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Abstract-we consider the problem of optimizing a Lipshitzian function. The branch and bound 
technique is a well-known solution method, and the key components for this are the subdivision 
scheme, the bound calculation scheme, and the initialization. For Lipschitzian optimization, the 
bound calculations are based on the sampling of function values. 

We propose a branch and bound algorithm based on regular simplexes. Initially, the domain in 
question is covered with regular simplexes, and our subdivision scheme maintains this property. The 
bound calculation becomes both simple and efficient, and we describe two schemes for sampling points 
of the function: midpoint sampling and vertex sampling. 

The convergence of the algorithm is proved, and numerical results are presented for the two di- 
mensional case, for which also a special initial covering is presented. @ 2002 Elsevier Science Ltd. 
All rights reserved. 
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1. INTRODUCTION 

One of the most, general assumptions enabling the construction of algorithms for global optimiza- 
tion guaranteeing prescribed accuracy is the assumption that an objective function has bounded 
rate of changing and is defined over a bounded domain. In the following, we restrict our attention 
to functions of this type. Hence, we assume that f(z), x E A C R” is Lipshitzian with constant L, 
and that A is bounded, i.e., that If(z) - f(y)\ I Ll(z - yll, 2, y E A, and that a B exists such 
that ~~x~~ < B < co, 2 E A, where )I . 11 denotes the Euclidean norm. 

It is then obvious that if &Sph(si,E/L) 2 A with Sph(z,r) denoting the sphere with 
center 2 and radius T, then minl<i<Nf(zi) estimates the global minimum with accuracy C. -- 
Although N(E), the number of points needed for the optimal algorithm to guarantee accuracy 
E, is an exponential function of the dimension of the solution space, n, this poses no more 
pessimism regarding solution methods than the exponential number of feasible solutions in the 
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case of an NP complete combinatorial problem. Algorithms based on the Lipshitzian model have 
been investigated by many authors: Baritompa, Evtushenko, Galperin, Hansen, Hansen, Horst, 
Jaumard, Pinter, Pardalos, Tuy, Wood, and others. A recent review of results with references to 
the original papers is presented in [l]. Our research was motivated by the following observations. 

l In practice, there exist problems of modest dimensionality whose solution with guaranteed 
accuracy is important at the cost of any reasonable time. 

l Normally, the objective functions are very different from the saw-tooth worst case func- 
tions. 

l Investigation of algorithms with guaranteed accuracy may give rise to heuristics which 
are efficient for some types of objective functions although not guaranteed to solve any 
Lipshitz problem with prescribed accuracy. 

l Parallel implementation of algorithms remarkably extended practical solvability in some 
classes of hard optimization problems [2-41. 

Covering by spheres is mainly used as an abstract method for theoretical investigation. The 
constructive algorithms are defined by minimization of lower bounds of function values or by 
covering of the feasible region by hyperrectangles [l]. The disadvantages of both approaches are 
discussed and a new version of branch and bound search using a covering of the feasible region 
by regular simplexes is proposed. 

There are two main reasons for using coverings of regular simplexes. First, if a regular simplex 
from the current covering is to be branched on and a covering for it constructed, several schemes 
can be devised, such that the resulting cover consists of a number of regular simplexes proportional 
to the dimension of the domain. Furthermore, for a sequence of simplexes S1 > SZ . . . 3 S, 3 . . . 
constructed by our algorithm, the edge length converge exponentially to zero ensuring convergence 
of the algorithm. 

Second, regular simplexes leave open several possibilities for function value estimation based 
on the Lipschitzian constant of the function. We propose a midpoint sampling scheme and a 
vertex sampling scheme, and investigate the properties of these in the two-dimensional case. 

Finally, we address the question of initially covering the domain of the function to be optimized 
by a set of regular simplexes. We also address the relation of our algorithm to another algorithm 
based on regular simplexes by Wood. 

2. A NEW VERSION OF THE 
BRANCH AND BOUND TECHNIQUE 

Two main approaches are used to construct global minimization algorithms for Lipshitz con- 
tinuous functions. The algorithms implementing the first approach define the point of f(.) to be 
evaluated next by global minimization of the lower bound of values of f(.). This technique aims 
for the maximal possible improvement at the current step. Experimental testing shows rather 
high efficiency of these algorithms for several one-dimensional and two-dimensional test functions 
with respect to the number of function evaluations [1,5]. However, even in the two-dimensional 
case, the auxiliary problem of minimization of the lower bound often becomes practically unsolv- 
able [l]. 

The second approach is based on the covering of A by elementary subsets, i.e., subsets of 
some prespecified type as spheres, hyperrectangles or simplexes. An initial covering of A is the 
subject to iterative refinement by subdivision of a selected subset D into a finite number smaller 
elementary subsets. A subdivision may result in a partition of D into mutually disjoint subset or it 
may result in a covering, i.e., a set of elementary subsets, for which the union of these contains D. 
A branch and bound technique controls the process of refinement. For each elementary subset, 
a lower bound estimate is calculated using only the values of f(.) at normally few points of this 
subset. If the estimate is worse than the known upper bound for minZEA f(z), then this subset 
may be left out from further consideration, i.e., discarded or fathomed. If this is not the case, the 
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elementary subset under consideration is, as already mentioned, subdivided into several smaller 
subsets of the same type, i.e., branching takes place. Different types of elementary subsets may 
be used, as well as different strategies for selecting the next subset to process and for subdivision 
of a subset. Several implementations of this technique are discussed in [l]. 

It is interesting to note that some one-dimensional algorithms, e.g., Pijavskij-Shubert [I] and 
Brent [6] may be considered as representatives of both approaches. The testing in [I] shows 
that for two-dimensional functions, the best implementation of the branch and bound technique 
requires twice as many evaluations of f(.) as the algorithms using the first approach. But the 
auxiliary computations of branch and bound algorithms are essentially less time consuming. Some 
problems too hard for algorithms using the first approach have been solved by branch and bound 
algorithms. 

The elementary covering subsets are normally hyperrectangles (boxes). In case interval meth- 
ods are used, boxes are very natural because they correspond to the definition of operations in 
interval arithmetics [2,7]. The use of boxes for other covering algorithms has serious disadvan- 
tages. For example, the use of symmetric boxes (hypercubes) is normally out of question because 
of the exponential number (with respect to n) of objective function evaluations occurring when 
dividing a parent hypercube into smaller ones. Several schemes for dividing of a box into, e.g., 
two, smaller boxes have been proposed, however, the implied algorithms were rather slow in 
computational experiments (11. 

Our idea is to construct a branch and bound algorithm based on potentially tight lower bounds 
evaluated by not too complicated auxiliary computations. The idea to choose regular simplexes 
as elementary covering subsets seems prospective. Different simplex based covering techniques 
have been proved advantageous in [8-121. The idea pursued in the following is that Lipshitzean 
bound calculation for regular simplexes is a rather easy task, and hence, using a covering by 
regular simplexes may speed-up simplex based branch and bound algorithms considerably. 

In the two-dimensional case, a regular simplex corresponds to a equilateral triangle. The latter 
may be subdivided into four equilateral triangles with edges half as long as the original ones as 
shown in Figure lc. This corresponds to a covering, where a simplex is defined for each vertex u 

(4 (b) 

Cd) 

Figure 1. Three possible subdivisions of a simplex. 



946 J. CLAUSEN AND A. ~ILINSKAS 

of the parent simplex by points subdividing each of the edges corresponding to v in the propor- 
tions 1 : 1, and defining the fourth simplex by the midpoints of each of the facets of the parent 
simplex. Other schemes of subdivision have also been suggested in the literature, cf., [8], in which 
Figures la and lb are mentioned, and where also the subdivision (c) is proposed. The purpose of 
introducing subdivision (c) in [8] is, however, entirely different and relates to convergence prop- 
erties rather than bound calculation. The subdivision (b) has an obvious disadvantage due to 
the possible degeneration of a triangle resulting from several subdivision steps. Subdivision (a) 
might be competitive with (c) with respect to easy bound calculation. The number of function 
evaluations in the worst case may, however, be estimated as 0.5(L/~)~ for (a) and (2/3&)(L/~)~ 
for (c). Hence, the estimated number of function evaluations is approximately 27% larger for (a) 
than for (c). The subdivision into equilateral triangles has an advantage because the minimum 
of lower bound may be calculated by means of an analytical formula as shown below. The 
bounds calculated using the Lipshitz constant and the function values of the vertices of equilat- 
eral triangles covering a feasible region will in general be better than those calculated from the 
vertices of the irregular triangles covering the same region. Some comparison of two-dimensional 
subdivisions is presented below. 

Another possibility exists, namely, to choose a covering of the parent simplex rather than a 
subdivision. This can be accomplished by defining the simplex for each of the vertices of the 
parent simplex by points subdividing the corresponding edge in proportions 2 : 1, cf., Figure Id. 
The disadvantage of such a scheme is the overcovering introduced, which is 30% in the two- 
dimensional case. 

In the n-dimensional case with n > 2, neither of the coverings described above result in 
subdivision of the simplex in question into a set of pairwise disjoint regular simplexes, and 
indeed, the existence of such a subdivision scheme is not known. The two schemes for covering 
described above can both be generalized, and the issue is discussed in more detail in Section 7. 
In the case of the first scheme, a parent simplex is covered by means of n + 2 descendant regular 
simplexes. The edge length of n + 1 of these subsimplexes equals (n - 1)/n of the parent edge 
length, and edge length of the last equals to l/n of this. The three-dimensional case is illustrated 
by Figure 2. Let S(Z) c Rn be a regular simplex with center z and edge length d. Let a set 
of simplexes covering A be given, i.e., UE”=, S(zi) 2 A. Simply choosing a suitable simplex S 
circumscribing A may be too inefficient, e.g., the volume ratio between A and S may be less than 
(2/,/m)n for hypercubic regions. We propose a possible covering for the two-dimensional 

Figure 2. A subdivision of B three-dimensional simplex. 
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rectangular domains in Section 5. A set of standard coverings should be developed for standard 
domains as, e.g., hyperrectangels, but the design of an efficient initial covering for a complicated 
domain of a practical problem will in general constitute a challenge. 

In each S(Z,), at least one point zj is chosen for calculation of the value of f(.). Using the 
available values of f(.) for each S(zi), a lower bound bi for the function values of f(.) over S(zi) 
is calculated using the Lipshitz constant. Let yck be an upper bound on the global minimum 
after lc evaluations of f(.), i.e., ysk 2 min&A f(x). Normally, the equality yek = rninr~i~k f(xi) 
holds. The simplex S(zi) is discarded if bi 2 yak - E. The remaining simplexes are kept in a 
priority queue ordered by the values of the bounds bi. 

At each iteration of a branch and bound algorithm, the simplex S(Z~) from the front of the queue 
is chosen to be covered. The function values of f(.) are calculated at the points of S(zi) defined 
by the algorithm, and ysk is updated. The bounds for the descendant simplexes are estimated 
and each simplex is discarded or inserted in the priority queue depending on the relation of its 
bound value to yck. The algorithm terminates when the priority queue is empty. The branch 
and bound algorithm is, hence, an eager best-first algorithm. 

Two versions of the algorithm are considered. 

VERSION 1. For each simplex, the values of f(.) are calculated at the center of gravity of the 
vertexes. 

VERSION 2. The values of f(.) are calculated at the vertexes and (n + 1)n points on the edges 
of the initial simplexes. For a selected simplex, the new function values are calculated at all or 
some of new (n + 1)” vertexes of descendant simplexes depending whether they coincide with 
the vertexes of previously generated simplexes (in which case, the function values are already 
known). 

In the first version of the algorithm, the estimation of bounds is very simple: 

bi = f(zi) - L . bi max, 

where & max denotes the maximal distance between the center and the vertexes of the i th simplex. 
In the second version, bi is the solution to the minimization problem 

bi = min IES(B,)I,~~~=i)(f(Zj) -L’ II2 - xjll)7 
* 3 

(1) 

where xj E S(zi) are the trial points corresponding to the vertexes of ith simplex. It is shown 
in the following, that problem (1) is easy, at least for a two-dimensional case. Before going into 
details with our branch and bound method, we briefly describe the multidimensional bisection 
method (MB) of Wood in the context of branch and bound in order to contrast it to our branch 
and bound algorithm. The MB algorithm is also based on regular simplexes, and hence, may be 
seen as an alternative way of exploiting the properties of those. For a more detailed description, 
the reader is referred to [9,10,13]. 

3. MULTIDIMENSIONAL BISECTION 

We consider the minimization of an n-dimensional function f(.) and its epigraph E, which is an 
n + l-dimensional body. We want to determine a point in E with the minimum value of the n + 1 
coordinate, which is the function value of f in the domain point given by the first n coordinates. 
The idea of MB is to maintain a collection of n + l-dimensional regular simplexes, whose union 
contains all points of E with minimal function value. Each such simplex has a unique apex as the 
point with lowest value of the n+lst coordinate, an axis parallel to the n+ lst coordinate axis, and 
a top parallel to the domain space in question. Hence, for each simplex, the n + lst coordinate of 
the apex provides a lower bound for the function values for all points of the domain of f, located 



948 J. CLAUSEN AND A. ~ILINSKAS 

in the projection of top onto the domain space. In Figure 3, the simplex S determines a lower 
bound of f(x) for x E [si, ss] by the second coordinate of its apex As. 

In each iteration of MB, a simplex with apex of lowest n+lst coordinate is chosen for processing. 
The function value of the domain point corresponding to the apex is computed, and based on 
this function value and the Lipshitz constant, a simplical cone is generated, in which no points of 
the epigraph of f can be located. This is called the removal cone. Three possibilities now exist. 
If the removal cone contains the simplex, the simplex is fathomed (just as in ordinary branch and 
bound). Otherwise, some parts of the simplex falls outside the removal cone, and these are either 
disjoint simplexes with tops being disjoint subsets of the top of the originating simplex or can 
be described as the union of simplexes each of which is a subsimplex of the originating simplex. 
In Figure 3, the removal cone corresponding to the domain point a of As is illustrated, and the 
effect of using this to replace S with two smaller simplices is illustrated. 
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Figure 3. The n + lSt coordinate of the apex constitutes a lower bound. 

In both of the latter cases, some of the (up to) n + 1 simplexes are added to the collection of 
simplexes to be processed, namely, those for which the n + 1 coordinate of the apex is not larger 
than or equal to the minimum value of f, in the previously evaluated points. Also, the tops of 
all simplexes in the collection may be lowered if the calculated function value is the best value 
of f found so far, possibly fathoming some of these. 

In terms of branch and bound, the projections of the tops of the simplexes in the current 
collection onto the domain space constitute the live subspaces of the domain, and values of 
the n + 1 coordinates of their apexes constitute the bounds of these subspaces. The function 
evaluation for the apex of a simplex is connected to the branching process, i.e., used to generate 
new subspaces, and implicitly also used to fathom complete subspaces or parts hereof. The new 
resulting subspaces may overlap and will normally be of differing size. 

In contrast, the first version of our branch and bound method, in which we use the simple 
bound calculation based on the evaluation of f in the center of the simplex in question, uses 
the function evaluations explicitly to calculate bounds, and the subdivision of a simplex is done 
in a regular fashion using no information related to the function evaluation. Hence, even if the 
MB method can be phrased in a branch and bound context with simplexes used as subspaces, 
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the method differs substantially from both versions of our branch and bound algorithm. Note 
also that our second bound calculation can be expected to produce bounds substantially stronger 
than the apex-bounds of the MB-method. 

4. CONSTRUCTION OF A SIMPLEX 

We define the vertexes of the standard simplex with edge length equal to one iteratively. 
The k + 1 vertices in dimension k are denoted xt, xf, . . . , x;+~, and the center ~5 = (l/(k + 1)) 

c:z; xi. 
Dimension 1. The two vertices are xi = 0 and xt = 1. The center is x: = 0.5. 
Dimension k. The first k vertices are constructed by locating the k vertices of the simplex 
of dimension k - 1 according to their coordinates in the hyperplane defined by xk = 0. 
The vertex xk+i has the first k coordinates equal to those of xt and the k + lSt coordinate 
is determined by the equality ]]xk+i - xf]] = 1. 

It follows immediately that XT = (O,O), xz = (l,O), and xi = (l/2, A/2); in three dimensions, 
we have X: = (O,O,O), xz = (l,O,O), X$ = (l/2, a/2,0), and xi = (1/2,fi/6,8/3), i.e., 
the one-dimensional standard simplex is the unit interval, the two-dimensional simplex is the 
equilateral triangle, etc. The simplexes in dimensions one, two, and three are shown in Fig- 
ures 4a-c. 

The general solution of the recurrence relation gives 

x$+l:i = x::?, x::i = x::; l1 

x::k= d&, i=l,...,k-1. (2) 

The regular simplexes are obtained from a standard simplex by contraction/extension of Rn 
equally in all coordinates and orthogonal transformation of R”. 

(b) 

Figure 4. The simplices of dimensions one, two, and three. 

5: CONVERGENCE 
The conditions of general theorems on convergence given in [8] may be checked for the proposed 

versions of the algorithm. However, both versions may be treated uniformly by an extremely short 
direct proof, which also gives some quantitatives estimates. Let us denote the number of simplexes 
of the initial cover by iVe and the longest edge of these simplexes by d,,,. 
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THEOREM 1. The requested accuracy e is achieved by the algorithm after at most  N = (n + 1) • 
n . No .  [log( dmax L / e ) / log(n / ( n - 1))] calculations of  objective function values 

YON= min f ( x i )  < m i n f ( x ) + e .  
l ~ _ i ( N  --  x E A  

PROOF. After N c  = [ log(dmaxL/e) / log(n/(n  - 1))] cuts of the largest simplex (let its number 
be h), the edge will become shorter than e /L  implying bh >_ minz, es(zh) f ( x i )  - e. Termination 
now appears no later than after No. Ne  • (n + 1) • n function evaluations since then all generated 
simplexes have been discarded. The accuracy of evaluation of the global minimum is bounded 
by e by the rule for discarding a simplex. 

THEOREM 2. I f  the algorithm runs with e = O, then only the points o f  global min imum are the 
accumulating points o f  the sequence xi. 

PROOF. Let z E A be a point not belonging to the set of global minimum points. Let us 
denote 0 = f ( z )  - minxeA f ( x ) .  The simplex generated by the algorithm S(zh)  ~ z will be 
discarded after at most N = (n + 1). n .  No .  [ log(3dmaxL/O)/ log(1/(n/(n - 1))] calculations of 
objective function values, because for the h th simplex with edge length O/3L, it holds that  

b h > min f ( x i )  0 20 0 - - = min f ( x )  + > YON. 
- x,~S(~h,d,,) 5 >- f(Z) -~ ~ A  g -- 

Therefore, z cannot be an'accumulating point of the sequence xi. 

6.  T W O - D I M E N S I O N A L  I M P L E M E N T A T I O N  

The feasible region is supposed to be rectangular. We propose a possible initial cover, which 
is only slightly larger than the feasible region. The construction of the cover is rather ad hoc, 
but in pilot experiments the cover proved to be efficient. Of course, other covers are possible. 
In the solution of combinatorial optimization problems using parallel branch and bound, similar 
considerations regarding initial subdivisions occur, and ad hoc solutions are also common. 

Let A be reduced to a standard region: 0 _< x:l _< 1, 0 _< x:2 _< 2v~/3.  The original 
problem must be scaled to the standard feasible region. The latter is covered by the set of 
28 triangles whose edge length is equal to 1/3 and whose vertexes Xi, i = 1 . . . .  ,22 have the 
coordinates Xi:l C { j /6 ,  j = - -1 , . . .  ,7}, Xi:2 C {k" V~/6, k = 1,3, i f j  is odd and k = 0,2,4, i f j  
is even}. The covering is shown in Figure 5. 

Figure 5. A simple initial covering consisting of a circumscribing regular simplex, and 
a tailored initial covering with regular simplexes of the, unit cube in two dimensions. 
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The implementation of Version 1 is straightforward. Points outside of the feasible region are 
handled as follows. The function value of the point in question is substituted by the function value 
at the point obtained by an orthogonal projection onto the region boundary plus L multiplied 
by the distance between these two points. If all points are outside of the region, the simplex is 
discarded. 

The implementation of Version 2 includes solving the minimization problem (1). Let us consider 
the standard triangle defined by (2) and suppose that f(xs) 2 f(xz) 2 f(xr) = 0. By sufficient 
scaling, the calculation of the bound value for each triangle may be reduced to the minimization 
on the standard triangle S, 

b = ~~;‘s”m~(-bll,i2 - 115 -x211, $9 - 112 -x311), 

where $+ = f (xi)/L, i = 2,3. 

THEOREM 3. For the lower bound b, the following inequality holds: 

(1 - *Z) 
b L p1 = (2$2 + &C). 

PROOF. Since b is monotone in $5, $3, we have 

b 2 PI = Tnm=(-ll-cll,vb - 112 - x2II,d9 - lb - x311) 
=xin,,m&max(-h,$z- llz-X211,$2- II~-X3ll). 

5 - 

Because of symmetry of the correct triangle, the condition I(z(I = h implies that the minimum 

of mdti2 - llz- x211, $2 - lb - xsll) is achieved on the symmetry axis. Therefore, the solution 
to the minimization problem is 

d/1 + h2 - hJ3> = 2;2-+‘& 

and the minimum point is zi = fi(l - $+)/(4$2 + 2&), 22 = (1 - +!$)/(4$~~ + 2fi). 

THEOREM 4. For the lower bound b, the following inequality holds: 

if+3 5 (-l+*, 
4 

otherwise. 

PROOF. Since b is monotone in $2, $5, we have the inequality 

b 2 P2 = ~~m~(-ll,11, -112 -x211, $9 - 112 - x311). (3) 

Because of symmetry with respect to ICI = l/2, the latter minimization problem may be reduced 
to one-dimensional minimization in the variable 0 5 52 < a/2 with x.~ fixed to l/2 or in the 
variable 0 5 xi 5 I/2 with 22 fixed to 0. In the first case, a necessary condition for the minimum 

of (3) 
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is satisfied in the interior of the feasible region (at the point CC where (21 = l/2, 22 = -($s - 

d/2)/2 + l/(8($9 - &/2))), if $3 I (-I f &)/4. Th e minimal value is equal to ($3 - fl/2 + 

l/(4(+3 - v5/2)))/2. 
In the case $9 > (-1 + fi)/4, the equality z2 = 0 is satisfied, and the necessary minimum 

condition is -zl = $9 - d3/4 f (l/2 - ~1)~ implying the bound pz = -(l - 1,!$)/(1 + 2$~~) with 
the minimum point for (3) z = ((1 - @)/(l + 2g3), 0). 

To implement the algorithm, bounds for each triangle may be obtained as resealed values of 
max(P1, &), where PI and PZ are defined by the theorems above. The obtained bound may be 
sufficient to discard the current triangle. If not, the tighter bounds are calculated. The system 
of the following equations, expressing the necessary minimum conditions, 

II~II + *3 - lb - 5311 = 0, 1141 + *a - 11% - 2211 = 0, 

is numerically solved by the Newton method. For the initial point, we use the better of the two 
points defined above. If the trajectory of the numerical solution crosses 22 = 0, then the two 
separate equations obtained from the system by substituting 22 with zero should be solved and 
the better point chosen for the bound evaluation. 

7. THE MULTIDIMENSIONAL CASE 

As pointed out in Section 2, there are at least two possibilities of covering a regular simplex of 
dimension n with subsimplexes, also for n > 2. 

The parent simplex may be covered with n -t 1 subsimplexes, each of which is defined by 
one vertex u of the parent simplex and n points located on each of the edges of the parent 
simplex incident to TJ. Each of these points should subdivide the parent simplex edge in the 
proportion n : 1, i.e., the edge length of the new simplex should be n/(n + 1) times the length of 
the parent simplex. 

The new simplexes introduce a substantial overcovering of the parent simplex. The total volume 
of the nfl new simplexes is n”/(n+l) (n-l).V, where V is the volume of the parent simplex. Note, 
however, that for a sequence of embedded simplexes, the edge length will converge exponentially 
to zero, and hence, a branch and bound algorithm based on such a covering is convergent. The 
number of function evaluations per branching is n + 1 for Version 1 of our algorithm and (n + 1)n 
for Version 2. 

The other covering scheme consists of n $ 2 simplexes. Of these, n + 1 correspond each to a 
vertex of the parent simplex. These are constructed as indicated above, except that the length 
is now set to (n - 1)/n times the length of the edges of the parent simplex. The last simplex is 
defined by the centers of the n + 1 simplexes of dimension n - 1 constituting the facets of the 
parent simplex. As noted before, this covering scheme results in a partitioning in case the domain 
is two dimensional. The total volume of these simplexes is (n + l)((n - 1)/n)” + (l/n)“, i.e., the 
overcovering is again with a factor of n in the limit. However, for n = 3, the overcovering is 22% 
and for n = 4, it is 60%, to be compared to 70%, respectively, 104% for the first covering scheme 
described. Again, the edge lengths converge exponentially to 0 with the number of subdivision. 
The number of function evaluations of Version 1, respectively, Version 2 of our algorithm is n+ 1, 
respectively, (n+ 1)2. Regarding the construction of a tailored initial covering of an n-dimensional 
unit cube/hyperrectangel, this is a nontrivial task, and we leave this open for further research. 

8. RESULTS OF EXPERIMENTAL TESTING 
In the recent review [l], the results of experimental testing of known algorithms are presented. 

The same test functions with the same estimates of Lipshitz constants and prescribed accuracies 
have been optimized by the algorithm proposed in the present paper. We refer to [l] for a 
description of the conditions of the experiment. In Table 1, the number of function evaluations 
for both versions of our algorithm is presented corresponding to Table XX of [l]. Also, the results 
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for our second version with the initial cover consisting of only one simplex is given. The results 
of the best algorithm according to [l] are included in Table 1 for comparison. The second version 
of our algorithm (using the advanced bound calculation and the constructed initial covering) is 
clearly superior. 

Table 1. Number of function evaluations in optimizing the problems given in [l] 
using both versions of the proposed algorithm, and giving results for Version 2 with 
simple initialization and with the alternative (a)-subdivision. “*” indicates that the 
prescribed accuracy in the experimental set-up of [1] is not clear. 

Test Case [l] Beat of [l] 

1 643 

2 167 

3 3531 

3.1 3953 
3.2 3035 

3.3 3689 

4.1 *45 

4.2 *45 

5 73 

6 969 

7 7969 

8 301 

9. 13953 
9.1 14559 

9.2 13281 

9.3 12295 

10 1123 

11 2677 

12 12643 

13 15695 

Version 1 Version 2a Version 2b Version 3 
Simple Est. Adv. Est. w. Simple Int. Alt. Subdiv. 

1006 489 479 489 

217 137 139 126 

6622 2618 3051 3033 
7489 3245 3527 
6160 2665 2826 _ 

7951 3387 3702 

88 49 53 49 
103 41 47 41 

112 53 69 81 

3253 629 770 855 

12574 6370 7210 6309 

613 255 292 290 

22270 8759 12320 12026 
23119 9531 12786 _ 

21007 9002 11649 _ 

22207 8917 12006 

2014 820 947 1022 
4591 2222 2292 2345 

24997 10851 12502 11388 

28672 10643 16308 8688 

The current implementation of the algorithm (in C) is experimental and has been developed 
to evaluate the method with repect to the number of function evaluations, and the efficiency 
with respect to the time of auxiliary computations has not been a major concern. Hence, we do 
not tabulate the running times but merely note that these were less than a few seconds for all 
tests. The implementation is regarded as a step in the development of a parallel version of the 
algorithm, and in the parallel algorithm also the time eficiency will be addressed. 

One remark should be made on the optimization of test function 4. In Table XI of [l], the 
value of requested accuracy is given 0.0141, while according to the conditions of the experiment, 
it should be equal to 0.0283. Therefore, it is not clear, with which value the calculations were 
performed in [l). We have optimized this function with both values of requested accuracy and 
included in Table 1, Version 4.1 (with 0.0283) and Version 4.2 (with 0.0141). 

Many tests used by the authors of [l] are close to the worst case conditions, e.g., the Lipshitz 
constant is very large, but it characterizes the behavior of the objective function in a very small 
subregion near to the border, implying that the variation of function values in the remaining part 
of the feasible region with respect to the constant is insignificant. Of course, it ‘is important to 
demonstrate the behavior of the algorithms under conditions similar to the worst case. However, 
in our opinion, it is also important to present results with the functions which we consider to 
be typical representatives of difficult (but not worst case) problems. Hence, we have performed 
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experiments with two such functions, the Rastrigin test function and a two-dimensional version 
of the Shubert function. 

The Rastrigin test function is defined by 

f(x) = 5 x: - cos( 18X.i), -1 5 X.i 5 1, i = 1,2. 
i=l 

It is widely used for testing of global optimization algorithms [5]. The two-dimensional version 
of the Shubert function [1,5] is defined by 

f(x) = 2 2 -j . sin((j + 1)X.i + j), -10 5 x.i I 10, i = 1,2. 
i=l j=l 

Lipshitz constants of both functions were estimated using a quadratic mesh of 1000 x 1000 
resulting in the values 27.7 and 96.8. The guaranteed accuracies of the passive algorithm defined 
by a quadratic mesh of 100 x 100 and the values of the Lipshitz constants above are 0.392 
and 13.7. The numbers of function evaluations made by the algorithm with different levels of 
requested accuracy are presented in Table 2. 

Table 2. Number of function evaluations of both versions of the algorithm for the 
FLastrigin and two-dimensional Schubert functions with differing prescribed accura 
ties. 

Rastriein Two Dim. Schubert 

I E 1 Vl 1 V2a 1 V2b 1 V3 I E I Vl I v2a I V2b I ~3 I 
0.392 1168 521 543 541 13.7 6895 2766 3481 2536 

0.0392 2752 1407 2910 1377 1.37 18196 7776 8192 8628 

0.00392 4180 2195 4172 4349 0.137 25180 11492 11508 > 15000 
0.01 3934 2057 3803 2433 0.1 25435 11640 11633 _ 

In all cases, the value -2.0000 and point (O.OOOO,O.OOOO) were found for the Rastrigin function. 
The value -24.0430 and point (-6.7708,5.7813) were found for the second function in the case 
of requested accuracy 13.7, and the value -24.0612 with point (-6.7773,5.7910) were found in 
the other cases. The results show that the actual accuracy is much higher than the requested 
one. The number of function evaluations grows much slower than in worst case. 

9. CONCLUSIONS 

The Lipshitz model is one of best understood models of global optimization. Different ideas 
have been proposed and many algorithms have been implemented in the framework of this model. 
However, the available testing results show that the generalization from two to higher dimensions 
may be as complicated as the step from the implementation of one-dimensional algorithms to 
two-dimensional algorithms. Hence, there is some pessimism regarding the perspective of the 
approach. In our view there is, however, also reasons for optimism. In our proposed version 
of the branch and bound Lipshitz technique, some specific difficulties were overcome. The two- 
dimensional version of the proposed technique compares favorably with other algorithms based on 
the Lipshitz model. A parallel version of the algorithm can immediately be implemented using 
the sequential C code. The multidimensional generalization seems promising, however, some 
experience with the two-dimensional algorithm has to be accumulated and new possibilities, e.g., 
adaptive Lipshitz model [14], should be investigated prior to the extension to higher dimensions. 
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