MATHEMATICS

NOTE ON POINTS AND SYMPLECTA IN THE METASYMPLECTIC GEOMETRY

BY
KIYOSI YAMAGUTI

(Communicated by Prof. H. Freudenteal at the meeting of March 31, 1973)

In [2], Professor Freudenthal investigated the geometric properties of exceptional simple Lie groups of type $\left.{ }^{〔} F_{4}, E_{6}, E_{7}, E_{8}\right\urcorner$, namely the metasymplectic geometry. In this note, the relations: interwoven, hinged, between symplecta in the metasymplectic geometry will be interpreted by the nilpotency of the elements in \Re_{1}, and a condition of a point to be half incident with a symplecton will be given.

Throughout this note, we follow the definitions and notations in [2, also cf. 3], but the points $\left\langle\Phi_{1}, \Phi_{2}\right\rangle$ are considered for Φ_{1}, Φ_{2} in \mathfrak{W}_{4} such that $\left[\Phi_{1}, \Phi_{2}\right]=0[$ cf. $2, \S 37]$.

1. For Φ_{1}, Φ_{2} in \Re_{4}, by definition in [2, p. 462 (35.3)]
$\left\langle\Phi_{1}, \Phi_{2}\right\rangle \Phi^{*}=\frac{1}{2}\left(\tilde{\Phi}_{1} \tilde{\Phi}_{2}+\tilde{\Phi}_{2} \tilde{\Phi}_{1}\right) \Phi^{*}-\frac{1}{2}\left(\Phi_{1}, \Phi^{*}\right) \Phi_{2}-\frac{1}{2}\left(\Phi_{2}, \Phi^{*}\right) \Phi_{1+\alpha}\left(\Phi_{1}, \Phi_{2}\right) \Phi^{*}$, where $\alpha=\left\lceil\frac{6}{26}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}\right\urcorner\left(=\varepsilon_{2} \varepsilon_{3}^{-1}\right.$ in [2]). Then, we obtain easily the following relations:

$$
\begin{align*}
& \left\langle\Phi_{1}, \Phi_{2}\right\rangle \Phi_{i}=(\alpha-1)\left(\Phi_{1}, \Phi_{2}\right) \Phi_{i} \text { for } \Phi_{i} \in \mathfrak{W}_{4}, i=1,2, \tag{1.1}\\
& \left\langle\Phi_{1}, \Phi_{2}\right\rangle \tilde{\Phi}_{1} \Phi_{2}=(\alpha-1)\left(\Phi_{1}, \Phi_{2}\right) \tilde{\Phi}_{1} \Phi_{2} \text { for } \Phi_{1}, \Phi_{2} \in \mathfrak{W}_{4} . \tag{1.2}
\end{align*}
$$

After a direct calculation, using [2, (35.4) and § 40], and above relations, we obtain
(1.3) $4\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*}=\left(\Phi_{1}, \Phi_{2}\right) \Psi-3\left(\tilde{\Phi}_{1} \Phi_{2}, \Phi^{*}\right) \tilde{\Phi}_{1} \Phi_{2}$ for all Φ^{*} in \Re_{4}, where

$$
\begin{aligned}
\Psi=\left(\frac{7}{2}-2 \alpha\right)\left(\left(\Phi_{1}, \Phi^{*}\right)\right. & \left.\Phi_{2}+\left(\Phi_{2}, \Phi^{*}\right) \Phi_{1}\right) \\
& -\left(\frac{1}{2}-2 \alpha\right)\left(\tilde{\Phi}_{1} \tilde{\Phi}_{2}+\tilde{\Phi}_{2} \tilde{\Phi}_{1}\right) \Phi^{*}+4 \alpha A \Phi^{*} .
\end{aligned}
$$

In [2, §42], it is proved that $\left[\Phi_{1}, \Phi_{2}\right]=0$ implies $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2}=0$. Conversely, assume that $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2}=0$, then from (1.1) we have $\left(\Phi_{1}, \Phi_{2}\right)=0$, and (1.3) shows that $\left[\Phi_{1}, \Phi_{2}\right]=0$. Thus, the following proposition follows.

Proposition 1.1: For symplecta $\Phi_{1}, \Phi_{2},\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2}=0$ is equivalent to $\left[\Phi_{1}, \Phi_{2}\right]=0$ (interwoven).

Proposition 1.2: For Φ_{1}, Φ_{2} in \mathfrak{B}_{4}, the following conditions are equivalent each other:
(a) $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{3}=0$,
(b) $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{k}=0$ for some integer $k \geqslant 3$,
(c) $\left(\Phi_{1}, \Phi_{2}\right)=0$ (hinged),
(d) $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*}=-\frac{3}{4}\left(\tilde{\Phi}_{1} \Phi_{2}, \Phi^{*}\right) \tilde{\Phi}_{1} \Phi_{2}$ for all Φ^{*} in \Re_{4}.

Proof: (b) \rightarrow (c): Since $\alpha \neq 1$, if $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{k} \Phi_{t}=0$ for some positive integer k, then ($\left.\Phi_{1}, \Phi_{2}\right)=0$ from (1.1).
(c) \rightarrow (d) follows from (1.3).
(c) \rightarrow (a): Using (d) and (1.2) we have $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{3} \Phi^{*}=0$ for all Φ^{*} in \Re_{4}.
(d) \rightarrow (c): From assumption, (1.3) follows $\left(\Phi_{1}, \Phi_{2}\right) \Psi=0$. By putting $\Phi^{*}=\Phi$ in this relation, $4(1-\alpha)^{2}\left(\Phi_{1}, \Phi_{2}\right)^{2} \Phi_{2}=0$, hence $\left(\Phi_{1}, \Phi_{2}\right)=0$.

Remark: In [2, § 42], it is proved that for Φ_{1}, Φ_{2} in $\mathfrak{W}_{4}\left[\Phi_{1}, \Phi_{2}\right] \in \mathfrak{W}_{4}$ is equivalent to (Φ_{1}, Φ_{2}) $=0$, hence if $\left(\Phi_{1}, \Phi_{2}\right)=0,\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*} \in \mathscr{F}_{4}$ because of (d). Conversely, assume that $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*} \in \mathfrak{M}_{4}$ for all Φ^{*} in \mathfrak{M}_{4}, then

$$
\left(\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*},\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*}\right)=0
$$

especially

$$
\left(\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \tilde{\Phi}_{1} \Phi_{2},\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \tilde{\Phi}_{1} \Phi_{2}\right)=0
$$

then, using (1.2),

$$
(\alpha-1)^{4}\left(\Phi_{1}, \Phi_{2}\right)^{4}\left(\tilde{\Phi}_{1} \Phi_{2}, \tilde{\Phi}_{1} \Phi_{2}\right)=0
$$

i.e. $(\alpha-1)^{4}\left(\Phi_{1}, \Phi_{2}\right)^{6}=0$ and $\left(\Phi_{1}, \Phi_{2}\right)=0$ follows. Thus, $\left(\Phi_{1}, \Phi_{2}\right)=0$ if and only if $\left\langle\Phi_{1}, \Phi_{2}\right\rangle^{2} \Phi^{*} \in \mathfrak{M}_{4}$ for all Φ^{*} in \Re_{4}.
2. For symplecta $\Phi_{1}, \Phi_{2}, \Phi_{3}, \Phi_{4}$ such that $\left[\Phi_{1}, \Phi_{2}\right]=0$ and $\left[\Phi_{3}, \Phi_{4}\right]=0$, put

$$
\begin{equation*}
f\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}, \Phi_{4}\right)=\tilde{\Phi}_{3}\left\langle\Phi_{1}, \Phi_{2}\right\rangle \Phi_{4}+\tilde{\Phi}_{4}\left\langle\Phi_{1}, \Phi_{2}\right\rangle \Phi_{3} \tag{2.1}
\end{equation*}
$$

then f is symmetric with respect to Φ_{1} and Φ_{2}, (Φ_{3} and Φ_{4}), and antisymmetric with respect to $\left\ulcorner\Phi_{1}, \Phi_{2}\right\urcorner$ and $\left\ulcorner\Phi_{3}, \Phi_{4}\right\urcorner$. Indeed, using [$\left.\Phi_{1}, \Phi_{2}\right]=$ $=\left[\Phi_{3}, \Phi_{4}\right]=0$ and Jacobi-associativity,

$$
\begin{aligned}
& {\left[\tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}, \Phi_{4}\right]+\left[\tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{4}, \Phi_{3}\right]=-\tilde{\Phi}_{4} \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}-\tilde{\Phi}_{3} \tilde{\Phi}_{2} \tilde{\Phi}_{1} \Phi_{4}} \\
& \quad=-\tilde{\Phi}_{1} \tilde{\Phi}_{4} \tilde{\Phi}_{2} \Phi_{3}-\tilde{\Phi}_{2} \tilde{\Phi}_{3} \tilde{\Phi}_{1} \Phi_{4}=\tilde{\Phi}_{1} \tilde{\Phi}_{4} \tilde{\Phi}_{3} \Phi_{2}+\tilde{\Phi}_{2} \tilde{\Phi}_{3} \tilde{\Phi}_{4} \Phi_{1} \\
& \quad=-\left[\tilde{\Phi}_{3} \tilde{\Phi}_{4} \Phi_{2}, \Phi_{1}\right]-\left[\tilde{\Phi}_{3} \tilde{\Phi}_{4} \Phi_{1}, \Phi_{2}\right]
\end{aligned}
$$

from this relation, we get easily $\left[\left\langle\Phi_{1}, \Phi_{2}\right\rangle \Phi_{3}, \Phi_{4}\right]+\left[\left\langle\Phi_{1}, \Phi_{2}\right\rangle \Phi_{4}, \Phi_{3}\right]=$ $=-\left[\left\langle\Phi_{3}, \Phi_{4}\right\rangle \Phi_{1}, \Phi_{2}\right]-\left[\left\langle\Phi_{3}, \Phi_{4}\right\rangle \Phi_{2}, \Phi_{1}\right]$, that is

$$
f\left(\Phi_{1}, \Phi_{2} ; \Phi_{3}, \Phi_{4}\right)+f\left(\Phi_{3}, \Phi_{4} ; \Phi_{1}, \Phi_{2}\right)=0 .
$$

Assume that $f=0$, then it is proved that the two points $A=\left\langle\Phi_{1}, \Phi_{2}\right\rangle$ and $B=\left\langle\Phi_{3}, \Phi_{4}\right\rangle$ are hinged. From the assumption, we have $\left[\Phi_{1}, \tilde{\Phi}_{3} A \Phi_{4}+\right.$ $\left.+\tilde{\Phi}_{4} A \Phi_{3}\right]=0$, which can be written as

$$
\begin{aligned}
& 2 \tilde{\Phi}_{1} \tilde{\Phi}_{3} \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{4}+2 \tilde{\Phi}_{1} \tilde{\Phi}_{4} \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}+\left(\Phi_{1}, \Phi_{4}\right) \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}+ \\
& \quad+\left(\Phi_{1}, \Phi_{3}\right) \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{4}+\left(\Phi_{2}, \Phi_{4}\right)\left(\Phi_{1}, \Phi_{3}\right) \Phi_{1}+\left(\Phi_{2}, \Phi_{3}\right)\left(\Phi_{1}, \Phi_{4}\right) \Phi_{1}=0
\end{aligned}
$$

hence, using [$2, \S 40$], we have

$$
2\left(\tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}, \Phi_{4}\right)-\left(\Phi_{1}, \Phi_{3}\right)\left(\Phi_{2}, \Phi_{4}\right)-\left(\Phi_{1}, \Phi_{4}\right)\left(\Phi_{2}, \Phi_{3}\right)=0
$$

since $\Phi_{1} \neq 0$. This relation shows that $(A, B)=0$, i.e. A and B are hinged because of $(A, B)=\left(A \Phi_{3}, \Phi_{4}\right)[2,(56.1)]$.

Conversely, assume that the points A and B are hinged, then, from [2, p. 480, 65.7'], there are symplecta Φ_{2} in $\{A\}$ and Φ_{4} in $\{B\}$ such that Φ_{2} and Φ_{4} are joined (verbunden). So we may suppose that $A=\left\langle\Phi_{1}, \Phi_{2}\right\rangle$ and $B=\left\langle\Phi_{3}, \Phi_{4}\right\rangle$, in which $\left\langle\Phi_{2}, \Phi_{4}\right\rangle=0$. Then it will be shown that $\tilde{\Phi}_{3} A \Phi_{4}+\widetilde{\Phi}_{4} A \Phi_{3}=0$. From $[2, \S 43]$, we have $\left(\Phi_{1}, \Phi_{4}\right)=0$ and $\left(\Phi_{2}, \Phi_{3}\right)=0$, hence $A \Phi_{4}=0$ and $\tilde{\Phi}_{4} A \Phi_{3}=\tilde{\Phi}_{4} \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}$. To show that $\tilde{\Phi}_{4} \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}=0$, we may assume that $\Phi_{4}=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{0}{0}^{\top}$. Then $\Phi_{i}=\left(\begin{array}{cc}\Theta_{i}+\gamma_{i} & \underline{\delta}_{i} \\ \bar{\delta}_{i} & \Theta_{i}-\gamma_{i}\end{array}\right),\binom{P_{i}}{P_{i}^{\prime}}^{\top}$ $(i=1,2,3)$ get simpler because of $\left\langle\Phi_{2}, \Phi_{4}\right\rangle=0,\left[\Phi_{3}, \Phi_{4}\right]=0,\left(\Phi_{1}, \Phi_{4}\right)=0$, and [$\left.\Phi_{1}, \Phi_{2}\right]=0$ implies that $P_{2} \times P_{1}^{\prime}=0$. A calculation shows that

$$
\tilde{\Phi}_{4} \tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi_{3}=\left\ulcorner\left(\begin{array}{ll}
0 & \frac{\delta}{0} \\
0 & 0
\end{array}\right),\binom{0}{0}^{7}\right.
$$

where $\underline{\delta}=\frac{1}{4}\left\{\Theta_{3} P_{2}, P_{1}{ }^{\prime}\right\}$, then $\underline{\delta}=-\frac{1}{4 \varepsilon}$ sp $\Theta_{3}\left(P_{2} \times P_{1}{ }^{\prime}\right)=0 \quad[2,(32.4)]$ and $\tilde{\Phi}_{3} A \Phi_{4}+\tilde{\Phi}_{4} A \Phi_{3}=0$ follows.
3. Freudenthal proved that a point A and a symplecton Φ are incident if and only if $\tilde{\Phi} A=0$ (or $A \tilde{\Phi}=0$) [2, §§ 54 and 59]. The following proposition is an analogy for half incidence.

Proposition 3.1: Let A be a point and Φ be a symplecton, then the following conditions are equivalent:
(a) The point A is half incident with the symplecton Φ.
(b) $\tilde{\Phi} A \tilde{\Phi}=0$.
(c) $\left\langle A \tilde{\Phi} \Phi_{3}, A \tilde{\Phi} \Phi_{4}\right\rangle=0$ for all Φ_{3}, Φ_{4} in \Re_{4}.

Proof: (a) \rightarrow (b). Put $A=\left\langle\Phi_{1}, \Phi_{2}\right\rangle,\left[\Phi_{1}, \Phi_{2}\right]=0$. Then, $\tilde{\Phi} A \tilde{\Phi} \Phi^{*}=$ $=A \tilde{\Phi}^{2} \Phi^{*}+(\tilde{\Phi} A-A \tilde{\Phi}) \tilde{\Phi} \Phi^{*}=\left(\Phi, \Phi^{*}\right) A \Phi+[\tilde{\Phi}, A] \tilde{\Phi} \Phi^{*}=0$, using $[2, \S 69]$. Hence (b) follows.
(b) \rightarrow (a). Using the transitivity of metasymplectic group, we may assume that $\Phi=\left\ulcorner\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{0}{0}^{\top}\right.$.
 $(\mathrm{b})^{\prime} \tilde{\Phi} A \tilde{\Phi} \Phi^{*}=0$ for all Φ^{*} in \Re_{4}.
In the condition $(b)^{\prime}$, let Φ^{*} is one of the form ${ }^{\ulcorner }\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\binom{0}{0}^{\top}$.
After a straight forward calculation we have $\tilde{\Phi} A \tilde{\Phi} \Phi^{*}={ }^{\Gamma}\left(\begin{array}{rr}\gamma & \frac{\delta}{0} \\ 0 & -\frac{\gamma}{\gamma}\end{array}\right),\binom{P}{0}^{\top}$, where,

$$
\begin{gather*}
\gamma=2 \delta_{1} \gamma_{2}-2 \delta_{2} \gamma_{1}-\frac{1}{4}\left\{P_{1}{ }^{\prime}, P_{2}^{\prime}\right\}, \tag{3.1}\\
\underline{\delta}=-4 \underline{\delta}_{1} \delta_{2}-4 \underline{\delta}_{2} \delta_{1}+\frac{1}{4}\left\{P_{1}, P_{2}^{\prime}\right\}+\frac{4}{4}\left\{P_{2}, P_{1}^{\prime}\right\}-8 \gamma_{1} \gamma_{2}, \tag{3.2}\\
P=\left(\Theta_{1}+\gamma_{1}\right) P_{2}{ }^{\prime}+2 \gamma_{2} P_{1}^{\prime}-2 \delta_{2} P_{1}-\delta_{1} P_{2} . \tag{3.3}
\end{gather*}
$$

From (b)' it follows $\gamma=\underline{\delta}=0$ and $P=0$. Since $\left[\Phi_{1}, \Phi_{2}\right]=0$ we have $\tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi=$ $=\tilde{\Phi}_{2} \tilde{\Phi}_{1} \Phi$, by comparing the 1-2-element of the left matrix of $\tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi$ and of $\tilde{\Phi}_{2} \tilde{\Phi}_{1} \Phi$, we obtain the relation

$$
2 \underline{\delta}_{1} \delta_{2}-\frac{1}{4}\left\{P_{1}, P_{2}^{\prime}\right\}=2 \underline{\delta}_{2} \delta_{1}-1\left\{P_{2}, P_{1}^{\prime}\right\} .
$$

Using this relation, the above expression (3.2) can be rewritten as

$$
\begin{equation*}
\underline{\delta}=-6 \underline{\delta}_{1} \bar{\delta}_{2}-2 \underline{\delta}_{2} \delta_{1}+\frac{1}{2}\left\{P_{1}, P_{2}^{\prime}\right\}-8 \gamma_{1} \gamma_{2} \tag{3.2}
\end{equation*}
$$

Let us next assume that $\Phi^{*}=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\binom{0}{P^{*}}^{\top}$, then

$$
\tilde{\Phi} A \tilde{\Phi} \Phi^{*}=\left(\begin{array}{ll}
0 & * \\
0 & 0
\end{array}\right),\binom{Q}{0}^{\top}
$$

where,

$$
\left\{\begin{array}{l}
Q=\delta_{1}\left(\Theta_{2}+\gamma_{2}\right) P^{*^{\prime}}+\delta_{2}\left(\Theta_{1}-\gamma_{1}\right) P^{*^{\prime}} \tag{3.4}\\
\\
\quad+\frac{1}{4}\left\{P_{1}^{\prime}, P^{*^{\prime}}\right\} P_{2^{\prime}}+\frac{1}{8}\left\{P_{2}^{\prime}, P^{*}\right\} P_{1}^{\prime}+\left(P^{* \prime} \times P_{2}^{\prime}\right) P_{1}^{\prime} .
\end{array}\right.
$$

Using [2, (32.5)] with $P=P_{2^{\prime}}, P_{1}=P^{*}, P_{2}=P_{1}{ }^{\prime}$, and a relation $\frac{1}{8}\left\{P_{1}{ }^{\prime}, P_{2}{ }^{\prime}\right\}=$ $=\delta_{1} \gamma_{2}-\delta_{2} \gamma_{1}$, which follows from (3.1), we obtain

$$
\begin{aligned}
&\left(P^{*^{\prime}} \times P_{2}{ }^{\prime}\right) P_{1}^{\prime}=\left(P_{1}{ }^{\prime} \times P_{2}{ }^{\prime}\right) P^{*^{\prime}}+\left(\gamma_{1} \delta_{2}-\gamma_{2} \delta_{1}\right) P^{*^{\prime}}+ \\
&+\frac{1}{4}\left\{P^{* \prime}, P_{1}^{\prime}\right\} P_{2}^{\prime}+\frac{1}{8}\left\{P^{* \prime}, P_{2}\right\}
\end{aligned} P_{1_{1}^{\prime}} .
$$

Hence, (3.4) can be rewritten as:

$$
\begin{equation*}
Q=\left(\delta_{1} \Theta_{2}+\delta_{2} \Theta_{1}\right) P^{*^{\prime}}+\left(P_{1}^{\prime} \times P_{2}^{\prime}\right) P^{*^{\prime}} . \tag{3.4}
\end{equation*}
$$

Now, $A \Phi$ has the form

$$
A \Phi=\left(\begin{array}{cc}
\Theta-\frac{1}{2} \gamma & -\frac{1}{\frac{1}{2} \delta} \\
0 & \Theta+\frac{1}{2} \gamma
\end{array}\right),\binom{-P}{0}^{\top}
$$

where $\Theta=\delta_{1} \Theta_{2}+\delta_{2} \Theta_{1}+P_{1}{ }^{\prime} \times P_{2}{ }^{\prime}$.

Above relations (3.1), (3.2)', (3.3) and (3.4)' show that the assumption (b)' implies $\gamma=\underline{\delta}=0, P=0, \Theta=0$, and it follows $A \Phi=0$.
(b) \leftrightarrow (c). From [2, §52], $\left\langle A \tilde{\Phi} \Phi_{3}, A \tilde{\Phi} \Phi_{4}\right\rangle=-\frac{1}{2}\left(A \tilde{\Phi} \Phi_{3}, \tilde{\Phi} \Phi_{4}\right) A=\frac{1}{2}\left(\tilde{\Phi} A \tilde{\Phi} \Phi_{3}, \Phi_{4}\right) A$.

Hence it follows that (b) is equivalent to (c).
Remark: (a) \rightarrow (b) in Proposition 3.1 is also proved, without using [2, p. $48169.1 \rightarrow 69.2$] explicitly, as follows. From [2, § 72, p. 482 (*) *], $A \Phi=0$ implies $\tilde{\Phi}_{1} \tilde{\Phi}_{2} \Phi=0$. Using Jacobi-associativity $\left[\left[\Phi, \Phi_{1}\right],\left[\Phi_{2},\left[\Phi, \Phi^{*}\right]\right]\right]+\left[\Phi_{2},\left[\left[\Phi, \Phi^{*}\right],\left[\Phi, \Phi_{1}\right]\right]\right]+\left[\left[\Phi, \Phi^{*}\right],\left[\Phi_{2},\left[\Phi_{1}, \Phi\right]\right]\right]=0$, or $\overline{\left[\bar{\Phi}, \Phi_{1}\right]} \tilde{\Phi}_{2} \tilde{\Phi} \Phi^{*}+\tilde{\Phi}_{2}\left[\overline{\left.\Phi, \Phi^{*}\right]} \tilde{\Phi} \Phi_{1}=0\right.$. Therefore,

$$
\begin{aligned}
\tilde{\Phi} A \tilde{\Phi} \Phi^{*} & =A \tilde{\Phi}^{2} \Phi^{*}+[\tilde{\Phi}, A] \tilde{\Phi} \Phi^{*} \\
& =\left\langle\tilde{\Phi} \Phi_{1}, \Phi_{2}\right\rangle \tilde{\Phi} \Phi^{*}+\left\langle\Phi_{1}, \tilde{\Phi} \Phi_{2}\right\rangle \tilde{\Phi} \Phi^{*}[2,(35.4), \S 37] \\
& =\tilde{\Phi}_{2} \overline{\left[\Phi, \Phi_{1}\right] \tilde{\Phi} \Phi^{*}+\tilde{\Phi}_{1}\left[\overline{\left[\Phi, \Phi_{2}\right]} \tilde{\Phi} \Phi^{*}\right.} \\
& =0, \quad-\frac{1}{2}\left(\Phi_{2}, \tilde{\Phi} \Phi^{*}\right) \tilde{\Phi} \Phi_{1}-\frac{1}{2}\left(\Phi_{1}, \tilde{\Phi} \Phi^{*}\right) \tilde{\Phi} \Phi_{2}
\end{aligned}
$$

because of
$\overline{\left[\Phi, \Phi_{i}\right]} \tilde{\Phi} \Phi^{*}=-\left[\tilde{\Phi}^{2} \Phi_{i}, \Phi^{*}\right]-\tilde{\Phi} \tilde{\Phi} \tilde{\Phi}^{*} \tilde{\Phi} \Phi_{i}=-\frac{1}{2}\left(\tilde{\Phi} \Phi^{*}, \Phi_{i}\right) \Phi+\frac{1}{2}\left(\Phi, \Phi^{*}\right) \tilde{\Phi} \Phi_{i}$
$(i=1,2)[2, \S 40]$. Thus $\tilde{\Phi} A \tilde{\Phi}=0$ follows.
Proposition 3.2: Let A be a point and Φ be a symplecton, then it holds

$$
A \tilde{\Phi} A \Phi^{*}=0 \text { for all } \Phi^{*} \text { in } \mathfrak{R}_{4} .
$$

Proof: Put $A=\left\langle\Phi_{1}, \Phi_{2}\right\rangle,\left[\Phi_{1}, \Phi_{2}\right]=0$. Since the metasymplectic group operates transitively on \Re_{4}, we may assume that $\Phi_{2}=\left\ulcorner\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\binom{0}{0}^{\top}\right.$. Then Φ_{1} is one of the form

$$
\begin{gathered}
\left\ulcorner\left(\begin{array}{cc}
\Theta_{1} & \delta_{1} \\
0 & \Theta_{1}
\end{array}\right),\binom{P_{1}}{0}^{\urcorner}, \text {and } P_{1} \times P_{1}=2 \underline{\delta}_{1} \Theta_{1}, \Theta_{1} P_{1}=0,\right. \\
P_{1} \times \Theta_{1} P^{*}=\frac{1}{4}\left\{P_{1}, P^{*}\right\} \Theta_{1}, \Theta_{1} \Theta^{*} P_{1}=\frac{1}{4 \varepsilon}\left(\operatorname{sp} \Theta_{1} \Theta^{*}\right) P_{1}, \Theta_{1}^{2}=0, \\
\Theta_{1} \Theta^{*} \Theta_{1}=\frac{1}{4 \varepsilon}\left(\operatorname{sp} \Theta_{1} \Theta^{*}\right) \Theta_{1}[2, \text { p. } 462-463] .
\end{gathered}
$$

For any $\Phi^{*}=\left(\begin{array}{cc}\Theta^{*}+\gamma^{*} & \underline{\delta}^{*} \\ \delta^{*} & \Theta^{*}-\gamma^{*}\end{array}\right),\binom{P^{*}}{P^{*}}^{\top}$ in \Re_{4}, we have

$$
A \Phi^{*}=\left(\begin{array}{cc}
\delta^{*} \Theta_{1} & \frac{1}{4 \varepsilon} \operatorname{sp} \Theta_{1} \Theta^{*} \\
0 & \delta^{*} \Theta_{1}
\end{array}\right),\binom{\Theta_{1} P^{* \prime}}{0}^{\urcorner}
$$

and using $\Theta_{1}{ }^{2}=0, A \tilde{\Phi} A \Phi^{*}$ has the expression:

$$
\left(\begin{array}{cc}
0 & \frac{1}{4 \varepsilon}\left(\bar{\delta}^{*} \operatorname{sp} \Theta_{1}\left[\Theta, \Theta_{1}\right]-\operatorname{sp} \Theta_{1}\left(\Theta_{1} P^{* \prime} \times P^{\prime}\right)\right) \\
0 & 0
\end{array}\right),\binom{0}{0}^{\prime}
$$

in which the 1-2-element of left matrix vanishes, because in the first term

$$
\operatorname{sp} \Theta_{1}\left[\Theta, \Theta_{1}\right]=\operatorname{sp} \Theta_{1} \Theta \Theta_{1}-\operatorname{sp} \Theta_{1}^{2} \Theta=\frac{1}{4 \varepsilon}\left(\operatorname{sp} \Theta_{1} \Theta\right) \operatorname{sp} \Theta_{1}=0
$$

since $\Theta_{1} \in \operatorname{Inv}(\mathfrak{M})$ [1, p. 229], and the second term is also equal 0 since it can be written as $\frac{1}{4}\left\{\Theta_{1}^{2} P^{*^{\prime}}, P^{\prime}\right\}[2$, p. 458 (31.3.1)], Θ being an element of Φ. Therefore it follows $A \tilde{\Phi} A \Phi^{*}=0$.

Corollary: For a point A and a symplecton Φ, it holds $A[\tilde{\Phi}, A]=0$ and $[\tilde{\Phi}, A] A=0$.

Remark: In [2, § 69], the conditions for a point and a symplecton to be half incident are stated in dual form, but it does not hold the duality for the condition $\tilde{\Phi} A \tilde{\Phi}=0$ in Proposition 3.1.

Kumamoto University Kumamoto, Japan

REFERENCES

1. Freudenthal, H., Beziehungen der E_{7} und E_{8} zur Oktavenebene I. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, A 57, 218-230 (1954).
2. ——_ Beziehungen der E_{7} und E_{8} zur Oktavenebene X, XI. Proc. Kon. Ned. Akad. v. Wetensch., Amsterdam, A 66, 457-487 (1963).
3. Lie groups in the foundations of geometry. Advances in Math. 1, 145-188 (1965).
