submandibular triangle (p < 0.0001). In 69% of patients (n = 11), the dose to the transferred submandibular gland was below the QUANTEC dose constraint of mean < 35 Gy. Four of the remaining patients had pathologic involvement of the contralateral level I nodes and could not have the transferred gland spared, while one patient had a large pt4 lip lesion and coverage of the tumour bed resulted in a dose of 36.0 Gy to the transferred gland.

Conclusions: The mSGT technique significantly reduced the dose to the submandibular gland from a median dose very likely to produce xerostomia to a dose below accepted dose constraints. Adoption of this technique may reduce the rate of xerostomia and improve quality of life in patients with oral cavity cancer undergoing adjuvant RT.

25 CARO FELLOWSHIP
THE BIOLOGICAL ROLE AND CLINICAL SIGNIFICANCE OF LONG NON-CODING RNA UROTHELIAL CARCINOMA ASSOCIATED 1 (UCA1) IN PROSTATE CANCER (PCA) 
Alireza Fotouhi Ghiam1, Samira Jahangiri1, Jessica Ray1, Christianne Hoey1, Emmanouil Fokas2, Danny Vespri1, Robert Bristow1, Paul Boutros1, Stanley Liu1
1University of Toronto, Toronto, ON
2University of Ottawa, Ottawa, ON

Purpose: Urothelial carcinoma-associated 1 (UCA1) is a recently identified long non-coding RNA which plays an oncologic role in several cancers and enhances cellular proliferation, invasion, and tumour growth. It is upregulated in prostate tumours, but its involvement in therapy response has not been investigated.

Methods and Materials: To simulate the clinical scenario of ionizing-radiation resistance (IRR), we created IRR PCA cell lines by treatment with mock irradiation (parental cells) or IR (conventional fractionation (CF): 2 Gy daily X 59 for DU145-CF-IRR cells). We performed gene array profiling to discover dysregulated genes in DU145-CF-IRR cells and identified UCA1. We investigated the mechanism of UCA1 on aggression and response to radiation and chemotherapy by performing miRNA comparative profiling (NanoString platform), Proteome Profiler Array, proliferation assays, soft agar colony formation, clonogenic assays, invasion assay, γ-HAX assay, cell cycle profiling, MTS assay and western blotting. We also studied the clinical significance of UCA1 expression in two cohorts of PCA patients: CPC-GENE (n = 210; patients with intermediate-risk PCA) and MSKCC (n = 131; PCA patients treated with radical prostatectomy).

Results: DU145-CF-IRR cells were radioresistant and acquired an aggressive phenotype. We found that UCA1 expression was significantly higher in DU145-CF-IRR compared to parental cells using gene array profiling and confirmatory qRT-PCR analysis (170-fold). Interestingly, UCA1 siRNA knockdown reversed the aggressive phenotype and significantly increased sensitivity to IR and docetaxel. We demonstrated that UCA1 depletion inhibited growth, induced cell cycle arrest at the G2/M transition and decreased activation of the pro-survival Akt pathway. Furthermore, we found that UCA1 overexpression was associated with a trend toward lower biochemical recurrence-free survival in CPC-GENE patients (HR = 1.4, p = 0.28) and its aberrant expression was significantly associated with decreased five-year disease-free survival in publically available MSKCC database (84.5% versus 52%; HR = 2.19, log-rank test p = 0.005).

Conclusions: We showed for the first time that UCA1 can influence cancer aggression, radiation and chemotherapy response in PCA, which may occur through altered Akt signaling. Our results also suggest that UCA1 can have prognostic value in PCA. Future work will investigate UCA1 as a therapeutic target and prognostic biomarker for PCA.

26 URINARY CYTOKINES/CHEMOKINES PATTERN AFTER MAGNETIC RESONANCE- GUIDED HIGH INTENSITY FOCUSED ULTRASOUND FOR PALLIATIVE TREATMENT OF PAINFUL BONE METASTASES
Ahmad Bushehri1, Gregory Czarnota2, Liying Zhang3, Kullervo Hynynen1, Yuexi Huang2, Michael Chan1, Kristopher Dennis2, William Chu1, Charles Mougenot3, Edward Chow1, Jennifer Coccagna1, Arjun Sahgal1, Carlo DeAngelis1
1University of Toronto, Toronto, ON
2University of Ottawa, Ottawa, ON
3Philips Healthcare, Toronto, ON

Purpose: Pain is experienced by 50%-75% of patients with bone metastases, representing a major source of morbidity amongst cancer patients. Magnetic Resonance- Guided High Intensity Focused Ultrasound (MRgHIFU) is a new, non-invasive, outpatient treatment modality for painful bone metastases. The aim of this study is to analyze urinary cytokines/chemokines pattern after MRgHIFU for palliative treatment of painful bone metastases. The findings will be compared to the cytokines/chemokines pattern post single 8 Gy fraction radiation from our previous study.

Methods and Materials: Urine samples were collected from patients with painful bone metastases three days before and two days after treatment with MRgHIFU. Each urine sample was tested for pro-inflammatory cytokines and anti-inflammatory cytokines. Patients received teaching on how to collect urine samples on their own. The Millipore Milliplex 42-Plex Cytokine/Chemokine Kit™ was used to measure urinary levels of a panel of cytokines/chemokines.

Results: Ten patients were enrolled for the study and provided urine samples three days before and two days after treatment with MRgHIFU. The following fifteen cytokines were above the level of detection (LOD) in at least 50% of patients at both pre-MRGHIFU and post-MRGHIFU: EGF, Eotaxin, Fit-3 Ligand, Fractalkine, G-CSF, GRO, IFN-alpha2, IL-1ra, IL-8, IP-10, MCP-1, PDGF-AA, RANTES, sIL-2Ra, and VEGF. Nine urinary cytokines significantly decreased post MRgHIFU, namely, Eotaxin, GRO, IL-8, IL-13, IP-10, MCP-1, MIP-1beta, RANTES, and sIL-2Ra. In addition, there were significant differences between post MRgHIFU and post-8 Gy fraction radiation in most urinary cytokines.

Conclusions: Nine urinary cytokines significantly decreased post MRgHIFU which correlated with pain response in patients with painful bone metastases.

27 UTILIZING METABOLIC ALTERATIONS INDUCED BY ADIPOSE DERIVED STROMAL CELLS TO IDENTIFY NOVEL DRUGS FOR THE TREATMENT OF RADIATION FIBROSIS
Fei-Fei Liu
Princess Margaret Cancer Centre, Toronto, ON

Purpose: Radiation fibrosis (RF) is a side effect of radiotherapy characterized by irreversible scarring of normal tissue resulting in functional morbidity and decreased quality of life. Adipose-derived stromal cells (ADSCs) have been shown to regulate the metabolic profile of target tissue through the secretion of cytokines and growth factors. We hypothesize that ADSCs may be therapeutically effective for RF through metabolic reprogramming and that these ADSC-mediated metabolic alterations can be utilized to identify novel drugs for the treatment of RF.

Method: An RF model was created by irradiating the hind limb of C3H mice. This model showed a dose dependent leg contracture and histological findings of fibrosis. Primary cultured ADSCs derived from C3H mice were identified based on pathway analysis revealed that lipid metabolism and glycolysis were two pathways strongly dysregulated in RF and were reversed with ADSC treatment. To identify novel drugs to be repurposed for the treatment of RF, ADSC-mediated transcriptome alterations were compared with drug-mediated transcriptome alterations in CMAP, a pharmacogenomics