (Q n), so that, for each
y := (y1, y2;π) ∈ Q n , we have

(x1 yσ (1), x2 yσ (2);σπ) = (x1, x2;σ)(y1, y2;π) = (y1, y2;π)(x1, x2;σ)

= (y1xπ(1), y2xπ(2);πσ). (5)

Setting y1 := y2 := 1 and π := (1,2), Eq. (5) yields x1 = x2. Next we set π := 1, y1 := 1, and
1 �= y2 ∈ Q 2m−1 . Then (5) this time implies x1 yσ(1) = x1 and x1 yσ(2) = y2x1. Therefore σ = 1 and
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x1 ∈ C P2m−1 (Q 2m−1). Thus, by induction, x1 ∈ Z(P2m−1 ). Consequently, x = (x1, x1;1) ∈ Z(Pn), and we
have C Pn (Q n) = Z(Pn) � Q n .

Now let n > 4 with s � 2. We show that also in this case C Pn (Q n) = Z(Pn) = Z(Pn1 ) × · · · ×
Z(Pns ). For this, let x ∈ C Pn (Q n), and write x = x1 · · · xs for appropriate x j ∈ Pn j and j = 1, . . . , s. Since
Q n1 × · · · × Q n j � Q n , we deduce that x j ∈ C Pn j

(Q n j ), for j = 1, . . . , s. Hence, by what we have just

proved above, x j ∈ Z(Pn j ) if i j > 2. Moreover, x j ∈ Z(Q 4) = Q 4 if i j = 2, and clearly x j ∈ Z(P2) = P2
if i j = 1. Suppose that there is some j ∈ {1, . . . , s} with i j = 2. Then j ∈ {s − 1, s}. We need to show
that x j ∈ Z(P4). Assume that this is not the case. In the notation of 4.1, we may then suppose that
x j = hi j , j = g2, j . But this leads to the contradiction x(g1, j g1,s)x−1 = x j g1, j x j · g1,s �= g1, j g1,s if j =
s − 1, and to the contradiction x(g1,1 g1, j)x−1 = g1,1 · x j g1, j x j �= g1,1 g1, j if j = s. Thus also x j ∈ Z(P4),
and we have shown that Z(Pn) � C Pn (Q n) � Z(Pn1 ) × · · · × Z(Pns ) = Z(Pn). �
4.3. The 2-Blocks of An. (a) Recall from [18, 6.1.21] that each block B of FSn can be labelled combina-
torially by some integer w � 0 and a 2-regular partition κ of n − 2w . We call w the 2-weight of B ,
and κ the 2-core of B . Moreover, by [18, Thm. 6.2.39], the defect groups of B are in Sn conjugate to
P2w � S2w � Sn .

(b) The following relationships between blocks of FSn and FAn are well known; see for in-
stance [27]: for any partition λ of n, we denote its conjugate partition by λ′ . That is, the Young
diagram [λ′] of λ′ is obtained by transposing the Young diagram [λ].

Suppose now that B is a block of FSn of weight w and with 2-core κ . Denote the corresponding
block idempotent of FSn by eB . The 2-core κ is a triangular partition, so that κ = κ ′ . If w � 1 then
eB is a block idempotent of FAn , and if w = 0 then eB = eB ′ + eB ′′ for Sn-conjugate blocks B ′ �= B ′′
of FAn of defect 0; note that for w = 1 this also yields a (single) block of FAn of defect 0. Hence, the
weight of any block of FAn is understood to be the weight w of the covering block of FSn , and the
associated defect groups are in An conjugate to Q 2w � A2w � An .

(c) Let B be a block of FAn of weight w � 0. Let further (Q ,bQ ) be a self-centralizing Brauer
B-pair. Then, by [25, Thm. 5.5.21], there is a defect group P of B such that Z(P ) � C P (Q ) � Q � P .
Replacing (Q ,bQ ) by a suitable An-conjugate, we may assume that P = Q 2w . If w is even then, by
Proposition 4.2, Z(Q 2w) has no fixed points on {1, . . . ,2w}, hence, in this case, Q acts fixed point
freely on precisely 2w points; note that this also holds for w = 0. If w is odd then, by Proposition 4.2
again, Z(Q 2w) has exactly the two fixed points {2w − 1,2w} on {1, . . . ,2w}, hence, in this case Q
acts fixed point freely precisely on either {1, . . . ,2w − 2} or {1, . . . ,2w}, that is, on 2x points, where
w − 1 � x � w; note that for w = 1 we have x = 0.

The following example shows that even if we restrict ourselves to Brauer pairs arising from vertices
of simple modules we have to deal with both cases w − 1 � x � w:

Example 4.4. Suppose that n = 2m, for some odd integer m � 3, and consider the simple FSn-module
D(m+1,m−1) labelled by the partition (m + 1,m − 1) of n. This is the basic spin FSn-module, be-
longing to the principal block of FSn , which has weight m. Since n ≡ 2 (mod 4), the restriction
ResSn

An
(D(m+1,m−1)) =: E(m+1,m−1) is simple, by [1], and thus belongs to the principal block B0 of FAn .

By [7, Thm. 7.2], E(m+1,m−1) has common vertices with the basic spin FSn−1-module D(m,m−1) . There-
fore, the vertices of E(m+1,m−1) are conjugate to subgroups of Q n−2 and have, in particular, fixed
points on {1, . . . ,n}, while Q n acts of course fixed point freely. This shows that there is indeed a
self-centralizing Brauer B0-pair (Q ,bQ ) of An , where Q arises as a vertex of a simple FAn-module
and such that Q has strictly more fixed points on {1, . . . ,n} than the associated defect group Q n of
its Brauer correspondent bAn

Q = B0.

The next theorem is motivated by the results of [6], where the self-centralizing Brauer pairs of
the symmetric groups are examined, for which, using the above notation, we necessarily have x = w .
We pursue the analogy to the case of the symmetric groups as far as possible, the treatment being
reminiscent of the exposition in [26, Sect. 1].

Theorem 4.5. Let (Q ,bQ ) be a self-centralizing Brauer pair of An.
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(a) Let Ω ⊆ {1, . . . ,n} be such that Q acts fixed point freely on Ω and fixes {1, . . . ,n} \ Ω pointwise. Then
we have CA(Ω)(Q ) = Z(Q ).

(b) Let P be a defect group of the Brauer correspondent B := bAn
Q of bQ in An such that C P (Q ) � Q � P , and

let Ω̂ ⊆ {1, . . . ,n} be such that P acts fixed point freely on Ω̂ and fixes {1, . . . ,n} \ Ω̂ pointwise. Then we
even have CA(Ω̂)(Q ) = Z(Q ).

Proof. Since (Q ,bQ ) is self-centralizing, the block bQ of F [Q CAn (Q )] has defect group Q . Let w � 0

be the weight of B = bAn
Q . By the observations made in 4.3, we have 2w − 2 � 2x = |Ω| � 2w = |Ω̂|,

and we may suppose that Ω = {1, . . . ,2x} and Ω̂ = {1, . . . ,2w}, that is, Q � A2x � A2w and P =
Q 2w � A2w . We have CSn (Q ) = CS2x (Q ) × Sn−2x , and thus also Q CSn (Q ) = Q CS2x (Q ) × Sn−2x .
Consider the following chain of normal subgroups

Q CA2x(Q ) × An−2x � Q CAn (Q ) � Q CSn (Q ) = Q CS2x(Q ) × Sn−2x. (6)

Since |Q CSn (Q ) : Q CAn (Q )| � 2, by [25, Cor. 5.5.6] there is a unique block b̃Q of F [Q CSn (Q )]
covering bQ . In particular, (Q , b̃Q ) is a (not necessarily self-centralizing) Brauer pair of Sn . We may
write b̃Q = b̃0 ⊗ b̃1, for some block b̃0 of F [Q CS2x(Q )] and some block b̃1 of FSn−2x . Since Q has no
fixed points on {1, . . . ,2x}, by [26, Prop. 1.2, Prop. 1.3] we conclude that F [Q CS2x (Q )] has only one
block, that is, the principal one. Therefore, each block of F [Q CA2x(Q )] is covered by the principal
block b̃0 of F [Q CS2x(Q )]. Hence all blocks of F [Q CA2x(Q )] are conjugate in Q CS2x (Q ). But then
also F [Q CA2x (Q )] has only one block, that is, the principal block b0.

Moreover, bQ covers some block b0 ⊗ b1 of F [Q CA2x(Q ) × An−2x], where b1 is a block of FAn−2x ,
and, by [25, Cor. 5.5.6] again, bQ is the unique block of F [Q CAn (Q )] covering b0 ⊗ b1. The defect
groups of b0 ⊗ b1 are in Q CAn (Q ) conjugate to subgroups of Q , by Fong’s Theorem [25, Cor. 5.5.16].
Hence b1 has to be a block of defect 0. Thus, since b̃1 covers b1 we infer from 4.3 that b̃1 is a block
of weight w̃ = 0 or w̃ = 1, that is, of defect 0 or 1, respectively. Moreover, since b0 is the principal
block of F [Q CA2x(Q )], we infer that Q ∈ Syl2(Q CA2x (Q )).

Thus we may summarize the properties of the relevant blocks of the subgroups in (6) as follows:

b0 ⊗ b1 bQ b̃Q = b̃0 ⊗ b̃1

defect Q defect 0 defect Q weight w̃ ∈ {0,1}
principal principal

To show (a), assume that Q CA2x (Q ) is not a 2-group, so that there is some 1 �= g ∈ Q CA2x (Q ) of
odd order. Thus g ∈ CA2x (Q ), and we denote the conjugacy class of g in Q CA2x (Q ) by C . Since
Q ∈ Syl2(Q CA2x (Q )), we also have Q ∈ Syl2(C Q CA2x (Q )(g)). In particular, Q is a defect group of the
conjugacy class C and of the conjugacy class {1} �= C . Hence, from [13, Cor. IV.4.17] we infer that
F [Q CA2x (Q )] has two blocks of maximal defect, contradicting the fact that the principal block is the
only block of F [Q CA2x (Q )]. Hence Q CA2x (Q ) is a 2-group, and from this we finally deduce that
Q CA2x (Q ) = Q , that is, CA2x (Q ) = Z(Q ), proving (a).

To show (b) we may suppose that x = w − 1, hence we have n � 2x + 2. We show that in this case
we have

Q CAn (Q ) = Q CA2x(Q ) × An−2x,

from which we get CA2w (Q ) = Q CA2x (Q ) = Z(Q ). So assume, for a contradiction, that Q CA2x (Q ) ×
An−2x < Q CAn (Q ). We consider again the chain of subgroups (6), where [Q CSn (Q ) : (Q CA2x (Q ) ×
An−2x)] � 4. Since Q CAn (Q ) � An but Sn−2x �� An , we get [Q CSn (Q ) : Q CAn (Q )] = 2, and hence
[Q CAn (Q ) : (Q CA2x (Q ) × An−2x)] = 2.

Since bQ has defect group Q , from Fong’s Theorem [25, Thm. 5.5.16] we conclude that the inertial
group of b0 ⊗ b1 is given as T Q CAn (Q )(b0 ⊗ b1) = Q CA2x (Q ) × An−2x . Thus b0 ⊗ b1 is not Q CAn (Q )-
invariant, hence is not Q CSn (Q )-invariant either. Since b0 is the principal block of F [Q CA2x (Q )], this
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implies that b1 is not Sn−2x-invariant, from which, by 4.3, we infer that b̃1 has weight w̃ = 0, that is,
b̃1 has defect 0.

Let B̃ := b̃Sn
Q be the Brauer correspondent of b̃Q = b̃0 ⊗ b̃1 in Sn . Since b̃1 has weight w̃ = 0 and

Q acts fixed point freely on the set Ω of cardinality 2x, we conclude from [26, Thm. 1.7] that B̃ is a
block of weight x. But, by 4.3, the block of FSn covering B , has weight w , contradicting Lemma 3.13.
Thus we have Q CA2x (Q ) × An−2x = Q CAn (Q ), proving (b). �
Remark 4.6. A closer analysis of the arguments in the proof of Theorem 4.5 yields a somewhat more
precise description of the self-centralizing Brauer pairs of An , which at least helps to exclude certain
subgroups from being the first component of a self-centralizing Brauer pair.

It turns out that there are only the cases listed below, all of which, by Example 4.8, actually occur.
We give the results without proofs, since we do not use these facts later on. Note that, by Brauer’s
Third Main Theorem [25, Thm. 5.6.1], bQ is the principal block if and only if its Brauer correspondent
bAn

Q is, which in turn is equivalent to n ∈ {2w,2w + 1}.
(a) Let first n ∈ {2x,2x+ 1}, thus we have x = w , and hence Q CAn (Q ) = Q CA2x(Q ) anyway. More-

over, bQ is principal, hence, in particular, is Q CSn (Q )-invariant. It turns out that always w̃ = 0, and
that both cases d := [CS2x (Q ) : CA2x (Q )] ∈ {1,2} occur.

(b) Now let n � 2x + 2. Then it turns out that w = x + w̃ and that

d := [CS2x(Q ) : CA2x(Q )
]= [Q CAn (Q ) : (Q CA2x(Q ) × An−2x

)] ∈ {1,2}.

Moreover, only the following cases occur:

w odd d = 1 w̃ = 1 bQ is Q CSn (Q )-invariant

d = 2 w̃ = 0 bQ is Q CSn (Q )-invariant

w even d = 1 w̃ = 0 bQ is not Q CSn (Q )-invariant

d = 2 w̃ = 0 bQ is Q CSn (Q )-invariant

Note that bQ is principal if and only if n ∈ {2x + 2,2x + 3} where x is even and d = 1.

We are now prepared to prove the bound given in Theorem 3.9.

Proposition 4.7. Let B be a block of FAn with defect group P . Let further (Q ,bQ ) be a self-centralizing Brauer
B-pair. Then we have

|P | � (|Q | + 2)!
2

.

Proof. Let w be the weight of B . By Theorem 4.5, there is a subset Ω of {1, . . . ,n} with 2w − 2 �
2x = |Ω| � 2w , where x is as in 4.3, such that Q acts fixed point freely on Ω and fixes {1, . . . ,n} \ Ω

pointwise. Moreover, CA(Ω)(Q ) = Z(Q ).
Assume there are Q -orbits Ω ′ = {ω′

1, . . . ,ω
′
m} and Ω ′′ = {ω′′

1, . . . ,ω′′
m} on Ω that are isomorphic

as Q -sets. Then we may suppose that there is an isomorphism of Q -sets mapping ω′
i to ω′′

i , for
i = 1, . . . ,m. Since, by our assumption, Q acts fixed point freely on Ω , we deduce that m � 2 is even,
and therefore the permutation (ω′

1,ω
′′
1) · · · (ω′

m,ω′′
m) is contained in CA(Ω)(Q ). But, on the other hand,

the elements in Z(Q ) have to fix every Q -orbit, so that (ω1,ω
′
1) · · · (ωm,ω′

m) /∈ Z(Q ), a contradiction.
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Hence we deduce that Ω =⊎k
i=1 Ωi consists of pairwise non-isomorphic Q -orbits. For j = 1, . . . ,k,

let ω j ∈ Ω j , and set R j := StabQ (ω j), where we may choose notation such that |R1| � . . . � |Rk|. Then,
by [6, La. 4.3], we have the group isomorphism

ϕ :
k∏

j=1

N Q (R j)/R j −→ CS(Ω)(Q ),

which can be described as follows: for i = 1, . . . ,k, let πi : Q −→ S(Ωi) ∩ Q be the canonical pro-
jection, and let Zi := CS(Ωi)(πi(Q )). Then ϕ(N Q (Ri)/Ri) = Zi , for i = 1, . . . ,k. Hence CS(Ω)(Q ) =
Z1 × · · · × Zk , and Z(Q ) = CA(Ω)(Q ) = (Z1 × · · · × Zk) ∩ A(Ω). Since Q acts fixed point freely on Ω ,
we have Ri < Q , thus N Q (Ri) > Ri , in particular |Zi | � 2. Since (Z2 × · · · × Zk) ∩ A(Ω) � Z(Q ) � Q
acts trivially on Ω1, we have (Z2 × · · · × Zk) ∩ A(Ω) � R1. Moreover, as we have just mentioned,
|Z2 × · · · × Zk| � 2k−1, so that for k � 2 we have |R1| � |(Z2 × · · · × Zk) ∩ A(Ω)| � 2k−2. Therefore, for
k � 2 we get

|Ω| =
k∑

i=1

|Q : Ri| � k|Q |
|R1| � k|Q |

2k−2
.

Thus, for k � 4 we infer |Ω| � |Q |. It remains to consider the cases k � 3: if k = 1 then we have
|Ω| � |Q | anyway. If k = 2 then we have |Ω| � |Q |, except if Ω1 is the regular Q -orbit, that is,
R1 = {1}, and hence Z1 ∼= Q . Now Z1 ∩ A(Ω) � R2 entails

|Q |
2

�
∣∣Z1 ∩ A(Ω)

∣∣� |R2| � |Q |
2

,

thus |R2| = |Q |/2, hence |Z2| = 2, implying |Ω| = |Q | + 2. Moreover, we have |Z1 ∩ A(Ω)| = |Q |/2,
hence Z1 �� A(Ω). Since Z1 acts regularly on Ω1 and fixes Ω2 pointwise, we infer that Z1 contains an
|Ω1|-cycle, that is, Z1 ∼= Q is cyclic. Note that we have |Q | � 4, implying that 2x = |Ω| = |Q | + 2 ≡
2 (mod 4), that is, x is odd, hence, by 4.3, we infer that w = x.

Next we observe that if R1 = {1} then k � 2 forces k = 2, since 1 = |R1| � |(Z2 × · · · × Zk) ∩
A(Ω)| � 2k−2. Hence, if k = 3 then we have |Ω| � |Q | except if |R1| = |R2| = 2. Thus from
|(Z2 × Z3) ∩ A(Ω)| � 2 and |(Z1 × Z3) ∩ A(Ω)| � 2 we deduce R1 = (Z2 × Z3) ∩ A(Ω) � Z(Q ) and
R2 = (Z1 × Z3) ∩ A(Ω) � Z(Q ), showing |Z1| = |Q |/2 = |Z2|. This yields

|Q | � ∣∣(Z1 × Z2 × Z3) ∩ A(Ω)
∣∣� |Q |

2
· |Q |

2
· 2 · 1

2
= |Q |2

4
,

hence |Q | � 4. Therefore we have Q ∼= V 4, and |Ω1| = |Ω2| = |Ω3| = 2, thus 2x = |Ω| = 6 = |Q | + 2.
Note that x = 3, by 4.3, implies that w = x = 3 as well.

Consequently, in any case we get |Ω| � |Q | or, in the two exceptions, |Ω| = |Q | + 2 and x = w .
This implies 2w � |Q | + 2 and, since P � A2w , we get |P | � (|Q |+2)!

2 . �
Example 4.8. We give a few examples, found with the help of the computer algebra system GAP [14],
showing that all the cases listed in Remark 4.6 actually occur. In particular, the exceptional cases
detected in the proof of Proposition 4.7, namely Q cyclic with two orbits of lengths |Q | and 2, as
well as Q ∼= V 4 with three orbits of length 2 each, occur for the principal block of A6.

(a) The principal blocks of A4 and of A5 both have weight w = 2, their defect groups are abelian
and conjugate to Q 4 � A4 and, in each case, up to conjugacy, there is a unique self-centralizing Brauer
pair:

Q (n ∈ {4,5}, w = 2) |Q | |Z(Q )| x d

〈(1,2)(3,4), (1,3)(2,4)〉 ∼= V 4 4 4 2 1
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The non-principal blocks of A7 and of A10 both have weight w = 2, their defect groups are abelian
and conjugate to Q 4 � A4 and, in each case, up to conjugacy, there are two self-centralizing Brauer
pairs:

Q (n ∈ {7,10}, w = 2) |Q | |Z(Q )| x d

〈(1,2)(3,4), (1,3)(2,4)〉 ∼= V 4 4 4 2 1
〈(1,2)(3,4), (1,3)(2,4)〉 ∼= V 4 4 4 2 1

(b) The principal blocks of A6 and of A7, and the non-principal block of A9 all have weight w = 3,
their defect groups are conjugate to Q 6 � A6 and, in each case, up to conjugacy, there are four self-
centralizing Brauer pairs:

Q (n ∈ {6,7,9}, w = 3) |Q | |Z(Q )| x d

〈(1,2)(3,4), (1,3)(2,4)〉 ∼= V 4 4 4 2 1
〈(1,2)(3,4), (3,4)(5,6)〉 ∼= V 4 4 4 3 2
〈(1,2)(3,4), (1,3,2,4)(5,6)〉 ∼= C4 4 4 3 2
〈(1,2)(5,6), (1,3)(2,4)〉 ∼= D8 8 2 3 2

(c) The non-principal block of A11 has weight w = 4, its defect groups are conjugate to Q 8 � A8
and, up to conjugacy, there are thirty-three self-centralizing Brauer pairs. We do not mention all of
them, but just one concluding the list of cases in Remark 4.6:

Q (n = 11, w = 4) |Q | |Z(Q )| x d

. . .

〈(1,2)(3,4), (1,2)(5,6), (5,6)(7,8)〉 ∼= C3
2 8 8 4 2

. . .

Remark 4.9. With the help of the computer algebra system MAGMA [2], and using the techniques
described in [8], it can be shown that all the 2-subgroups listed above actually occur as vertices of
suitable simple modules, with the exception of the cyclic group in (b), of course, and the group given
in (c).

We also point out a mistake in [6, Cor. 6.3(iii)], where the 2-groups Q � Sn of order 4 occurring
as vertices of simple FSn-modules were classified (up to Sn-conjugation). In fact, the case where
Q = P2 × P2 and w = 2 cannot occur.

5. The double covers of Sn and An

We begin by recalling the group presentations of the double covers of the symmetric and alternat-
ing groups, as well as the necessary facts about their blocks. Then we immediately proceed to prove
the bound given in Theorem 3.9.

5.1. Notation. (a) Let n � 1, and consider the group S̃n := 〈z, t1, . . . , tn−1〉 with relations

z2 = 1,

zti = ti z, for i = 1, . . . ,n − 1,

t2
i = z, for i = 1, . . . ,n − 1, (∗)

tit j = zt jti, for |i − j| > 1,

(titi+1)
3 = z, for i = 1, . . . ,n − 2; (∗∗)
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in particular, we have S̃1 := 〈z〉 ∼= C2. Note that also S̃n � S̃n+1, for n � 1. Via θ : S̃n −→ Sn , ti �−→
(i, i + 1), we obtain a group epimorphism with central kernel 〈z〉.

Replacing the relations (∗) by t2
i = 1, for i = 1, . . . ,n − 1, and the relations (∗∗) by (titi+1)

3 = 1,
for i = 1, . . . ,n − 2, we get an isoclinic group Ŝn , which also is a central extension of Sn; we have
S̃n �∼= Ŝn if and only if 1 �= n �= 6. In the case where n � 4, the groups S̃n and Ŝn are the Schur
representation groups of the symmetric group Sn . Whenever we have a subgroup H of Sn , we denote
its preimage under θ by H̃ , and similarly its preimage in Ŝn is denoted by Ĥ .

In particular, for H = An , we get Ãn � S̃n and Ân � Ŝn , where we actually always have Ãn ∼= Ân ,
and |S̃n : Ãn| = |Ŝn : Ân| = 2, for n � 2. If n � 4 and 6 �= n �= 7 then Ãn is the universal covering group
of the alternating group An . Since we have no distinction between Ãn and Ân anyway, and since it
will turn out that all observations for S̃n immediately translate to Ŝn , we from now on confine
ourselves to investigating Ãn � S̃n .

(b) We list the known facts concerning the block theory of Ãn and S̃n we will need, where we
from now on suppose that p � 3, for the remainder of this section. Each faithful block B of F S̃n
can be labelled combinatorially by some integer w � 0, called the p-bar weight of B , and a 2-regular
partition κ of n − pw , called the p-bar core of B; for details we refer to [17, Appendix 10]. Given the
p-bar weight w of the block B , by [27, Thm. (1.3)], the defect groups of B are the S̃n-conjugates of
the Sylow p-subgroups of S̃pw . The latter in turn are via θ mapped to Sylow p-subgroups of Spw .

Arguing along the lines of [6], we now have:

Proposition 5.2. Let p � 3, and let B be a faithful block of F S̃n with defect group P . Let further (Q ,bQ ) be a
self-centralizing Brauer B-pair. Then we have

|P | � |Q |!.

Proof. Let w be the p-bar weight of B . Then P is conjugate to a Sylow p-subgroup of S̃pw , and
θ(P ) is in Sn conjugate to a Sylow p-subgroup of Spw . Thus we have θ(P ) =Sn P pw , so that there
is a subset Ω of {1, . . . ,n} with |Ω| = pw and such that θ(P ) acts fixed point freely on Ω and fixes
{1, . . . ,n} \ Ω pointwise. Moreover, by [25, Thm. 5.5.21], we may assume that

Z(P ) � C P (Q ) � Q � P . (7)

In particular, since θ |P is injective, we infer that Z(θ(P )) = θ(Z(P )) ∼= Z(P ) acts fixed point freely on
Ω as well. By (7), we have Z(θ(P )) � θ(Q ) � θ(P ), hence θ(Q ) acts fixed point freely on Ω and fixes
{1, . . . ,n} \ Ω pointwise. That is, θ(Q ) � S(Ω) and Q � S̃(Ω). By [3, Prop. 3.8 e], we further have

CS̃(Ω)(Q ) = Z(Q ) × Z
(
S̃(Ω)

)= Z(Q ) × 〈z〉.
Since Q is a p-group, this implies

CS(Ω)

(
θ(Q )

)= θ
(
CS̃(Ω)(Q )

)= θ
(

Z(Q )
)= Z

(
θ(Q )

)
,

thus, applying [6, Thm. 5.1], we get |P | = |θ(P )| � |S(Ω)| = |Ω|! � |θ(Q )|! = |Q |!. �
6. The Weyl groups Bn and Dn

We begin by recalling the description of the Weyl groups Bn and Dn of type Bn and Dn , respec-
tively. Then we recall the necessary facts about their blocks, distinguishing the cases p even and p
odd, in order to immediately proceed to prove the bound given in Theorem 3.9.

6.1. Notation. Let C2 := 〈(1,2)〉 be the group of order 2, and for n ∈ N set

Bn := C2 � Sn = {(x1, . . . , xn;π)
∣∣ x1, . . . , xn ∈ C2, π ∈ Sn

}
.
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We define S∗
n := {(1, . . . ,1;π) | π ∈ Sn} � Bn , and denote the usual group isomorphism S∗

n −→ Sn

by ϕ . Moreover, whenever U is a subgroup of Sn , we denote by U∗ � S∗
n its image under ϕ−1. Let

also H := {(x1, . . . , xn;1) | x1, . . . , xn ∈ C2} � Bn be the base group of Bn; so H is isomorphic to a
direct product of n copies of C2, and we have Bn = HS∗

n . We will identify Bn with a subgroup of
S2n , in the usual way by the primitive action. Furthermore, let Dn := Bn ∩ A2n . For n � 2, the group
Bn is isomorphic to the Weyl group of type Bn , and for n � 4, the group Dn is isomorphic to the Weyl
group of type Dn; see [18, 4.1.33].

Remark 6.2. As has been pointed out by the referee, Feit’s Conjecture for the Weyl groups Bn and
Dn can also be deduced directly from a more general theorem on semidirect products with abelian
kernel; we will state and prove this theorem in Section 7 below. We will, however, treat the groups
Bn and Dn separately, in order to stick to our general strategy for proving Feit’s Conjecture by relating
it to Puig’s Conjecture via Theorem 3.8.

6.3. The case p = 2. (a) Suppose first that p = 2. Since H is a normal 2-subgroup of Bn such that
CBn (H) = H is a 2-group, it follows from [25, Thm. 5.2.8] (see also [25, Exc. 5.2.10]) that FBn has
only the principal block. Moreover, H acts trivially on every simple FBn-module. Thus if Q is a vertex
of a simple FBn-module then H � Q . In particular, we have |Q | � 2n , hence n � log2(|Q |). Therefore,
if P is a Sylow 2-subgroup of Bn then

|P | � |Bn| = 2n · n! � |Q | · log2
(|Q |)!.

(b) To deal with Dn , note that Dn = Bn ∩ A2n = (H ∩ A2n)S∗
n . An argument analogous to the one

used in Part (a) above shows that also FDn has only the principal block and, whenever Q is a vertex
of a simple FDn-module, H ∩ A2n � Q . In particular, we have |Q | � 2n−1, hence n � log2(|Q |) + 1.
Therefore, if P is a Sylow 2-subgroup of Dn then we deduce

|P | � |Dn| = 2n−1 · n! � |Q | · (log2
(|Q |)+ 1

)!.
6.4. The case p � 3. Let now p � 3, for the remainder of this section. We briefly recall the well-
known structure of the defect groups of the blocks of FBn . By the Theorem of Fong–Reynolds [25,
Thm. 5.5.10] applied to the base group Cn

2
∼= H � Bn , see also [28] or [18, Ch. 4], the blocks of FBn

are parametrized by pairs (κ, w), with κ = (κ0, κ1) and w = (w0, w1), and where, for i = 0,1,
the partition κi is the p-core of some partition of ni := |κi | + pwi such that n = n0 + n1. More-
over, the inertial group of the block B(κ, w) is given as TBn (B(κ, w)) := (C2 � Sn0 ) × (C2 � Sn1 ) =
C2 � (Sn0 × Sn1 ) � Bn .

Note that every p-subgroup of Bn is conjugate to a subgroup of S∗
n . If P is a defect group of the

block B(κ, w) then P is conjugate to a Sylow p-subgroup P∗
pw0

× P∗
pw1

of S∗
pw0

× S∗
pw1

� S∗
n0

×
S∗

n1
� S∗

n . Note that ϕ(P∗
pwi

) = P pwi � Spwi � Sni , for i = 0,1, is a defect group of the block of Sni

parametrized by κi .

Proposition 6.5. Let p � 3, let D be a simple FBn-module belonging to a block with defect group P , and let
Q be a vertex of D. Then we have

|P | � |Q |!.

Proof. Let B(κ, w) be the block in question, and ni := |κi | + pwi , for i = 0,1. Hence we may assume
that Q � P = P∗

pw0
× P∗

pw1
� S∗

n0
× S∗

n1
� S∗

n . Let T := TBn (B(κ, w)) = (C2 � Sn0 ) × (C2 � Sn1 ) � Bn

be the inertial group associated with B(κ, w). Then the simple FBn-modules belonging to B(κ, w)

can be described as follows (see [18, Sect. 4.3], and [28]):
Let F be the trivial F C2-module, and let E be the non-trivial simple F C2-module. Then the

outer tensor product F ⊗n0 ⊗F E⊗n1 naturally becomes an F T -module. Letting Di , for i = 0,1, be
a simple FSni -module in the block parametrized by κi , the tensor product D0 ⊗F D1 becomes an
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F [Sn0 × Sn1 ]-module with respect to the outer-tensor-product action. Inflating with respect to the
base group Cn0

2 × Cn1
2 � T yields the simple F T -module InfT

C
n0
2 ×C

n1
2

(D0 ⊗F D1). Then inducing the

ordinary tensor product

M := (F ⊗n0 ⊗F E⊗n1
)⊗F InfT

C
n0
2 ×C

n1
2

(D0 ⊗F D1),

which is a simple F T -module, to Bn we get a simple FBn-module IndBn
T (M) belonging to B(κ, w).

Conversely, every simple FBn-module belonging to the block B(κ, w) arises in such a way.
Hence, D ∼= IndBn

T (M), for suitably chosen D0 and D1. Let Q i � Sni be a vertex of Di , for i = 0,1,
where we may assume that Q i � P pwi . Hence Q 0 × Q 1 � Sn0 × Sn1 is a vertex of the outer tensor
product D0 ⊗F D1. Since F and E are projective F C2-modules, letting Q ∗

i := ϕ−1(Q i), it follows from

[23] that Q ∗
0 × Q ∗

1 � S∗
n0

× S∗
n1

� S∗
n � Bn is a vertex of IndBn

T (M) ∼= D .
By [6] we have pwi � |Q i|, and hence

|P | = ∣∣P∗
pw0

∣∣ · ∣∣P∗
pw1

∣∣� (pw0)! · (pw1)! � |Q 0|! · |Q 1|! �
(|Q 0| · |Q 1|

)! = |Q |!. �
7. Semidirect products

As was pointed out by the referee, Feit’s conjecture can be proven for general semidirect products
with abelian kernel, provided it holds for the complements occurring and all their subgroups. We
proceed to state and prove this.

7.1. Simple modules of semidirect products. Suppose that G is a semidirect product G = H �α U of an
abelian group H with a group U , with respect to a group homomorphism α : U −→ Aut(H). We recall
the well-known construction of the simple F G-modules from those of subgroups of G , which is a
consequence of Clifford’s Theorem; for a proof we refer to [4, Thm. 11.1, Thm. 11.20, Exc. 11.13].

Suppose that E is a simple F H-module, which is, in particular, one-dimensional, since H is abelian.
Let further T G(E) be the inertial group of E in G; thus T G (E) = H �α (U ∩ TG(E)), where we denote
the restriction of α to U ∩ T G(E) by α again. Then we can extend E to a simple F T G(E)-module,
which we denote by E again, by letting

(hu) · x := hx
(
h ∈ H, u ∈ U ∩ T G(E), x ∈ E

);
to see that this indeed yields an F T G(E)-module just note that we have

uh · x = h · x
(
h ∈ H, u ∈ U ∩ T G(E), x ∈ E

)
.

Set TU ,α(E) := U ∩ TG(E), hence we have T G (E)/H ∼= TU ,α(E), and let E ′ be a simple F TU ,α(E)-
module. Then the inflation InfT G (E)

H (E ′) is a simple F T G (E)-module, as is the tensor product E ⊗F

InfT G (E)
H (E ′). Moreover, the induction D(E, E ′) := IndG

T G (E)(E ⊗F InfT G (E)
H (E ′)) is a simple F G-module.

Now, let E be a transversal for the isomorphism classes of simple F H-modules. Then, as E varies
over E , and E ′ varies over a transversal for the isomorphism classes of simple F TU ,α(E)-modules,
D(E, E ′) varies over a transversal for the isomorphism classes of simple F G-modules.

With the above notation, we have the following

Theorem 7.2. Let H be an abelian group, let U be a set of groups, and let

H � U := {H �α U
∣∣ U ∈ U , α : U −→ Aut(H)

}
.

Suppose that Feit’s Conjecture holds for

T (H � U ) := {TU ,α(E)
∣∣ U ∈ U , α : U −→ Aut(H), E ∈ E

}
.

Then Feit’s Conjecture holds for H � U as well.
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Proof. Let G = H �α U be a group in H � U , and let D be a simple F G-module. As we have just seen
in 7.1, there are a simple F H-module E and a simple F TU ,α(E)-module E ′ such that

D ∼= IndG
TG (E)

(
E ⊗F InfTG (E)

H

(
E ′)).

Since dimF (E) = 1, it is a trivial-source module, and moreover tensoring with E is a vertex-
and source-preserving auto-equivalence of the module category of T G(E). Hence every vertex
of InfT G (E)

H (E ′) is also vertex of E ⊗F InfT G (E)
H (E ′), and every source of InfT G (E)

H (E ′) is also a source

of E ⊗F InfT G (E)
H (E ′). Moreover, IndG

TG (E)(E ⊗F InfT G (E)
H (E ′)) has some indecomposable direct summand

that has a vertex and an associated source in common with E ⊗F InfT G (E)
H (E ′). Thus, since D is, in

particular, indecomposable, the vertex-source pairs of InfT G (E)
H (E ′) and those of D coincide.

So, suppose that Q is a vertex of InfT G (E)
H (E ′), and L is a Q -source. Then, by [23, Prop. 2.1] and [16,

Prop. 2], we deduce that Q H/H is a vertex of E ′ and that L = ResQ H
Q (InfQ H

H (L̄)), for some Q H/H-

source L̄ of E ′ .
Consequently, given any p-group Q , the above arguments imply∣∣V H�U (Q )

∣∣� ∣∣VT (H�U )(Q H/H)
∣∣.

Since the latter cardinality is finite by our hypothesis, the assertion of the theorem follows. �
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