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A Hidden Markov Model Approach to Neuron Firing Patterns
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ABSTRACT Analysis and characterization of neuronal discharge patterns are of interest to neurophysiologists and neuro-
pharmacologists. In this paper we present a hidden Markov model approach to modeling single neuron electrical activity.
Basically the model assumes that each interspike interval corresponds to one of several possible states of the neuron. Fitting
the model to experimental series of interspike intervals by maximum likelihood allows estimation of the number of possible
underlying neuron states, the probability density functions of interspike intervals corresponding to each state, and the
transition probabilities between states. We present an application to the analysis of recordings of a locus coeruleus neuron
under three pharmacological conditions. The model distinguishes two states during halothane anesthesia and during recovery
from halothane anesthesia, and four states after administration of clonidine. The transition probabilities yield additional

insights into the mechanisms of neuron firing.

INTRODUCTION

Central catecholaminergic neurons, such as midbrain dopa-
minergic (DA) neurons of the substantia nigra and the
ventral tegmental area, and noradrenergic neurons of the
locus coeruleus, which are involved in motor functions and
attentional mechanisms, and in behavioral adaptation to the
environment, respectively, have been observed to fire in two
primary patterns: a “pacemaker” pattern and a “bursty”
pattern (Grace and Bunney, 1984; Gonon, 1988; Saunier et
al., 1993). A pattern is defined as the interval dispersion and
sequence, disregarding the average rate of firing (Bullock
and Horridge, 1965; Segundo et al., 1995). “Pacemaker”
patterns correspond to a single type of interval, i.e., a
“pacemaker neuron” fires spikes at intervals all practically
equal to their average. “Bursty” patterns correspond to two
clearly separate categories of intervals in which several
short intervals alternate with a few single long ones.

Activation of central catecholaminergic neurons by sen-
sory stimuli or pharmacological agents may alter their dis-
charge patterns. Moreover, electrical stimulation delivered
in bursts has been shown to be more effective than regularly
spaced discharges in increasing metabolic activity and cat-
echolamine release, independently of the mean discharge
rate (Gonon, 1988). Typically, drug effects have been ana-
lyzed in terms of 1) increases or decreases in mean dis-
charge rates, and, to take into account changes in discharge
pattern, 2) the degree to which these neurons exhibit burst-
ing activity (Carlson and Foote, 1992).
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Whereas in many instances the occurrence of bursts in
single-neuron recordings is readily recognized by eye,
quantitative analysis and comparison of discharge patterns
clearly required some more formal definition. Using 75
recordings of DA neurons considered to have bursting ac-
tivity, Grace and Bunney (1984) proposed empirical criteria
for defining bursting activity. They defined the onset of a
burst as an interspike interval shorter than 80 ms and the
termination of a burst by the next interspike interval longer
than 160 ms. The limitation of this approach is that the
definition of a burst lacks flexibility: the criteria were ini-
tially used to quantify bursting activity of neurons exhibit-
ing a mean firing rate of 4-5 Hz and proved inadequate for
cells firing at higher rates (Chergui et al., 1993). More
generally, burst analysis amounts to a binary description of
patterns, spikes, or the interspike intervals separating them,
either within or outside bursts; this may thus lead to inef-
ficient recognition of discharge pattern changes in some
contexts.

Several attempts have been proposed to circumvent these
limitations. Some authors combined the analysis of bursting
activity as defined by Grace and Bunney (1984) with pop-
ulation characteristics of interspike intervals (Charléty et al.,
1991; Chergui et al., 1993; Saunier et al., 1993). Shepard
and German (1988) proposed definitions for three firing
patterns, called regular, irregular, or bursting. Finally, Carl-
son and Foote (1992) used time-series measures such as
return maps and phase portraits to examine patterns in terms
of the ordering of interspike intervals.

In this paper we present a stochastic model approach to
the problem of characterizing different firing patterns and
describing the heterogeneity of interspike intervals in sin-
gle-cell recordings. This is achieved within the context of
hidden Markov models (HMM), the aim of which is to
reconstruct a “hidden” sequence of states of a system from
an observable output whose probability law depends on the
underlying state. This approach was used recently by
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Seidemann et al. (1996) to analyze recordings of single cells
in the frontal cortex of monkeys. Other fields of applications
are speech recognition (Baum et al., 1970), cardiac arrhyth-
mias (Coast et al., 1990), seizures in epileptic patients
(Albert, 1991), modeling of anion channels (Morier and
Sauvé, 1994) and proteins (Krogh et al., 1994), and animal
behavior (Macdonald and Raubenheimer, 1995).

THEORY AND METHODS

To justify our approach let us first consider the three arti-
ficial firing patterns illustrated in Fig. 1. Pattern a appears
homogeneous and regular, with almost invariant intervals; it
obviously qualifies as a “pacemaker.” Likewise, pattern ¢
would qualify as “bursty” to a naked eye evaluation. Cate-
gorization of pattern b is less clear and might vary among
different observers. We wish to build a model aimed at
discriminating and characterizing precisely such different
firing modes.

Structure of the model

The basic data are the sequence ?,, f,,... of successive
times of occurrence of spikes. Equivalently, we work with
the sequence y, = t, — t;, y» = I3 — t,, ... of interspike
intervals.

(a)

(p)

(c)

FIGURE 1 Simulated examples of neuronal discharge pattermns. The hor-
izontal axis is time, and each vertical line corresponds to a spike. By naked
eye evaluation, pattern @ would be classified as “pacemaker” and pattern ¢
as “bursty.” The classification of pattern ¢ is less clear.
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Suppose we knew that a given discharge pattern was
made up of intervals of R different types. We would then
assume that there are R different states of the neuron, each
state corresponding to a specific type of firing mode. From
this point of view, each pattern is characterized by an R
value whose estimation is described below; patterns a, b,
and c in Fig. 1 would correspondtoR = 1, R = 2,and R =
2, respectively. The point, however, is that the states of the
neuron are not observed experimentally and must be in-
ferred from the interspike intervals they generate.

Because of unpredictable variability in the data, we cast
our model in stochastic form. The observed sequence y,,
Y2, . . . of intervals is considered as a realization of a sta-
tionary sequence Y;, Y,, . . . of positive continuous random
variables, and the corresponding sequence i, i,,... of
neuron states is considered to be a realization of a sequence
X,, X,, ... of discrete random variables with state space
{1,... R}. The possible stochastic dependence between
adjacent interspike intervals is modeled as arising from
dependence within the underlying neuron states. In more
mathematical terms, we assume the following:

1. The random sequence X,, X,, ... is a homogeneous
Markov chain of order k; for the sake of clarity, and without
loss of generality, we hereafter suppose & = 1.

2. For j = 1, the random variables Y, . .. ,Yj are inde-
pendent conditionally on X/, . . . XJ, moreover, forl </ =<
J» the conditional probability density function of Y, given
X,, ..., X depends on X, only.

Under the above assumptions, the joint stochastic behav-
ior of the random sequences X;, X,,...and ¥}, Y,, ... is
fully defined by specifying

e a starting distribution v = (¥);<;<g, Where vy, =
PX, =)
® a transition matrix 7 = (), <i<p, Where

PX; = i'|X;_, = 1)
e for each i = 1,... ,R, the conditional density f(y) of
interspike intervals generated while the neuron is in state i.

The two-parameter Weibull family, W, 5(f) = apt®~'e™ %,
a, > 0, strikes a balance between flexibility and numerical
tractability. However, to allow for more generality, we model
the f;’s as mixtures of Weibull densities,

f;(y) = Z 'Yiswai\.Bi\(y)’

s=1

where /; is an integer, v, = 0 and Sy = L
For later convenience, we define 0, = (o, B;, i - - -
@i Bii» vi) and 6 = (B, ..., bg).

Point estimation of model parameters

Our ultimate goal, given the observation of n intervals
Yis -+ »Yn 1S to Teconstruct the unobserved (hidden) se-
quence iy, . .. i, of corresponding states of the neuron. The
obvious approach is to determine the number R of states and
then to find the most probable path #,,... ,i,, among all
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possible paths in {1, ,R}", given the observed sequence
¥is - - - ¥n To fulfill this program we proceed in successive
steps to compute the conditional probabilities of the paths.

Step 1

Suppose R, k, and [, i = 1,... ,R, are fixed. Then the
unknown parameters of the model are the starting distribu-
tion v, the transition matrix r, and 6. It can be shown (see
Appendix) that the likelihood of the model with respect to
the observations y,, ... .y, is

n—|

Z L <R vl]ﬁl(y )l—[ |,1J¢|f;|4|(y)+l)

=iy, ...,in=R
i=1

Unknown parameters are estimated by maximizing this
expression. Computation of the likelihood function is done
recursively by exploiting the underlying Markov structure

(a)

spikes/sec

0 100

FIGURE 2 Integrated rate histograms
and corresponding discharge patterns

: ; . (b)
obtained from a single locus coeruleus
neuron from a Sprague-Dawley rat un-
der three different pharmacological
conditions: during anesthesia with 1%

halothane (recording a), the neuron ex- 15
hibits a somewhat regular firing pattern; § 10
20 min after recovery from halothane E
anesthesia (recording b), the firing pat- < 5
tern is faster and less regular; and after Z

o

intravenous administration of the a,-
agonist clonidine hydrochloride (8 ug
kg™") (recording ¢), resulting in a dis-
tinctly irregular phasic pattern, there is
a low average firing rate and high co-
efficient of variation.

(c)

spikes/sec

0 100
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of the model, following the algorithm of Baum et al. (1970),
as implemented in the Forward-Backward Procedure of
Rabiner (1989). Details are given in the Appendix.

Under general regularity conditions, the maximum like-
lihood estimators of v, 7, and 6 are asymptotically Gauss-
ian, and their asymptotic covariance matrix can be estimated
as minus the inverse of the matrix of second derivatives of
the log likelihood function (Lindgren, 1978).

Step 2
To determine R, k, and [, i = 1, ... ,R, we start with the
simplest model, i.e., R = 1, k = 1, I, = 1, and consider

models in ascending order of complexity, by increasing R
and/or k and/or [, i = 1,... ,R, while this results in
significant improvement of the model.

Comparison of nested models is performed by the like-
lihood ratio test, and comparison of non-nested models is

time (sec) -

200 1 sec

———

time (sec) 1 sec

HHH:

time (sec) 1 sec

200
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based on Akaike’s information criterion (AIC) (Akaike,
1974).

Step 3

Once a model has been selected and its parameters have
been estimated, let P(X, = ij,....X, = i)|¥Y; = ¥,...,
Y, = y,) denote the estimated conditional probability of the
path (i), ... ,i,) given y,, . ...y,. The most probable path is
found as the n-tuple (7, . . . ,f,) maximizing this probability
with respect to all n-tuples i,, ... ,i, € {1,...,R}". The
maximization is done recursively using the Viterbi algo-
rithm (Rabiner, 1989; see Appendix).

Interval estimation of model parameters

Because of the complexity of the algorithms involved in the
point estimation process (see above), interval estimates of
model parameters cannot be derived by analytical methods.
Therefore we estimate confidence intervals using Monte
Carlo simulations based on 1000 simulations of the model.

ANALYSIS OF EXPERIMENTAL DATA

In this section we apply the hidden Markov model approach
to the analysis of data from a 225-250-g Sprague-Dawley
rat in which the electrical activity of a single locus coeruleus
neuron was recorded using stereotaxic techniques, under
three pharmacological conditions: during anesthesia with
1% halothane (recording a), during recovery from halothane
anesthesia (recording b), and after intravenous administra-
tion of the a,-agonist clonidine hydrochloride (8 ug kg™")
(recording c). Full experimental details are given in Saunier
et al. (1993). .

Integrated rate histograms of neuron discharges are
shown in Fig. 2 together with the corresponding discharge
patterns. We use the term “integrated rate histogram” for a
display of the number of spikes in 1-s bins along ongoing
time. The corresponding interspike interval means and co-
efficients of variation are presented in Table 1. Under halo-
thane anesthesia (a), the neuron exhibits a somewhat regu-
lar, pacemaker firing pattern. Twenty minutes after
halothane withdrawal (b), the firing pattern is faster and less
regular. Administration of clonidine (c) results in a dis-

TABLE 1 Mean and coefficient of variation of interspike
intervals in three recordings of a single locus coeruleus
neuron in a Sprague-Dawley rat

Coefficient of

Recording Mean (ms) variation (%)
a 278.3 52
b 153.2 68
c 428.6 178

a, During halothane anesthesia; b, during recovery from halothane anes-
thesia; c, after administration of clonidine.

Markov Analyses of Neuron Firing

2407

tinctly irregular bursty pattern, with a low average firing
rate and high coefficient of variation.

Table 2 presents the results of the hidden Markov model
analysis. For each state of the neuron, as identified by the
HMM, the table shows point estimates and 95% confidence
intervals of the mean, coefficient of variation, and propor-
tion of interspike intervals generated from that state. Max-
imization of the likelihood function was performed with
routines from IMSL (IMSL, 1987). In all instances the
underlying Markov chain was found to be first-order (k =
1). Our procedure distinguished two states of the neuron in
recordings a and b, and four states in recording c. Estimates
of the probability density functions of the interspike inter-
vals are plotted in Fig. 3; these estimates correspond to
single Weibull densities for all states of cases a and ¢, and
to mixtures of two Weibull densities for the two states of
case b.

Table 3 presents point estimates and 95% confidence
intervals for the means and proportions of within-burst
intervals according to the criteria of Grace and Bunney
(1984), in recordings a, b, and c. In the case of recording a,
neither of the two states of the HMM appears to correspond
to the 7% short interspike intervals within bursts according
to Grace and Bunney (1984). For recording ¢, the corre-
spondence between the population of interspike intervals
generated from state 1 of the HMM and the population of
the within-burst intervals of Grace and Bunney (1984) ap-
pears excellent. As for recording b, the correspondence
looks more debatable. Fig. 4 contrasts further the results of
the two approaches for recordings b and c, respectively.

TABLE 2 Hidden Markov model analysis of discharge
patterns of a single locus coeruleus neuron in a Sprague-
Dawley rat

Interspike intervals

Mean Coefficient of  Proportion

Recording State (ms) variation (%) (%)

a 1 192.9 48 52
[175.5, 215.3] [44, 52} [42, 62)

2 386.7 35 48
(355.9, 420.1] [30, 40] {38, 58]

b 1 91.8 38 48
[88.9, 95.0] [34, 42] [39, 58]

2 198.4 56 52
[188.3, 211.0] [53, 59] [42, 61)

c 1 60.5 41 57
[57.3, 63.9] [37, 45] [47, 64]

2 179.6 65 14
[136.8, 236.4] [47, 79] [7, 18]

3 599.6 77 21
[504.2, 719.1] [64, 89] [15, 32)

4 2626.1 20 8
[2436.4,2790.3] [15, 25] [6, 10]

a, During halothane anesthesia; b, during recovery from halothane anes-
thesia; ¢, after administration of clonidine. For each state of the neuron, as
identified by the HMM, the table shows point estimates and 95% confi-
dence intervals of the mean, coefficients of variation, and proportion of
interspike intervals generated from that state.
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Relationships between pairs of consecutive interspike
intervals can be grasped through the visual inspection of
return maps (Carlson and Foote, 1992), as illustrated in Fig.
5. Such maps can be used for the more quantitative evalu-

TABLE 3 Burst analysis of discharge patterns of a single
locus coeruleus neuron in a Sprague-Dawley rat according to
the criteria of Grace and Bunney (1984)

Interspike intervals within bursts

Recording Mean (ms) Proportion (%)
a 66.9 7
[54.5, 70.8] [5, 8]
b 80.8 40
[79.0, 83.4] [35, 46]
c 59.5 57
[56.9, 62.9] [49, 65]

a, During halothane anesthesia; b, during recovery from halothane anes-
thesia; ¢, after administration of clonidine. The table shows estimates and
95% confidence intervals of the mean and proportion of interspike intervals
within bursts.

ation of probabilities of occurrence of a given type of
interval, given the type of the previous interval (Segundo et
al., 1966). However, transition probabilities between states
are directly estimated by the HMM approach, as illustrated
in Fig. 6. In case a, these estimates show frequent switching
between the two states, a finding reminiscent of the oscil-
latory phenomenon that has been observed under halothane
anesthesia (Carlson and Foote, 1992). The probabilities
estimated from recording b correspond to rather infrequent
transitions, in agreement with the existence of bursts sepa-
rated by sequences of longer intervals. Results from exper-
iment ¢ are probably the most interesting. Roughly, bursts
of spikes (state 1) are followed by a single very long interval
generated from state 4. This fact may be related to the
refractory period that has been reported after repeated dis-
charge in bursts (Bullock and Horridge, 1965; Aghajanian
et al.,, 1977; Hoffman et al., 1995). Indeed, the interval
density in state 4 is negligible for intervals of less than 1800
ms (see Fig. 3). The neuron may then switch back directly
to bursting activity, or proceed through states 3 and 2, a
pattern corresponding to a progressive shortening of the
intervals.
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(b)

(c)

odlal L

FIGURE 4 Probability that the neuron is in state 1 of the HMM, condi-
tional on the observed sequence of interspike intervals, for 100 consecutive
intervals from recordings b and ¢, respectively. Closed squares on the
horizontal axis indicate bursting intervals according to the criteria of Grace
and Bunney (1984).

DISCUSSION

We have presented a hidden Markov model aimed at char-
acterizing neuron firing patterns and analyzing the hetero-
geneity of interspike intervals.

A characteristic feature of locus coeruleus neuron activity
is a burst of activation in response to sensory or noxious
stimulation, followed by a prolonged period of inhibition
(Aghajanian et al.,, 1977). Neuropharmacological experi-
ments revealed that the nucleus paragiganto-cellularis pro-
vides a potent excitatory amino acid input to the locus
coeruleus, acting primarily at non-NMDA (N-methyl-p-as-
partate) receptors, and that this pathway mediates certain
sensory excitatory responses of locus coeruleus neurons
(Aston-Jones et al., 1991). Furthermore, Ennis and Aston-
Jones (1986) have reported that a calcium-dependent potas-
sium conductance and a collateral noradrenergic inhibition
(via ay-adrenergic autoreceptors) were about equal in their
contributions to the postactivation inhibition.

Dopaminergic neurons studied by Grace and Bunney
(1984) are required for normal behavior and movements. In
vivo they fire action potentials in bursts, but in vitro they
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discharge regularly spaced action potentials. It has been
demonstrated that this burst firing is mediated via NMDA
receptors (Chergui et al., 1993) and is controlled, in part, by
excitatory amino acid afferents originating in the subtha-
lamic nucleus (Chergui et al., 1994). The hyperpolarization
between bursts of action potentials results from an electro-
genic extrusion of sodium ions by a ouabain-sensitive pump
(Johnson et al., 1992).

Thus it is tempting to speculate that state 1 as detected by
HMM analysis of recordings under halothane withdrawal
and after repeated injection of clonidine might correspond
to such excitatory amino acid afferent inputs. Indeed, it has
been shown that locus coeruleus bursting activity defined by
Grace and Bunney (1984), observed after halothane with-
drawal and clonidine administration, was suppressed by
local application of the excitatory amino acid antagonist
kynurenate (Saunier et al., 1993).

However, locus coeruleus neurons receive other excita-
tory and inhibitory inputs from many interconnected
sources mediated by both chemical neurotransmitters and
electronic coupling. In particular, the nucleus prepositus
hypoglossi potently inhibits locus coeruleus neurons via a
GABAergic projection acting at GABA, receptors, and
serotonin selectively attenuates excitations of locus coer-
uleus neurons evoked by excitatory amino acids through
5-HT, 5 receptors (Aston-Jones et al., 1991).

Consequently, other states detected from the HMM may
represent the collective interactions of various inputs at the
somato-dendritic level combined with intrinsic membrane
properties. In particular, state 4, detected after clonidine
administration and corresponding to the very long interspike
intervals, may relate to the well-known inhibitory properties
of this a,-adrenergic agonist via somatodendritic autorecep-
tors (Svensson et al., 1975).

States 1 and 2 detected from the HMM under halothane
anesthesia and states 2 and 3 after repeated injections of
clonidine might represent a substantial oscillatory tendency
in the magnitudes of consecutive interspike intervals in
locus coeruleus neurons, as already observed for dopami-
nergic neurons (Carlson and Foote, 1992). Furthermore,
state 1 under halothane anesthesia, state 2 under halothane
withdrawal, and state 2 after repeated injections of clonidine
might be interpreted as corresponding to the neuron’s spon-
taneous activity.

As compared to the method of interspike interval analysis
of Grace and Bunney (1984), which separates interspike
intervals into within-burst or between-burst intervals, our
approach, although more computationally demanding, al-
lows a more flexible description of interspike interval het-
erogeneity. Other methods based on the analysis of the joint
interval distribution are more detailed in essence, but the
HMM approach yields direct estimation of transition prob-
abilities between states, thus allowing deeper quantitative
insight into the mechanisms underlying the observed neuron
discharge patterns.
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APPENDIX
Likelihood computation

The likelihood i(6, v, 7) of the data y, . . . ,y, is defined as the joint density

of the random variables Y, ... .Y atY, =y, ....Y, = y,.. To compute /(8,
v, 7), we note that the joint density of X,.Y,, ... XY, at X, ={.Y, =
Yoo Xy = 0¥, = ¥, is easily written as

n—1

Vilﬁl()’n)n 7Ti,i,+|.ﬁ,+|(yj+l),

=1

o that the density of Y|, ... .Y, can be obtained by summing out on all
possible sequences i, . .., i, of states in {1,... ,R}™

n—1

2, N Vi.fi,()’l)l_[ wi,i,uﬁ,q())jﬂ)-

LS TR P

0, v, m =
§

i=l

In this form the amount of computation is on the order of 2nR"
calculations; there are R" possible state sequences, and for each such state

Preceding interspike intervals (sec)

sequence about 2n calculations are required for the likelihood. However,
Baum et al. (1970) show how the underlying Markov structure of the model
can be used to derive a recursive algorithm that only requires on the order
of nR? calculations. We give a brief description of this algorithm, following
the presentation of Rabiner (1989).

First, by the theorem of total probability, we have

R
106, v, M = 2 f(y1, ... » Yol Xo = DP(X, = i),

i=1

where f(y,, - - . .yalX. = i) is the density of ¥, ... .Y, conditional on X,
= i. Now the right-hand side of the above identity can be computed
recursively, using the recursion formula

flyn, ... s Yi+1 lXj+l = i’)P(Xj+l =i

= SO o31% = DPEG = Dl i),

i=1
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0.26‘ ; ' 0.21
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FIGURE 6 Estimates of transition probabilities
between the different states of the neuron. (a) Dur-
ing halothane anesthesia, (b) during recovery from
halothane anesthesia, (c¢) after administration of
clonidine.
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0.84 0.14 0.06

()

0.34
0‘66 0.76 _
0.24 0.42 0.70

and the starting value

fnlX, =dPX, =D =vfly), i=1,...,R

Sequence reconstruction

Having observed a sequence of n interspike intervals y, ... ,y,, we try to
guess the corresponding sequence of the n states of the neuron that
generated these intervals. We choose to reconstruct this sequence as the
n-tuple 7y, ... P, that has the highest probability, given y,, ... ,y,. To find
this maximizing sequence, we use the Viterbi recursive algorithm (Rabiner,
1989).

First, for 1 =i = R, let

8,(0) = v(i) fily),

and

§() = max PX =i,..

iz, . .-

-vXj:i’leyl’~--an:yj),

2=j=n.
We note that 8,(/) can be computed recursively using the identity
8j+|(i,) = [ max Sj(i)’”ii']ﬁ'()’jﬂ)-
i=1.....R

Then we find the sequence 7, . ..
from

i, by descending induction, starting

ip = argmax[8,(i)],

I=i=R
and using the identity

ij = argmax[§()m;, ], j=n—-1lLn—2,..., 1

i |
1=i=R
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