
A Case for Using Signal Transition Graphs

for Analysing and Refining Genetic Networks

Richard Banks, Victor Khomenko, and L. Jason Steggles

School of Computing Science, Newcastle University, UK

Abstract

In order to understand and analyse genetic regulatory networks (GRNs), the complex control structures
which regulate cellular systems, well supported qualitative formal modelling techniques are required. In this
paper, we make a case that biological systems can be qualitatively modelled by speed-independent circuits.
We apply techniques from asynchronous circuit design, based on Signal Transition Graphs (STGs), to
modelling, visualising and analysing GRNs. STGs are a Petri net based model that has been extensively
used in asynchronous circuit design. We investigate how the sufficient conditions ensuring that an STG can
be implemented by a speed-independent circuit can be interpreted in the context of GRNs. We observe that
these properties provide important insights into a model and highlight areas which need to be refined. Thus,
STGs provide a well supported formal framework for GRNs that allows realistic models to be incrementally
developed and analysed. We demonstrate the proposed STG approach with a case study of constructing
and analysing a speed-independent circuit specification for the lysis-lysogeny switch in phage λ.

Keywords: Genetic regulatory networks, Signal Transition Graphs, Petri nets, network analysis

1 Introduction

Biological systems are controlled by genetic regulatory networks (GRNs) [2] which

comprise complex control structures of interacting entities including genes, proteins

and metabolites. In order to be able to understand and investigate the complex be-

haviour of GRNs, various formal modelling techniques have been proposed, ranging

from simple qualitative approaches, such as Boolean networks, to detailed quanti-

tative approaches based on differential equations or stochastic techniques (see [2,8]

for an overview). Given the lack of quantitative data concerning exact reaction

rates and the noise associated with such data, qualitative modelling techniques

have emerged as an important first approach to understanding GRNs [2].

Boolean networks [1, 2] are a qualitative modelling technique that has received

much attention in the literature. A Boolean network consists of a set of regulatory

entities {g1, . . . , gn} which can be in one of two possible states, either 1 representing

the entity is active (e.g., a gene is expressed or a protein is present) or 0 representing

the entity is inactive (e.g., a gene is not expressed or a protein is absent). The

state of a Boolean network is therefore a Boolean vector consisting of each entity’s

current state, and this results in a state space containing 2n states for n entities.

The behaviour of each entity gi is described by a Boolean next-state function, which,

Electronic Notes in Theoretical Computer Science 227 (2009) 3–19

1571-0661/© 2008 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.12.101

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82547746?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

given the current states of the entities that affect it (referred to as its neighbourhood),

returns the next state for gi. A Boolean network can be interpreted in two distinct

ways [2]: either synchronously, where all entities update their states together, or

asynchronously, where entities update their states independently. Owing to the clear

parallels between Boolean networks and digital circuits, we use the terms ‘Boolean

network’ and ‘circuit’ interchangeably in this paper, and will often refer to the nodes

of a Boolean network as (logic) gates; each gate computes the next-state function

of the corresponding entity.

As an example, consider the Boolean network in Fig. 1(a) [1], which contains

three entities, g1, g2 and g3. The next state [gi] of each entity gi is defined by the

truth table given in Fig. 1(b) which corresponds to the equations in Fig. 1(c); the

notation x, x + y and x y is used to represent the Boolean operators not, or and

and, respectively.

Activation
1
g

3
g

2
g

Repression

Entity

g1 g2 g3 [g1] [g2] [g3]

0 0 0 0 0 1

0 0 1 0 0 1

0 1 0 1 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 1 0 1 0

1 1 0 1 0 0

1 1 1 1 1 0

[g1] = g2

[g2] = g1 g3

[g3] = g1

(a) (b) (c)

Fig. 1. A Boolean network (a); the truth table for the next-state functions (b); and the equations obtained
from the truth table by Boolean minimisation (c).

While Boolean networks have proved successful in modelling GRNs [9,16], their

application in practice is hindered by a number of shortcomings. Historically, the

synchronous semantics has been favoured, since they are easier to work with due

to their deterministic behaviour. However, the assumption of synchronous updates

can be argued to be biologically unrealistic [17], which leads to reservations about

the results obtained from such models.

Hence the asynchronous semantics seems to be more realistic. However, asyn-

chronous networks also have shortcomings. In particular, they tend to have too rich

behaviour, not all of which is realisable in practice. This behaviour also tends to be

highly non-deterministic, i.e., (non-converging) choices are common when choosing

the next state.

In practice, many such choices are resolved either by assuming that the envi-

ronment of the biological system is slow (i.e., the system always has enough time

to react to its changes), or by relative speeds of chemical reactions; that is, the

behaviour in fact has much less non-determinism than such models suggest. (This

may explain why synchronous networks, which are always deterministic, were often

favoured over asynchronous ones, in spite of synchronous updates being biologically

unrealistic.)

These considerations motivate us to consider modelling biological systems using

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–194

speed-independent (SI) circuits [7], which are a subclass of asynchronous circuits

that work correctly (i.e., according to their specification) regardless of the delays

associated with logic gates. We follow the classical Muller’s approach [10] which

regards each logic gate as an atomic evaluator of a Boolean function, with a delay

element associated with its output (the wires are assumed to have negligible delays).

In the SI framework, no assumptions are made about the gate delays (except that

they are positive), i.e., individual gates can be arbitrarily slow/fast and even have

variable unbounded delays.

SI circuits tend to be deterministic, though they can handle certain kinds of

non-determinism using arbiters [7] — special devices deciding which of two inputs

arrives first (this proves to be important from a biological perspective as illustrated

in Section 5). Hence we make the following important methodological assumption:

Biological systems can be modelled by speed-independent circuits.

That is, if a biological system cannot be qualitatively modelled by an SI circuit then

its model is either incorrect or misses some important information. We will discuss

this issue later in the paper.

It turns out that whether a circuit is SI or not almost always depends on its

environment, i.e., a circuit can be SI in one environment and non-SI in another one.

That is, whether the circuit is SI or not cannot be deduced solely from the structure

of the circuit! This suggests that traditional asynchronous Boolean networks lack

some important information (viz. the behaviour of the environment).

In this paper, we make a case for using another formalism, viz. Signal Transition

Graphs (STGs) [5,14], which allows one to capture in a natural way the behaviour

of both the circuit and its environment. STGs are Petri nets in which transitions

are labelled with the rising and falling edges of circuit signals. They have been used

extensively for the design of asynchronous control circuits.

We investigate how the sufficient conditions ensuring that an STG can be imple-

mented by an SI circuit [7] can be interpreted in the context of GRNs. We observe

that these properties provide important insights into a model and highlight areas

which need to be refined. In particular, the violation of the output-persistency (OP)

condition [7] indicates the presence of choices that either require further information

to resolve or indicate some stochastic effects in the system that have to be carefully

documented. STGs provide a formal means of documenting and refining this infor-

mation, and thus provide a well-supported formal framework for GRNs that allows

realistic models to be incrementally developed and analysed.

We illustrate our proposed STG framework by considering a case study in which

we develop and analyse a model of the GRN controlling the switch between the

lysogeny and lysis cycles in phage λ [12]. We begin by constructing an STG model

based on the Boolean network presented in [17]. We then refine this by finding

the points where this STG violates the SI conditions and appropriately resolving

the problems. In particular, we see how some violations of OP highlight timing

assumptions about the environment’s behaviour, and how the arbitration represents

the stochastic choice between lysogeny and lysis modes in phage λ. The case study

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 5

makes use of the STG support tool Petrify [7] and demonstrates its practical role

in model development.

The paper is organised as follows. In Section 2, we briefly introduce STGs and

consider how they can be used to model a GRN. Then, in Section 3, we consider how

STG techniques from electronic circuit design can be applied to refine, visualise and

analyse models of GRNs. In Section 4, we consider more formally the properties

required for an STG to be implementable as an SI circuit and relate these to the

biological setting. In Section 5, we present a detailed case study which illustrates

how the techniques introduced are applied in practice. Finally, in Section 6, we

conclude by summarising our results and discussing future work.

2 Signal Transition Graphs

The theory of Petri nets [13,11] provides a graphical notation with a formal math-

ematical semantics for modelling and reasoning about concurrent distributed sys-

tems. A Petri net [11] is a directed bipartite graph consisting of: places, denoted

by circles, which represent resources or conditions; transitions, denoted by rectan-

gles, which represent actions or events; and arcs, denoted by arrows, which connect

places to transitions or transitions to places. A simple example of a Petri net is

given in Fig. 2.

t1

p1

p3

p2

t2

p4

t3

Place

Arc

Legend

Token

Transition

Fig. 2. A simple example of a Petri net.

The places, transitions and arcs describe the static structure of the Petri net;

its state is given by the distribution of tokens (depicted as black dots) on its places,

referred to as a marking. The dynamic properties of the system are modelled by

transitions which can fire, changing the distribution of tokens on places in a Petri

net. A transition is said to be enabled if each of its input places contains at least one

token. An enabled transition can fire by consuming one token from each of its input

places and then depositing one token on each of its output places. Often, more than

one transition is enabled at any one time, and in such a case any enabled transition

can fire. For example, in Fig. 2 both transitions t1 and t2 are enabled. Firing t1
would result in a token being taken from place p1 and a new token being deposited

on place p3. An important advantage of Petri nets is that they are supported by a

wide range of theoretically well-founded analysis techniques and tools [18].

Signal Transition Graphs (STGs) [7] is a particular type of labelled Petri nets

developed specifically for modelling asynchronous digital circuits. The idea is to

associate a set of Boolean variables, referred to as signals, with a Petri net to

represent the state of the actual digital signals (i.e., wires) within a circuit. The

Petri net’s transitions are then labelled to represent changes in the state of these

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–196

signals; a transition label either has the form a+ to indicate a signal a goes from

0 to 1, or a− to indicate the signal goes from 1 to 0. Thus, the underlying Petri

net specifies the causal relationship between signals and is intended to capture the

behaviour of a circuit. Clearly, for an STG to correctly represent a circuit one has

to ensure that the labels a+ and a− are correctly alternated between for each signal.

This consistency condition for STGs is discussed in more detail in Section 4. In

general, several transitions can have the same label, e.g., a+; in such a case, these

transitions are named a+, a+/1, a+/2, etc.

Since the behaviour of an STG is based on its underlying Petri net behaviour,

the concepts of enabling and firing of transitions introduced above still hold. STGs

are therefore amenable to general Petri net analysis tools, but are also supported by

a range of specific tools, such as Petrify [7], which are able to analyse and optimise

STGs, as well as synthesise digital circuits from them. An STG can be represented

graphically simply as a labelled Petri net. However, a short-hand notation is often

used, in which transitions are simply represented by their labels, and non-marked

places with only one input and one output transition are contracted (see Fig. 3(a)).

The signals of an STG are partitioned into input, output and internal signals; the

output and internal signals are collectively referred to as local signals. The inputs are

controlled by the environment of the STG (in the context of biological systems, this

could be either the actual environment of the organism, or the other systems within

the organism, whose outputs affect the behaviour of the system), and the outputs

are controlled by the system itself and are observable by the environment (e.g., they

can be inputs of other systems within the organism). Internal signals represent some

auxiliary entities needed to produce outputs; like outputs, they are controlled by

the system, but they are not observable by the environment. The partitioning of

signals is an important part of the modelling process and represents key design

decisions when developing an STG. We discuss this further in the biological context

in Section 3.

Intuitively, an STG represents a contract between the system and its environ-

ment, and is interpreted in the following way. If an input signal transition is enabled,

then the environment is allowed (but is not obliged) to send this input, and vice

versa, the environment is not allowed to send inputs which are not enabled. If a

local transition is enabled, then the system is obliged eventually to produce this

signal (or it is eventually disabled by another transition, in which case the output-

persistency (discussed later) is violated), and vice versa, it is not allowed to produce

outputs which are not enabled. That is, an STG specifies the behaviour of a system

in the sense that the system must provide all and only the specified outputs, and

that it must allow at least the specified inputs (in fact, it could optionally allow

more inputs, which means that it could work in a more demanding environment).

For example, consider the STG in Fig. 3(a). It models a system with two inputs,

a and b, and one output, c, and the initial value of each signal is 0. The system waits

until the environment raises (in any order) the inputs a and b (transitions a+ and

b+), and then raises the output c (transition c+). (Observe that the environment

is assumed not to reset the raised inputs until c+ fires.) Then the environment

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 7

resets (in any order) the inputs a and b (transitions a− and b−), and in response

the system resets its output c (transition c−). (Again, the environment is assumed

not to raise the reset inputs until c− fires.)

3 Relationship between STGs and Circuits

In this section, we describe the relationship between asynchronous Boolean networks

(or circuits) and STGs. We show that a circuit can be translated into an STG, and

the latter can be semi-automatically refined into an SI model. To gain an initial

insight into the proposed method, we start off informally, by considering an example;

then we formalise our approach.

The behaviour described by the STG in Fig. 3(a) can be implemented by the

circuit [c] = ab + c(a + b), which is SI in the intended environment (as specified in

Fig. 3(a)). However, just by looking at this circuit equation it is impossible to say

what were the assumptions about the environment; in particular, there are environ-

ments where the behaviour of this circuit becomes non-SI, e.g., if the environment,

after raising a and b, resets either of them before c+ fires. This illustrates that hav-

ing an STG can be much more useful for analysing the system than simply having

a circuit definition.

a−

a+ b+

b−

c+

c−

(a)

b+

c+

b−

c−

a− a+

a

a
b

c

c

b

(b)

c+

a

c

b

c−

a− a+ a+/1

b−b+/1

b

b+

a−/1 c

a

b−/1

(c)

a−/1

a+ b+
a− b−

b+/1 a+/1

b−/2

a+/2
b−/1

b+/2

c−

c+

a−/2

(d)

Fig. 3. An example STG (a); the circuit-STG for the circuit [c] = ab + c(a + b) (b); a way to resolve choices
in it by assuming a slow environment (c); and the STG simplified using Petrify (d).

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–198

Any digital circuit can be converted into an STG using the well-known transla-

tion based on complementary places [13,15]. Fig. 3(b) illustrates this construction

for the circuit [c] = ab + c(a + b).

The circuit-STG construction
• Each signal (i.e., regulatory entity) gi is represented by two places, gi and gi,

indicating whether the entity is active or inactive, respectively. Exactly one of

these places is marked at any time.

• Since we do not have any information about the environment’s behaviour, it is

taken to be the most general (i.e., it can always change the value of any input).

This is modelled for each input signal gi by adding transitions g+
i (consuming a

token from gi and depositing a token to gi) and g−i (consuming a token from gi

and depositing a token to gi).

• For each local signal gi the circuit computes the next-state value [gi] of gi using

the given Boolean equation [gi] = Ei, see e.g., Fig. 1(c). (Note that such circuit

equations can be straightforwardly extracted from a truth table definition using

Boolean minimisation [15].) For each term (i.e., prime implicant) mj in the

minimised disjunctive normal form (DNF) of Ei|gi=0 (where Ei|gi=b denotes the

Boolean expression resulting from substituting gi by b ∈ {0, 1} in Ei), we add a

transition g+
i /j which switches gi on. We add an arc from place gi to g+

i /j and an

arc from g+
i /j to place gi. For each gk (resp. gk) occurring in mj , we connect g+

i /j

to the place gk (resp. gk) by a pair of arcs going in opposite directions (to model

testing for the presence of a token on a place without consuming it). We use a

similar process to define the transitions g−i /j which reset gi based on Ei|gi=1.

Note that the behaviour of the resulting STG shown in Fig. 3(b) strictly includes

the behaviour of the initial model in part (a) of this figure, since the information

about the behaviour of the environment could not be retrieved from the circuit, and

the most general environment was modelled. Petrify automatically detects that

the resulting STG is not SI in this environment, as an output c+ can be disabled

by a− or b−, and similarly, c− can be disabled by a+ or b+.

If the circuit [c] = ab + c(a + b) was used to model a system that is perceived

to be deterministic, then some of this STG’s behaviour is not realisable in prac-

tice. Hence the STG should be refined, so that it captures only the realistic be-

haviour. The candidate points where the changes should be made are where the

speed-independence is violated, e.g., due to the choices involving a local transition.

Such choices (unless they represent some truly stochastic phenomenon) have to be

resolved either by making assumptions about the environment, or by looking at re-

action rates. Methodologically, the points where the speed-independence is violated

can be found automatically, but the resolution of choices requires interaction with

the user.

Formally, t ⇀ t′ means that a transition t can be disabled by firing a transi-

tion t′, where t and t′ have different labels and t is labelled by a local signal. One

can see that for the STG in Fig. 3(b), c+ ⇀ a−, c+ ⇀ b−, c− ⇀ a+ and c− ⇀ b+

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 9

hold. This information is given to the user, who now can suggest a way to resolve

this conflict. In this particular case, the user might know that the environment is

relatively slow, i.e., if, say, a− and c+ are enabled simultaneously then c+ will fire

first. Alternatively, the relative rates of chemical reactions might determine which

transition fires first. Of course, such rates must be provided by the user, since there

is no way a tool can work them out from the STG or circuit. In practice, measuring

reaction rates is a very effort-consuming task, but our method addresses this prob-

lem by giving information about what rates have to be measured (in practice, few

rates affect the qualitative behaviour of the circuit), and by requiring only relative

rates (i.e., it is enough to know that one reaction is faster than the other, rather

than the absolute rates).

We use the following notation for the user-provided assumptions: we write t �→ t′

to denote that whenever transitions t and t′ are enabled simultaneously then priority

is given to t. (We assume that t and t′ have different labels, at least one of these

transitions is labelled by a local signal, t and t′ share some pre-places, and not all

of these shared places are accessed by t and t′ in read-only fashion, i.e., by pairs of

arcs going in opposite directions.) In our example, the slowness of the environment

can be expressed as c+ �→ a−, c+ �→ b−, c− �→ a+, c− �→ b+.

Such priority assumptions t �→ t′ can be applied to the STG, resulting in a

transformed model which captures this information. The idea is to replicate the

transition with lower priority t′ to capture each situation in which t is not enabled

and t′ can safely fire. We define this transformation more formally as follows.

The firing order enforcement (FOE) transformation

Suppose t �→ t′ has been assumed and let p1, . . . , pk be the pre-places of t which

are not pre-places of t′. If k = 0 then t is enabled whenever t′ is, and so t′ can

be simply eliminated from the STG, together with all the incident arcs, as in such

a case it can never fire due to the assumption t �→ t′. Otherwise, t′ is replicated

k−1 times, so that there are k copies (denoted by t′1 = t′, t′2, . . . , t
′

k) of t′ altogether.

All these replicas are labelled by the same signal as t′, and have exactly the same

connections. Furthermore, a pair of arcs going in the opposite directions is added

between t′i and pi for each i = 1, . . . , k, where pi is gj if pi corresponds to gj , and

gj if pi corresponds to gj .

The FOE transformation guarantees that (i) if t is enabled by some marking M

then none of t′1, . . . , t
′

k is enabled; and (ii) if t is not enabled by some marking M

but t′ is enabled by M in the original STG, then at least one of t′1, . . . , t
′

k is enabled

in the modified STG. That is, the choice is resolved to favour t.

Our method allows for automatic application of user-given assumptions about

the environment and relative reaction rates to the STG, in order to refine its be-

haviour. In particular, it transforms the STG in Fig. 3(b) into the one in part (c) of

this figure, which, after simplification by Petrify, becomes the STG in part (d) of

this figure. The latter STG has less behaviour than the STG in Fig. 3(b), and is SI.

Somewhat unexpectedly, it has more behaviour than the initial model in Fig. 3(a).

This is explained by the fact that it poses fewer constraints on the environment

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–1910

(i.e., the system can actually cope with a more demanding environment than the

one it was intended for).

4 Genetic Regulatory Networks as Circuits

In this section we discuss in more detail our methodological assumption that bi-

ological systems can be qualitatively modelled by speed-independent (SI) circuits.

We present the properties necessary for an STG to be implementable as an SI cir-

cuit [7] and discuss their biological relevance. In particular, we consider the output-

persistency condition and how a violation of this condition indicates the presence

of choices which need further investigation.

For an STG to be implementable as an SI circuit (and hence, due to our method-

ological assumption, as a biological system), it must satisfy the following proper-

ties [7]:

Boundedness An STG has finitely many reachable states iff it is bounded, i.e., the

number of tokens in each place can never exceed some bound k. Since a digital

circuit (or a Boolean network) can have only finitely many reachable states, bound-

edness is taken as an implementability requirement. Note that the STGs produced

from circuits by the circuit-STG construction are always bounded (in fact, safe, i.e.,

the respective bound is 1). Moreover, both boundedness and safeness are preserved

by the FOE transformation, as it can only reduce the set of reachable markings.

Consistency Consistency is a basic well-formedness property, stating that the

reachable signal values must be binary. That is, in every trace of the STG the tran-

sition labels for each signal a must alternate between a+ and a−, always beginning

with the same sign. Note that the STGs produced from circuits by the circuit-STG

construction are always consistent. Moreover, consistency is preserved by the FOE

transformation, as it can only reduce the set of reachable markings.

Output-persistency Output-persistency (OP) property requires that if some local

signal becomes enabled, it cannot be disabled by firing some other transition, i.e.,

there should be no choices involving local transitions. The rationale for this is that

once a signal becomes enabled, its voltage starts, e.g., to rise from 0 to 1. If the

signal is disabled during this process, the voltage is pulled down, resulting in a

glitch. This glitch can be interpreted in different ways by the logic gates listening

to this signal, depending on whether the voltage has crossed the threshold between

0 and 1 or not. Hence the behaviour of the circuit becomes non-deterministic. Such

a situation can be interpreted in biological terms as well, with the voltage replaced

by, e.g., the concentration of some protein.

Visually, if OP is violated then there are two transitions with different labels in

the STG with at least one of them marked by a local signal, which share some pre-

places and can be enabled simultaneously (unless both transitions are connected to

these shared pre-places in the read-only way, i.e., by pairs of arcs going in opposite

directions).

Note that a choice involving only inputs is not regarded as a violation of OP,

and simply models a non-deterministic choice in the environment. (For example,

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 11

the environment might non-deterministically decide either to rise the temperature

above normal, or to reduce it below normal.) Since this choice does not have to be

implemented by the system, SI circuits can be synthesised for such STGs (provided

that all the other conditions necessary for SI are met).

A choice involving only local transitions can still be implemented in a speed-inde-

pendent way (in spite of the violation of OP) using an arbiter — a special component

that can handle the meta-stable behaviour associated with such a choice. In such a

case the behaviour of the circuit becomes non-deterministic.

When designing an SI circuit, the OP condition can always be imposed due to

the modelling technique of factoring out the arbiter into the environment, converting

thus the choice between local transitions into one between inputs (which is not a

violation of OP). When modelling a biological system, violations of OP can be left

in the model; however, any such violation should be looked at by the model designer

and documented.

Note that arbitration should be used only for representing truly stochastic phe-

nomena, like the choice between lysogeny and lysis modes in phage λ. Other vi-

olations of OP indicate that some important information is missing in the model,

e.g., some assumptions about the environment’s behaviour should be made, or the

reaction rates can be used to resolve the choice. Methodologically, violations of OP

are detected automatically, and if there are any, the user should either document

the associated stochastic choice or refine the model, as we illustrated by an example

in Section 3.

Complete State Coding (CSC) If the STG has two reachable states in which

the values of all the signals coincide but the values of the next-state function for

some local signal are different, then these two states are said to be in a Complete

State Coding (CSC) conflict. The STG satisfies the CSC property if no two of its

reachable states are in a CSC conflict.

An STG not satisfying the CSC property cannot be directly implemented as an

SI circuit. Intuitively, during its execution the system can ‘see’ only the values of

its signals, but not the marking of the STG. Hence, if two semantically different

reachable states with the same values of all the signals exist, the system cannot

distinguish between them, and so cannot know what to do next.

At the circuit level, CSC conflicts are resolved by inserting new internal signals

helping to distinguish between the conflicting states, in such a way that its ‘external’

behaviour does not change. (One has to take care to preserve the consistency and

other SI properties when inserting new signals.) Intuitively, insertion of a signal

introduces additional memory into the circuit, helping it to trace the current state.

In an STG modelling a biological system, CSC conflicts can be interpreted as a

lack of information about the internal workings of the system. That is, they indicate

the presence of some auxiliary internal entities (e.g., proteins) which are not visible

to the environment but help the system to accomplish its function. An STG with

CSC conflicts might be useful in some cases as a high-level view of the system (in

such a case all the internal signals can be hidden by Petrify in order to simplify

the model), but if a detailed description of the system is needed, the STG should

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–1912

satisfy the CSC property.

Note that STGs produced from circuits by the circuit-STG construction always

have CSC. In fact, they satisfy a stronger property, called the Universal State Coding

(USC), meaning that no two different states have the same values of all the signals,

as in STGs derived from circuits using the described circuit-STG construction there

is a one-to-one correspondence between the reachable markings and encodings. Fur-

thermore, the FOE transformation preserves USC, as it can only eliminate reachable

states, and never adds new ones. Though the FOE transformation does not in gen-

eral preserve CSC (it can turn a USC conflict that is not a CSC conflict into a CSC

conflict), the fact that USC implies CSC mean that all the STGs constructed during

the proposed refinement procedure have CSC, if the initial STG was built from a

circuit. Of course, if the initial STG has some other origin (e.g., it was constructed

directly by the user) then CSC has to be separately checked.

The following properties are not directly required for SI, but their violation is

nevertheless suspicious and might indicate a serious error in the model. At least,

any violations of these properties should be documented by the model designer.

No self-triggering A signal is called self-triggering if firing one transition of this

signal, e.g., a+, can enable another transition of this signal, e.g., a−.

Similarly to the violation of OP, self-triggering indicates that the corresponding

signal might be pulled down (resp. up) before reaching its maximal (resp. minimal)

value, and can also be interpreted in biological terms (see below). Self-triggering

may also cause a CSC conflict, as the states before firing the first transition and

after firing the second one have the same values of all the signals. It also manifests

itself in the equation [gi] = Ei for the corresponding signal, as Ei is binate in gi,

i.e., both gi and gi occur in the minimised DNF of Ei.

In an STG modelling a biological system, self-triggering can sometimes be in-

terpreted as missing auxiliary internal entities whose transitions would separate the

pair of transitions involved in self-triggering.

Deadlock-freeness A reachable state is called a deadlock if no transition is enabled

at it. It indicates that the system can stop functioning, which is probably not an

intended behaviour in most realistic systems. 1 Note that the STGs produced from

circuits by the circuit-STG construction are deadlock-free if there is at least one

input, since inputs are allowed to oscillate freely. Moreover, the FOE transforma-

tion does not introduce new deadlocks, as it can disable only some (but never all)

transitions enabled at any reachable state. 2 Of course, if the initial STG has not

been generated from a circuit, but has some other origin (e.g., it was constructed

directly by the user), then deadlock-freeness has to be separately checked.

Divergency-freeness An STG has divergency if, starting from some reachable

state, it can execute infinitely many internal transitions. It indicates some infinite

unproductive activity in the system, which nevertheless consumes resources.

1 In some rare cases a deadlock-free circuit can be synthesised from an STG with deadlocks, but we do
not elaborate such a case in this paper.
2 If contradictory assumptions are simultaneously applied to the STG, a deadlock can be introduced, but
such situations can be easily avoided.

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 13

Checking the properties discussed above is automated by the STG support tool

Petrify [7], and in the next section we show how to apply the developed theory

to a biological system.

5 Case Study: Lysis-Lysogeny Switch in Phage λ

In this section, we illustrate the STG modelling techniques introduced by developing

an SI STG model of the GRN responsible for the lysogeny-lysis switch in λ phage

[12]. Using the Boolean model presented in [17] as a starting point, we construct and

refine an STG model of this GRN, utilising the support tool Petrify [7]. The model

is refined by finding the points where it violates the SI conditions (in particular,

OP violations) and then applying appropriate assumptions about the environment’s

behaviour and relative reaction rates to resolve the associated hazards. Since the

lysis-lysogeny decision is a stochastic phenomenon, it is not resolved and remains

in the final SI model.

Model Construction

The temperate bacteriophage λ [12] is a virus which infects the bacteria Escherichia

coli, and has been studied extensively in the literature. After infection of the host

cell, a stochastic decision is made by λ based on environmental factors between two

very different methods of reproduction, namely the lytic and lysogenic cycles [17]. In

most cases, λ enters the lytic cycle, where it generates as many new viral particles

as the host cell resources allow. Upon resource depletion, an enzyme is used to

break down and lyse the cell wall, releasing the new phage into the environment.

Alternatively, the λ DNA may integrate into the host DNA and enter the lysogenic

cycle. Here, genes expressed in the λ DNA, now a prophage, synthesise a repressor

which blocks expression of other phage genes including those involved in its own

excision. As such, the host cell, now a lysogen, establishes an immunity to external

infection from other phages, and the prophage is able to lie dormant, replicating

with each subsequent cell division of the host.

CII

CI

Xis

IntgInt
[CII] = CI

[Int] = CII + CI

[Xis] = CI

[Intg] = Intg Int + Intg (Int + Xis)

(a) (b)

Fig. 4. A high-level representation of the GRN of the phage λ switch (a); and the corresponding Boolean
next-state equations (b).

A high-level pictorial representation of this GRN is presented in Fig. 4, along

with the corresponding Boolean next-state equations describing the qualitative be-

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–1914

haviour of each network entity [17]. Integration of the λ DNA into the host DNA

requires the presence of the integrase Int . Furthermore, the λ DNA remains in-

tegrated unless the excisionase Xis is also present. Thus, integration and excision

occurs in both directions when both Int and Xis are present, and so the stochas-

tic lysis-lysogeny choice is qualitatively modelled as a non-deterministic one [17].

The signal Intg is used as an output to indicate the status of this process, taking

the value 1 if the λ DNA is integrated and 0 if it is not integrated or has been

excised. Both Int and Xis are repressed by the λ repressor CI , which we regard as

an input since it is regulated outside the scope of this model. However, Int is also

activated by CII , itself under negative control from CI . This additional control of

Int therefore favours integration over excision [17].

From the Boolean network shown in Fig. 4, we are able to construct an STG

describing the behaviour of the λ circuit using the circuit-STG construction. 3 We

define CI as an input signal from the environment, Intg as the output signal pro-

duced by the circuit, and CII , Int and Xis as internal signals which are invisible

to the environment. (As discussed earlier, this partitioning of signals is a decision

which must be made by the modeller.) Furthermore, we choose the initial state 4 in

which the values of all signals except CI are 0. Note that we allow CI to oscillate

freely to represent the most general environment.

The resulting STG model is presented in Fig. 5(a). As explained in the pre-

vious section, STGs derived from circuits are bounded (in fact, safe), consistent,

deadlock-free and have CSC, and these properties are preserved by the subsequent

transformations.

Model Analysis and Refinement

We now analyse our STG model with respect to the properties introduced in Sec-

tion 4. We begin by running the model through Petrify, which shows, as predicted

by our theory, that the STG satisfies boundedness, consistency, CSC and deadlock-

freeness properties. However, there are a number of OP violations (resulting in

non-deterministic behaviour) which suggests that some behaviour may not be real-

isable in practice:

(1) Xis+ ⇀ CI + (2) Xis− ⇀ CI− (3) Int+ ⇀ CI+ (4) Int− ⇀ CI−

(5) CII+ ⇀ CI+ (6) CII− ⇀ CI− (7) Intg− ⇀ Int− (8) Intg− ⇀ Xis−

(9) Intg+ ⇀ Int− (10) Int+/1 ⇀ CII−

These violations of OP indicate the areas of the STG which require refinement

with additional information about the environment’s behaviour or relative reaction

rates. We proceed by considering OP violations (1)-(6) which involve conflicts bet-

ween input and local transitions. Such conflicts can often be resolved by assuming

3 This model construction process from a Boolean network to an STG is fully automated by our prototype
tool GNaPN, which is freely available for academic use at bioinf.ncl.ac.uk/gnapn .
4 Choosing a meaningful initial state is outside the scope of this paper; we just remark that typically a
biological system has cyclic behaviour, and any state on this cycle can be taken.

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 15

bioinf.ncl.ac.uk/gnapn
bioinf.ncl.ac.uk/gnapn

CI−

Int+

Intg+ Intg−

Intg

CII+ CII−

CII

Int−

Xis+ Xis−

Xis

CI Int+/1

CI+

Xis

Int
Intg

CII

Int

CI

Xis

Intg
CI+

CII+

Int

Intg−

Intg

Intg+

Int− Xis−

CII−

Int+ Xis+

CI−

(a) (b)

Fig. 5. STG representation for λ using circuit-STG construction, with the dashed arcs showing the FOE
transformations expressing the relative slowness of the environment (a); and the STG simplified by Pet-

rify (b).

that the environment is slow enough to allow the circuit to stabilise. We therefore

apply the following FOE transformations to the model to resolve these violations:

Xis+ �→CI+, Xis− �→CI−, Int+ �→CI+, Int− �→CI−, CII+ �→CI +, CII− �→CI−,

which are also shown by dashed arcs in Fig. 5(a).

Interestingly, applying the above FOE transformations resolves also violation

(10), leaving only violations (7)-(9) in the new model. Violations (7) and (8) show

that excision (represented by the firing of Intg−) when Int and Xis are 1 can be

preempted if Int− or Xis− fires first, whilst violation (9) shows that integration

(represented by the firing of transition Intg+) can be preempted if Int− fires first.

These remaining OP violations are at the heart of the lysis-lysogeny switch in λ

(which is a stochastic phenomenon in practice [17]), and so are not resolved. The

resulting STG is shown in Fig. 5(b) after simplification with Petrify.

The new STG in Fig. 5(b) is much less cluttered than the original one 5 , as

the unrealisable behaviour under the FOE transformations listed above has been

stripped away, making it significantly simpler to interpret and analyse using e.g.,

model checking [6]. Moreover, this simplified STG clearly separates into two com-

ponents, which capture the crucial mechanisms governing the lysis-lysogeny switch:

• Component 1 (left) involves the input signal CI and the internal signals CII , Int

and Xis. From the initial stable state, it waits for the environment to lower signal

CI indicating the absence of immunity, after which CII+, Int+ and Xis+ can fire

in any order. This component then waits for the environment to raise signal CI ,

resulting in the firing of transitions Xis− and CII− (in any order), with the latter

followed by Int−, which returns the component to its initial state.

5 This is very typical, as the original STG contained a lot of (rather random) behaviour which is not
realisable in practice, and hence was messy.

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–1916

• Component 2 (right) is a simple flip-flop for signal Intg , which is controlled by

the values of the signals Int and Xis in the first component. Note that the only

connections between the two components are the pairs of arcs going in opposite

directions between places of the former component and transitions of the latter

one, i.e., the latter component accesses the former one in the read-only fashion

and hence does not affect its behaviour.

After Component 1 has raised Int , transition Intg+ is able to fire representing the

integration of the λ DNA into the host cell. Once Component 1 has raised both

Int and Xis, Intg can freely oscillate, i.e., there are no stable states in the absence

of immunity [17]. Similarly, once the environment has raised CI , Component 1

executes Xis− concurrently with CII− followed by Int−; the outcomes of the arbi-

trations between Intg+ and Int− and between Intg− and Int− or Xis− determine

the stable state of signal Intg in the presence of immunity. These arbitrations ex-

actly correspond to the OP violations (7)-(9) still remaining in the STG in Fig. 5(b)

and involving only local transitions.

Note that CII− ‘delays’ Int−, modelling that the presence of CII causes lambda

to favour integration over excision; however, the latter is not a qualitative effect, and

cannot in fact be formally derived neither from this STG nor from the equations

in Fig. 4(b) due to the arbitrary gate delays. In fact, one can see that CII can

be removed from the model, without affecting its qualitative behaviour; indeed, its

only role is to change the probabilities involved in the stochastic choice made by

λ, and so it is no longer required once this stochastic choice has been qualitatively

modelled by a non-deterministic one.

Finally, the output signal Intg in Fig. 5(b) is self-triggering (note that the corre-

sponding next-state function is binate in Intg), and there is a divergency involving

Intg (when Int and Xis are 1). This indicates that some auxiliary signal is missing

from the model (which is not surprising due to its high level of abstraction), and

so can be used to identify areas which require careful documentation and further

refinement in light of additional knowledge.

6 Conclusions

In this paper we have applied techniques and tools from asynchronous circuit design

based on STGs [7] to modelling, visualising and analysing GRNs. Central to this

has been the methodological assumption that biological systems can be modelled

by speed-independent (SI) circuits [5, 7], and we investigated how the sufficient

conditions required to ensure that an STG is implementable as an SI circuit can

be interpreted in the biological setting. In particular, we have seen how violations

of OP can be used to provide important insights into a model, by highlighting

stochastic choices or areas that require refining.

The above framework was illustrated with a detailed case study, in which a

refined SI STG model of the GRN for the lysis-lysogeny switch in phage λ [12,17] was

developed using the support tool Petrify [7]. This process used STG techniques

to remove unrealistic behaviour, making it easier to visually interpret the model

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 17

and, importantly, making it more amenable to automated analysis techniques, e.g.,

model checking [6]. Thus, STGs can be seen as providing a well supported formal

framework for GRNs that allows realistic qualitative models to be developed and

incrementally refined. We note that while the application of Petri nets to modelling

biological systems has been widely considered (see for example [4]), our approach

based on STGs and asynchronous circuit techniques appears to be new.

Further work is now needed to build on the initial ideas presented in this paper

and to provide further tools to support the biologist applying these techniques. One

particular interesting area currently being investigated is the application of STG

techniques to synthetic biology [3]. Given that STGs were developed to support

the compositional construction of asynchronous circuits, they appear to be ideally

suited to designing artificial genetic control systems. Finally, we note that our

approach can be extended to multi-valued networks [17] (i.e. where the Boolean

state of signals is enlarged to a set of discrete values) in a number of ways, such

as using several Boolean variables to represent a signal’s state or reformulating the

consistency rule on signal labels. Work is currently underway to investigate these

approaches.

Acknowledgement

We would like to thank the Epsrc for supporting R. Banks and the Bbsrc for

their support via the Centre for Integrated Systems Biology of Ageing and Nutri-

tion (Cisban). This research was also supported by the Royal Academy of Engi-

neering/ Epsrc post-doctoral research fellowship EP/C53400X/1 (Davac) and the

Newcastle Systems Biology Resource Centre. Finally, we would like to thank the

anonymous referees for their useful comments and suggestions.

References

[1] Akutsu, T., S. Miyano and S. Kuhara, Identification of genetic networks from small number of gene
expression patterns under the Boolean network model, Proc. of Pac. Symp. on Biocomp. 4 (1999),
17–28.

[2] Bower, J.M., and H. Bolouri, Computational Modelling of Genetic and Biochemical Networks, MIT
Press (2001).

[3] Bhutkar,A., Synthetic Biology: Navigating the Challenges Ahead, J. BioLaw and Bus. 8 (2005), 19–29.

[4] Chaouiya, C., Petri net modelling of biological networks, Briefings in Bioinformatics 8 (2007), 210–219.

[5] Chu, T.A., Synthesis of Self-Timed VLSI Circuits from Graph-Theoretic Specifications, MIT/LCS/TR-
393 (1987), Lab. for Comp. Sci., MIT.

[6] Clarke, E.M., Grumberg, O., and Peled, D., Model Checking, MIT Press (1999).

[7] Cortadella, J., M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev, Logic Synthesis of
Asynchronous Controllers and Interfaces, Springer Series in Advanced Microelectronics 8 (2002),
Springer.

[8] de Jong, H., Modeling and simulation of genetic regulatory systems: a literature review, J. of Comp.
Bio. 9 (2002), 67–103.

[9] Huang, S., Gene expression profiling, genetic networks, and cellular states: an integrating concept for
tumorigenesis and drug discovery, J. of Mol. Med. 77 (1999), 469–480.

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–1918

[10] Muller, D. and W. Bartky, A Theory of Asynchronous Circuits, In Proc. Int. Symp. of the Theory of
Switching (1959), 204–243.

[11] Murata, T., Petri nets: properties, analysis and applications, Proc. of the IEEE 77 (1989), 541–580.

[12] Oppenheim, A.B., O. Kobiler, J. Stavans, D. L. Court, and S. L. Adhya, Switches in bacteriophage λ
development, Annual Review of Genetics 39 (2005), 4470–4475.

[13] Reisig, W., Petri Nets, An Introduction, EATCS Monographs on Theoretical Computer Science,
W.Brauer et al (Eds.), Springer–Verlag, Berlin, (1985).

[14] Rosenblum, L., and A. Yakovlev, Signal Graphs: from Self-Timed to Timed Ones, Proc. of the Int.
Workshop on Timed Petri Nets, IEEE Comp. Soc. Press (1985), 199–206.

[15] Steggles, L.J., R. Banks, O. J. Shaw, and A. Wipat, Qualitatively modelling and analysing genetic
regulatory networks: a Petri net approach, Bioinformatics 23 (2007), Oxford University Press, 336–
343.

[16] Szallasi, Z., and S. Liang, Modeling the Normal and Neoplastic Cell Cycle with “Realistic Boolean
Genetic Networks”: Their Application for Understanding Carcinogenesis and Assessing Therapeutic
Strategies, Pac. Symp. on Biocomp. 3 (1998), 66–76.

[17] Thomas, R., and R. D’Ari, Biological Feedback, CRC Press (1990).

[18] Petri nets World, http://www.informatik.uni-hamburg.de/TGI/PetriNets/ , (2008).

R. Banks et al. / Electronic Notes in Theoretical Computer Science 227 (2009) 3–19 19

http://www.informatik.uni-hamburg.de/TGI/PetriNets/
http://www.informatik.uni-hamburg.de/TGI/PetriNets/

	Introduction
	Signal Transition Graphs
	Relationship between STGs and Circuits
	Genetic Regulatory Networks as Circuits
	Case Study: Lysis-Lysogeny Switch in Phage
	Conclusions
	Acknowledgement
	References

