
Discrete Applied Mathematics 101 (2000) 37–51

Solving the feedback vertex set problem on
undirected graphs

Lorenzo Brunetta, Francesco Ma�oli ∗, Marco Trubian
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32,

20133 Milano, Italy

Received 5 August 1998; revised 21 May 1999; accepted 24 May 1999

Abstract

Feedback vertex problems consist of removing a minimal number of vertices of a directed or
undirected graph in order to make it acyclic. The problem is known to be NP-complete. In this
paper we consider the variant on undirected graphs. The polyhedral structure of the feedback
vertex set polytope is studied. We prove that this polytope is full dimensional and show that
some inequalities are facet de�ning. We describe a new large class of valid constraints, the subset
inequalities. A branch-and-cut algorithm for the exact solution of the problem is then outlined,
and separation algorithms for the inequalities studied in the paper are proposed. A local search
heuristic is described next. Finally, we create a library of 1400 randomly generated instances
with the geometric structure suggested by the applications, and we computationally compare the
two algorithmic approaches on our library. ? 2000 Elsevier Science B.V. All rights reserved.

Keywords: Feedback vertex set; Branch-and-Cut; Local search heuristic; Tabu search

1. Introduction

We consider undirected graphs G = (V; E), where E is the edge set and V is the
vertex set, with vertex weights cv ∈ R; v ∈ V . We denote by uv the edge of E having
u and v as end-points. Two vertices u and v are adjacent if there exists an edge
uv ∈ E connecting them. A sequence of vertices v1; v2; : : : ; vk of G is called a path if
vi−1vi ∈ E, for i=2; : : : ; k. Vertex v1 is the origin and vertex vk is the end of the path.
If v1 = vk a path is said to be a cycle. A graph G is acyclic if it does not contain
cycles. A chord is an edge vivj ∈ E connecting two non-consecutive vertices in a cycle.
The vertex degree of vertex v in G is the number of the edges uv ∈ E having v as
end-point, and it is denoted by d(v).

∗ Corresponding author.
E-mail address: ma�oli@elet.polimi.it (F. Ma�oli)

0166-218X/00/$ - see front matter ? 2000 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00180 -8

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82547635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

38 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

For y ∈ RV and S ⊆V , we indicate with y(S) the sum ∑
v∈S yv.

The (undirected) feedback vertex set (UFVS) problem consists of removing a vertex
subset F of minimum weight c(F)=

∑
v∈F cv (F ⊆V) in an undirected graph in order

to make it acyclic. We assume that a graph made of a single vertex v does not contain
cycles, and its feedback vertex set is the empty set.
The problem is known to beNP-complete (see [14], since the vertex cover problem

can be reduced to it; there exist polynomial time algorithms for particular topologies
[7,16,18].
The relevance of this problem arises in several areas. For example, it models the

problem of removing deadlocks in a system of processors, see [21]. Applications of
the Feedback Vertex Set Problem to constraint satisfaction and Bayesian inference are
reported in [2,8]. In telecommunications it is helpful in �nding the minimum number of
vertices of control for monitoring a network. Another application of the problem with
vertex weights equal to 1 (cardinality case) is in the context of operating systems for
the removal of deadlocks created by cyclical processes’ requests of already allocated
resources. Finally, it is relevant in the study of “monopolies” in synchronous distributed
systems, as introduced in [19,20], where connection networks are undirected graphs of
bounded degree, namely, grids and toroidal grids.
Several approximate and heuristic approaches have appeared in the literature on

the problem on directed and undirected graphs, see for example [1–3,5,13,17,21].
A polyhedral approach to the FVS problem on directed graphs is presented in [11].
In this paper we describe a system based on a branch-and-cut algorithm for �nding

a UFVS of minimum weight in an undirected graph and a local search heuristic.
The components of our system are: a set of exact and heuristic procedures for the

separation of violated inequalities belonging to a partial description of the UFVS poly-
tope, an enumeration procedure that combines branching with cutting-planes techniques,
and an exploring tabu search (X−TS) procedure (see [9]) to �nd a good upper bound
on the objective function. We describe these components in the following sections. We
create a library of 1400 randomly generated instances with the geometric structure
suggested by the applications. Finally, we report on our computational experience in
Section 5.

2. Polyhedral results

A subgraph of G is the graph G′ = (S; E′), where S ⊆V and E′ ⊆E. The subgraph
G′=(S; E(S)) is said to be induced by the vertex set S ⊆V if E(S) is the set of edges
having both end vertices in S.
We denote by RV the real vector space whose components are indexed by the ele-

ments of V . With every subset U ⊆V we associate a vector xU∈RV where a component
xUv is equal to 1 if v ∈ U , and to 0 otherwise.
For a given vertex set A and B⊆A the incidence vector �B ∈ {0; 1}A of B is de�ned

by setting �Ba = 1 if a ∈ B and �Ba = 0 if a 6∈ B.

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 39

The feedback vertex set polytope Q(G) of the graph G is the convex hull of inci-
dence vectors of all feedback vertex sets of G. Therefore, the minimum weight UFVS
of G can be found, in principle, by solving the following linear program:

min cx
s:t: x ∈ Q(G): (1)

Recall that, given a vertex set W of G, the set �(W)⊆E of the edges between W
and V\W is called a cut. A graph G is q-connected if |�(W)|¿q for all ∅⊂W ⊂V .
This is equivalent to saying that G contains q edge-disjoint paths between any pair of
vertices (by de�nition, a graph made of a single vertex is not q-connected for all q).
A bridge of G is a cut of size 1.
The a�ne hull of Q(G) is characterized in the following theorem.

Theorem 1. If d(v)¿2 for all v ∈ V of G; then Q(G) is full dimensional; i.e.; dim
(Q(G)) = |V |.

Proof. If there exists a subset of the vertex set U2 ={v ∈ V : |�(v)|¡ 2}, by de�nition
of feedback vertex set we can reduce the size of the vertex set V by removing the set
U2: let Ṽ be the resulting graph. We can repeat this reduction, since the vertices of
degree lower than 2, and the edges having at least one end vertex in U2 do not belong
to any cycle of V . This fact reduces the dimension of Q(G) by |U2|.
If G is 2-connected, we can construct a feasible solution for all v∈V , since �V\{v} is

a UFVS, thus obtaining |V | solutions. The other point is given by �V that is, obviously,
a UFVS.
Suppose that G is not 2-connected, then G can be decomposed in 2-connected com-

ponents linked by bridges. Assume, w.l.o.g., that there exists only one bridge and two
shores. The shores of the bridge are the 2-connected graphs G1 = (V1; E(V1)) and
G2 = (V2; E(V2)), with V = V1 ∪ V2 and V1 ∩ V2 = ∅, then Q(G1) and Q(G2) are full
dimensional, and dim(Q(G)) = dim(Q(G1)) + dim(Q(G2)) is full dimensional.

The hypothesis of d(v)¿2 for all v∈V seems not to be restrictive considering that
the applications described in the literature are usually on 2-connected graphs. The
optimal solution to (1) is the incidence vector of an optimal UFVS. Let C be the set
of all cycles C in G. An LP relaxation of Q(G) is given by the following system of
inequalities:

x(C)¿1 for all cycles C ∈ C; (2)

06x61: (3)

Consequently, inequalities (2) and (3) de�ne an LP relaxation Q̃(G) of Q(G) and
provide an integer programming formulation for the UFVS problem on G.
Inequalities (2) are called cycle inequalities: their polyhedral analysis is in

Theorem 4. We �rst examine the trivial inequalities 06xv61 for every v ∈ V .

40 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

Theorem 2. For every vertex v ∈ V; the inequality xv¿0 is facet de�ning.

Proof. Let v be a vertex of V , then �V\{v} is a UFVS that satis�es xv = 0. We can
construct a feasible solution for all w ∈ V\{v}, since �V\{w;v} is a UFVS that satis�es
xv = 0.

Theorem 3. For every vertex v ∈ V; the inequality xv61 is facet de�ning.

Proof. One point is given by �V that is a UFVS that satis�es xv=1. Let v be a given
vertex of V , then for all w ∈ V\{v}; �V\{w} is a UFVS that satis�es xv = 1.

Theorem 4. For all cycles C ∈ C; the inequality x(C)¿1 is facet de�ning if it has
no chords.

Proof. Suppose that a given cycle C = {v1; v2; : : : ; vk ; v1} has a chord, i.e., an edge
vivj ∈ E connecting two non-consecutive vertices of C vi and vj. Then C can be
decomposed in the cycle C′ = {v1; v2; vi; vj; : : : ; vk ; v1} and in C\C′ ∪ {vi; vj}: x(C)¿1
is just the sum of the inequalities x(C′)¿1 and xv¿0, for all v ∈ C\C′.
Let C be a given cycle with no chords, then for all v ∈ C; �V\C∪{v} is a UFVS that

satis�es x(C) = 1, and we obtain |C| feasible points.
The other |V\C| points can be obtained in the following way. Observe that, if there

exists a point w ∈ V\C and v1; v2 ∈ C such that wv1 and wv2 are in E, and v3 ∈ C,
then �V\C\{w}∪{v3} satis�es x(C)=1, but it is not a UFVS (since the cycle containing
w; v1; v2 is not covered by any vertex). In this case we must select a vertex of C
adjacent to w, i.e., either v1 or v2.
For all the other w ∈ V\C for which there are no two vertices v1; v2 ∈ C such that

wv1 and wv2 are in E, and for any v ∈ C; �V\C∪{w;v} satis�es x(C) = 1 and it is a
UFVS.

To produce an LP relaxation that is tighter than Q̃(G) we add a large class of
inequalities introduced by Goemans and Williamson (see Lemma 9.1 in [13]): let
dS(v) denote the vertex degree of vertex v in S, then

∑

v∈S
(dS(v)− 1)xv¿|E(S)| − |S|+ 1 for all subsets S ⊆V: (4)

We call inequalities (4) the subset inequalities.

Lemma 5. The subset inequalities (4) are valid for all subsets S ⊆V .

Proof. Let F̃ be a feasible UFVS for the subgraph G′ = (S; E(S)) induced by S ⊆V .
Removing F̃ from G′ leaves a forest, then the induced subgraph G′′ = (S\F̃ ; E′′) may
have at most |S| − |F̃ | − 1 edges, i.e., |E′′|6|S| − |F̃ | − 1. Then

|E(S)|6|S| − |F̃ | − 1 +
∑

v∈F̃
d(v)− |E(F̃)| (5)

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 41

and
∑

v∈F̃ d(v)− |F̃ |=∑
v∈F̃(d(v)− 1) which leads to

∑

v∈F̃
(d(v)− 1)xv¿|E(S)| − |S|+ 1 + |E(F̃)|¿|E(S)| − |S|+ 1: (6)

Corollary 6. If S ⊆V is a cycle that has no chords; then (4) is facet de�ning.

Proof. Trivially, inequality (4) reduces to the cycle inequality and the proof is that of
Theorem 4.

Remark 7. If G = (S; E(S)) is a complete graph (a clique), the subset inequalities
(4) are not facet de�ning. In fact, let G = (S; E(S)) be a complete graph of four
vertices, S = {a; b; c; d}; |S| = 4 and |E(S)| = 6, the corresponding subset inequality
reads 2xa + 2xb + 2xc + 2xd¿3 that is satis�ed at equality only by fractional points.

However, if S=Kn is the vertex set of a clique of n vertices then any feasible UFVS
F̃ has cardinality |F̃ |¿n− 2; in fact, if |F̃ |6n− 3 it is always possible to �nd at least
a cycle of 3 vertices not covered by any vertex. Therefore the following inequalities

∑

v∈Kn
xv¿n− 2 (7)

are trivially valid. Inequalities (7) are the clique inequalities. In the following proposi-
tion, we do not only show that it is possible to derive this family of inequalities from
the subset inequalities, but that they represent a strengthening of them, since we are
able to determine the exact value of |E(F̃)|.

Proposition 8. Inequality (7) is a strengthened subset inequality.

Proof. By (6) we know that
∑

v∈F̃(dS(v)− 1)xv¿|E| − |S|+ 1+ |E(F̃)| holds. Since
S=Kn and |Kn|=n, then dKn(v)=n−1. We observe that if F̃ is a minimal UFVS in Kn,
it is a complete graph of n−2 vertices, i.e., |F̃ |=n−2, and |E(F̃)|=(n−3)(n−2)=2.
Substituting in (6) we obtain

∑
v∈F̃(n−2)xv¿2(n−2)(n−2)=2 and the result follows.

Theorem 9. If Kn⊆V (n¿3); then inequality (7) is facet de�ning.
Proof. By induction. Trivial for n = 3, since it reduces to a cycle. Suppose it holds
when Kn−1. Let v be the vertex of V\Kn−1 and F(Kn−1) a set of n− 1 independent
UFVSs of Kn−1, we can construct n− 1 points considering ∀F ∈ F(Kn−1), �F∪v. The
other point can be obtained by considering �Kn−1\{u}, where u is any vertex of Kn−1.

Remark 10. We may observe that if G is a complete graph �nding the minimal undi-
rected feedback vertex set becomes an easy problem. UFVS can be obtained from V
by sorting its vertices in non-decreasing order of their weights and considering the �rst
n− 2 vertices.

42 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

Fig. 1. A 3× 3 rectangular planar grid.

We prove with Theorems 6 and 9 that the subset inequalities (4) are a large class
of inequalities that comprise the cycle inequalities (2) and the clique inequalities (7).
However, we consider the cycle and the clique inequalities as distinct from the sub-
set inequalities since the subset inequalities are separated using a heuristic procedure
and the cycle and clique inequalities can be separated using an exact procedure (see
Section 3).
The following result, that will not be used for producing the LP relaxation of the

problem, is reported to provide an example in which inequality (4) is facet de�ning,
even if S is not a cycle or a clique.

Proposition 11. If S ⊆V is a 3 × 3 rectangular planar grid; inequality (4) is facet
de�ning.

Proof. Suppose that the vertex set is S = {a; b; c; d; e; f; g; h; i} as in Fig. 1, where
|S| = 9 and |E(S)| = 12. The corresponding subset inequality reads xa + 2xb + xc
+ 2xd + 3xe + 2xf + xg + 2xh + xi¿4. We can construct 9 a�nely independent points
that are UFVS as follows. The �rst four points contain the only vertex of degree 4:
�{a;e}, �{c;e}; �{g;e}, �{i;e}. Two points contain only vertices of degree 3, i.e., �{b;h}

and �{d;f}. The last three points contains also vertices of degree 2: �{b;g; i}, �{a;c;h} and
�{a;c;g; i}.

We decided not to include in the description of our polytope the many inequalities
that have been proposed for the set covering polytope in the previous literature. In fact,
on one hand, the majority of valid inequalities need to be lifted using exact procedures
to be computationally e�ective: these lifting procedures are very expensive in terms of
CPU time. On the other hand, approximate lifting procedures often lead to inequalities
that are not e�ective, thus increasing the density of the constraint matrix and negatively
a�ecting the LP computation time [4].

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 43

3. The branch-and-cut algorithm

An inequality �x6�0 is violated by the current LP solution, say x̃, if we have
�x̃¿�0. The addition of violated inequalities belonging to a speci�c class is obtained
by solving the separation problem discussed in this section.
The constraint generator is the most important part of our branch-and-cut algorithm.

The inequalities produced by the generator fall into one of the following three cate-
gories: (a) clique inequalities, (b) cycle inequalities and (c) subset inequalities.
As a heuristic rule, we skip the violated cuts with degree of violation less than

0.01 (for the clique inequalities and cycle inequalities) or 0.1 (for the subset
inequalities).
The input to the cut generator is the optimal solution x̃ of the current LP relaxation.

3.1. Separation of clique inequalities

The separation of clique inequalities is exact and it is performed at the beginning
of the optimization process. All the maximal cliques are identi�ed using the algorithm
described in [15]. As the number of clique inequalities is reasonably small we usually
add them all to the �rst LP.

3.2. Separation of cycle inequalities

The separation of cycle inequalities is exact and it is reduced to the shortest path
problem. To reduce the shortest path problem with cost on vertices to the usual one
with costs on edges, we use the transformation wuv = (x̃u + x̃v)=2. The cost of a cycle
C on edges is then w(E(C)) which is equal to x(C). Since we are looking for violated
inequalities, we restrict our attention to �nding shortest paths among pairs of vertices
u and v with x̃u+ x̃v ¡ 1. If a violated inequality is detected, we �rst check in the pool
if it has been already separated before saving it.

Algorithm 1. Cycle separation algorithm

Initialize: for all uv ∈ E do set wuv = (x̃u + x̃v)=2.
for all pairs of vertices u and v with x̃u + x̃v ¡ 1 do
Enumerate all paths Puv in G that have u and v as origin and end;
for each path Puv in G do
set w(E(C)) = w(Puv) + wuv
if w(E(C))¡ 1 and constraint x(C)¿1 has not been already separated,
then save corresponding constraint;

In our implementation we used the Ye shortest path algorithm to enumerate all the
possible paths. We generate at most 100 violated cycle inequalities.

44 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

3.3. Separation of subset inequalities

When the constraint generator is no longer able to identify violated cycle inequalities,
it searches for subset inequalities (4) of any size. As far as we know, the complexity
of the separation of subset inequalities is not known. Being computationally too heavy
to check all inequalities (4), since there is an exponential number of subsets S of V ,
we have to adopt an heuristic procedure: we �rst check all the vertex sets obtained
from V by deleting one vertex, than those obtained deleting two vertices, then three
vertices, and so forth until we generate at most 100 violated subset inequalities, or
when |V |2 vertex sets have been tested without �nding a violated inequality. From our
computational experience, the latter case never happens in practice.

Algorithm 2. Subset separation algorithm

for all subsets S ⊆V do
if

∑
v∈S (dS(v)− 1)x̃v ¡ |E(S)| − |S|+ 1,

then save the corresponding constraint;

From our computational experiences the subset inequalities are less e�ective than
the cycle inequalities, they increase the density of the constraint matrix and decrease
the e�ciency of the LP solver, but they often lead to an LP relaxation that is tighter
than that provided using only (2) and (3). This can be seen by looking at the third
and fourth columns of Table 1 in Section 5.

3.4. Variable �xing and setting

Fixing variables reduces the number of variables to be handled and tightens the LP
formulation of all the subproblems of the branch-and-cut algorithm. It is well known
that a variable �xing criterion can be obtained by considering the value of the re-
duced costs associated with an optimal basic solution of an LP relaxation. These �xed
variables are constrained to be equal to 0 and 1, respectively. Since these constraints
are only “locally” valid, i.e., are valid only for the current subproblem and its “de-
scendants” in the branch-and-cut tree, we say that these variables are set to their
corresponding values. These settings are valid, of course, only for the subproblem and
for its descendants.
Once some variables have been set, either when a subproblem is solved for the �rst

time or when the reduced cost criterion has been applied, the following observations
are used to construct a simple algorithm to possibly set more variables: if a vertex
v ∈ V has degree lower than 2 it does not belong to any cycle; if two vertices are
adjacent in a 2-connected graph, they belong to, at least, a common cycle.
We consider the original graph G= (V; E) and the variable �(v) equal to the vertex

degree, i.e., �(v) = d(v), for all v ∈ V . Then this step can be applied to each vertex

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 45

Table 1
Results on a small subset of instances

n m CRT SRT HB OPT CYC SUB CLI MR TBC TLS BC

20 56 6 6 7 7 101 52 0 146 1 0 5
20 59 7 7 8 8 108 67 0 152 1 0 7
40 75 7 8 9 9 210 132 0 180 4 1 27
40 84 8 9 10 10 200 147 0 199 2 1 9
40 93 9 11 12 12 297 159 0 302 5 2 19
40 98 9 11 12 12 345 177 0 327 5 2 17
40 157 13 15 18 18 424 3967 0 402 55.71 2.27 647
60g 104 46 48 50 50 135 53 0 141 5 5 13
60 524 1447 1447 1917 1917 0 16 026 119 1397 1566 12 6101
60 512 1309 1309 1747 1747 0 10 424 108 1241 776 11 3473
60 527 1433 1433 1979 1979 0 22 133 100 1716 2182 11 8099
60 545 1257 1271 1891 1891 206 15 464 73 2239 1290 11 5269
60 520 1242 1243 1803 1803 44 34 903 82 2927 5008 11 17 785
60 558 1044 1044 1460 1460 0 18 774 145 1540 1669 12 6931
60 537 1323 1324 1849 1849 100 17 913 81 1730 1581 11 6941
60 504 1366 1369 1975 1975 16 26 642 80 2751 3692 11 14 227
60 699 182 182 245 245 0 48 671 195 3055 7664 13 26 273
70 1950 519 521 897 897 112 26 376 200 3077 1595 34 3243
70 2178 432 433 670 670 45 18 008 0 3242 836 30 2707
80p 225 518 518 557 556 102 223 0 253 26 14 71
80 2527 801 801 1224 1224 0 52 121 201 2334 4878 63 8495
100g 180 65 65 70 70 83 168 0 175 45 29 147
100 2502 272 272 464 464 2 45 807 200 3297 22 593 84 34 749
120p 346 494 494 512 512 315 0 0 223 36 55 9
160g 292 79 79 82 82 113 0 0 102 80 138 9
160p 292 79 79 82 82 0 113 0 102 80 138 9
200p 585 835 835 891 891 667 0 0 415 608 305 887
200g 376 116 116 119 119 238 0 0 154 247 311 77
300p 879 446 446 478 478 1381 0 0 766 7019 1252 5911

v ∈ V : if v is adjacent to a vertex u corresponding to a variables set to 1, the cycle
common to the two vertices is already covered by vertex u, and �(v) can be reduced
by 1. At the end of the process, any variable corresponding to a vertex w ∈ V having
�(w) lower than 2 can be set to 0. In fact, �(w)¡ 2 means that w belongs to cycles
already covered by vertices corresponding to variables set to 1, and w will certainly
not be in the optimal solution.

3.5. Node and variable selection strategies

Two elements that are critical for the e�ciency of a branch-and-cut algorithm are
the criterion used to select the next unsolved subproblem and the criterion used to
select the branching variable. Due to the good quality of the solutions produced by
the heuristic algorithm, we decided to select the simplest among the possible known
criteria. Therefore, we visit the branch-and-cut tree in a “depth �rst” manner and we
pick the variable with highest vertex degree, among those of value closest to 0:5, as the
branching variable. It may be worth reporting that, from our computational experience,

46 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

we reduced by a half the number of vertices in the branch-and-cut tree by picking the
variable with highest vertex degree together with variable �xing and setting.
Furthermore, a heuristic algorithm is applied at the beginning of the root vertex of

the enumeration tree to �nd an initial “good” feasible solution to Problem (2)–(4).
This algorithm is based on the local search approach described in the next section.

4. The local search algorithm

The local search algorithm described in this section is a simpli�ed version of the
exploring tabu search (X − TS) presented in [9] which has been already applied
with success to other combinatorial problems such as the equicut (see [10]). In this
section we describe the procedure adopted to build feasible solutions, the neighborhood
function and the basic elements of the tabu search algorithm.

4.1. Generating feasible solutions

We generate feasible solutions using the 2-approximated modi�ed greedy algorithm
(MGA) due to Becker and Geiger [3].
Given a subgraph G′=(S; E′) of a graph G, we de�ne two operations on the vertices

of G′: vertex removal and vertex insertion. We say that we remove a vertex v from
G′ when we eliminate v from S and all the edges of the star �(v) from E′. On the
contrary, we insert a vertex v into a subgraph of G′ when we add a vertex v ∈ V\S
to S and all the edges vu ∈ E having as end-points v and a vertex u already in S.

Algorithm 3. Procedure MGA (input G, output F)

Step 1. Gc = G; F = ∅.
Step 2. Remove from Gc all the vertices u with degree lower than two (since they

cannot cover any cycle); if Gc = ∅, then goto 4.
Step 3. Choose in Gc the vertex v of minimum ratio value r (r= cv=d(v)): remove v

from Gc and put v in F ; goto 2.
Step 4. Re-insert in Gc all the vertices removed in step 2.
Step 5. Repeat for all vertices v of F , selected in order reverse of that of their

inclusion in F : if {v} ∪Gc does not contain any cycle then remove v from F
and insert v in Gc.

Let us observe that steps 4 and 5 are required since F could be non-minimal at the
iteration in which Gc becomes empty.
In step 3, for any vertex v, d(v) is used as an estimate of the number of cycles

which traverse v. Since d(v) can both overestimate or underestimate that value, we
have compared the performances of the algorithm MGA with a modi�ed version of
it, which we call algorithm G1. In algorithm G1 we substitute in step 1 the value
d(v) with a lower bound l(v) on the number of cycles traversing v. The value l(v) is

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 47

computed by adding a 1 for any pair of vertices u and w of �(v) connected by a path
in Gc not traversing v, i.e., if there exists a cycle through u; v; w.
On a set of 1200 randomly generated instances MGA dominated G1 in the 75% of

the cases. As a consequence, since the former algorithm is even faster than G1 we
adopted MGA in our code.

4.2. The neighborhood

Let F be a UFVS (F ⊂V) in a graph G=(V; E) and let �F be its complement in G
(a forest resulting from the removal of the vertices in F).

De�nition 12. Let vi be a generic vertex in F : a subset Ai⊆ �F is an exchange set
of vi if the subgraph �F ∪ {vi}\Ai is a forest. Hence, F\{vi} ∪ Ai is a UFVS for
graph G.

Given a UFVS F let us denote with A(vi), for any vi ∈ F , the set of all exchange
sets: A(vi)= {Ai⊆ �F : �F ∪{vi}\Ai is a forest}. Given a feasible solution S, represented
by a UFVS F , the solutions in N (S) are generated moving from F to F\{vi} ∪ Ai in
all the possible ways. Formally, our neighborhood is de�ned as follows:

N (S) = {F\{vi} ∪ A: vi ∈ F; A ∈ A(vi)}:
Let us observe that the size of N (S) is exponential in the size of �F and that looking
for the exchange set of vi of minimum cost in A(vi) can be formulated either as a set
covering problem or as a special feedback vertex set problem on a restricted graph.
Since no polynomial algorithm is known for solving this particular problem, whose
complexity is open, we look for a good solution in N (S) by exploring A(vi) with the
following three step heuristic procedure.

Algorithm 4. UFVS heuristic procedure

Step 1. Reduce the size of graph �F ∪ {vi} by recursively removing all the vertices u
with degree less than two; let Fc be the resulting graph.

Step 2. Solve the problem of �nding the minimum cost vertex set, Ai, between all
the vertex sets not containing vertex vi on Fc; set Fi = F\{vi} ∪ Ai.

Step 3. Since Fi is not guaranteed to be minimal, check for each vertex vf ∈ Fi if
it belongs to a cycle in �F ∪ vf: if it does vf is kept in the vertex set Fi,
otherwise vf is moved from Fi to �F .

We have compared the choice of solving the problem formulated in the second step,
either with a modi�ed version of algorithm MGA (we have to avoid to insert vi in Ai),
or with the Chv�atal heuristic, see [6], for the set covering problem. To formulate our
problem as a set covering problem we generated a covering matrix M in the following
way: if for any two vertices u and w in �(vi) ∩ Fc there exists a path in Fc there is

48 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

a row in M that corresponds to the characteristic vector �Puw(Fc) of the vertices in the
(unique) path.
We compared the two procedures within a simple tabu search framework on a test

set of 480 instances, with up to 100 vertices. The two implementations have given the
same results in 89.8% of the cases. In 6% of the case the MGA version has found
better solutions than those obtained with the set covering heuristic version, while in
the remaining 4.2% of the cases we obtained the opposite ranking. Since the MGA
heuristic appeared to be faster than the set covering heuristic, we adopted the former
one.

4.3. X −TS

In this section we consider the reader to be familiar with the main components of a
tabu search algorithm, see e.g. [12].
Since in each move we exchange two subsets of vertices, we associated with each

visited solution two attributes: the set S1 ={vi}∪Ri of vertices moved from F and the
set S2 = Ai of vertices moved from �F , where Ri denotes the set of vertices removed
from Fi in step 3 of the procedure which computes the neighborhood.
In practice, we consider two lists: for each vertex v, out fvs(v) contains the last

iteration in which v has been inserted in S1 and out forest(v) contains the last iteration
in which v has been inserted in S2. In those iterations in which |F |¿ | �F | we forbid
the moves which try to insert in �F a set S1⊆F whose elements were inserted in the
feedback vertex set too recently, i.e., if out forest(v)+tt¿it ∀v ∈ S1, where it is the
number of the current iteration and tt is the tabu tenure of a move. In those iterations
in which |F |6| �F | we forbid the moves which try to insert in F a set S2⊆ �F whose
elements were inserted in the forest too recently, i.e., if out fvs(v) + tt¿it ∀v ∈ S2.
A �rst tool of the X−TS approach is a dynamic updating of the tabu tenure. The

value of tt is initialized to a given value start tt and is modi�ed according to the evo-
lution of the search. By allowing tt to vary only within an interval [lm; lM], we decrease
tt by a unit, if in the last iteration we improved the objective function value and we
increase tt by a unit, otherwise. We set lm to 3 and we set lM to max{|F |=2; | �F |=2}.
Indeed, if tt ¿max{|F |; | �F |} in a few iterations, no moves are allowed. The value
start tt is initialized to the half of the interval [lm; lM].
A second tool of the X − TS approach is a long-term memory based on the

memorization of “good” solutions. It is used for intensifying the search into regions
analyzed, but not completely explored, and for diversifying the search from the current
local optimum. We store in a �xed length list, called Second, the L best solutions whose
objective function value was the second best value in all the visited neighborhoods. If
one of the following three conditions holds we remove from Second the best solution s
(and all the relevant information present when s was added to Second) and we continue
the search from s. The conditions are: (a) all the solutions in the current neighborhood
are forbidden; (b) the current objective function value has not been improved in the
last MC iterations; (c) the best objective function value has not been improved in

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 49

the last MB iterations. With preliminary computational experiments we choose to set
L= 5; MC = 15 and MB= |N |.
A third tool of the X − TS approach is a global restarting technique. This is a

brute force way to implement a diversi�cation technique. If it is necessary to use a
solution from Second, but either the list is empty or it has been already used L times
from the last restart, we continue the search from a new generated solution. We need
to generate a set of random starting solutions to apply this third tool: we randomized
the greedy algorithm by substituting step 3 of MGA with the following one:
Step 3′. Sort the vertices in Gc in non decreasing order of the ratio

r = cv=d(v); choose randomly a vertex v among the �rst three vertices
in the given order; put v in F and remove v from Gc; goto 2.

Let us observe that in step 3′, there always exist at least three vertices, since Gc
contains at least one cycle.
On a set of 240 randomly generated instances, with 100 vertices, we have compared

the performances of X−TS against three algorithms: TS, which adopts only the �rst
tool, TSR, which adopts the �rst and the third tools and MS which adopts the same
randomization technique of X−TS to generate di�erent starting solutions, but which
does not implement any memory structure. We gave to all the algorithms the same
amount of time. X − TS has found solutions that were better than those obtained
with TS in more than 12% of the cases, that were equal in the remaining cases, but
never worse. X−TS has found better solutions than those obtained with MS in about
6% of the cases, but it was beaten once: the results were the same in all the remaining
cases. X −TS and TSR did not obtain the same results in three cases only.
Since TSR does not require the overhead of managing the list Second and it gives

the same performances of X −TS we preferred this simpli�ed version of X −TS

as the local search-based algorithm for the UFVS problem.

5. Experimental results

The algorithm described in the previous sections was implemented in C and tested
on randomly generated instances. We used the CPLEX CALLABLE LIBRARY, VERSION 3.0. For
the computational experiments we used an Sun Sparc 20=71. Since we could not �nd
small or large hard instances available in the literature, we created a library of 1400
instances, divided in four sets: random, geometric, planar, and planar grid graphs.
The vertex weights of all instances are of three types: randomly generated integer

weights in a range between 1 and 10, between 1 and 100, or all equal to 1 (UFVS of
minimum cardinality).
We have tested our algorithm on a library constituted of 600 instances on random

graphs, and of 600 on geometric graphs. These instances had the following structure:
random graphs Gn;p, where n is the number of vertices and 0¡p¡ 1 is the probability
that the edge between a given pair of vertices exists; geometric graphs Un;d, generated
drawing from an uniform distribution n points in an unit square, associating a vertex

50 L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51

to each point and adding edge [u; v] to the graph if and only if the Euclidean distance
between the u and v is less or equal to d. The expected average vertex degree �̂ is
equal to p(n − 1) for the random graphs, whereas it is approximately n�d2 for the
geometric graphs. The instances considered have n = 20; 40; 60; 80; 100; d and p are
such that �̂ ∈ [10; 90]. As we already observed in Remark 10 in Section 2, the UFVS
in a complete graph is a trivial problem, so we decided not to provide results on
this kind of instances. As one could expect the local search-based algorithm produces
always better solutions than our implementation of the MGA greedy approximation
algorithm by Becker and Geiger [3]: from 3% on the 20 vertices graphs to 6% on the
100 vertices graphs. We have solved at optimality all the instances up to 60 vertices,
three 80 vertex instances and one 100 vertex instance: the heuristic solution value very
often coincides with the optimal solution.
Because of the relevance of the problem in the study of “monopolies” in synchronous

distributed systems, as introduced in [19,20], we created also a library of 100 planar
grid graph and 100 planar graph instances. Planar grid graphs Gh×k are h× k rect-
angular grid graphs of hk vertices and 2hk − h − k edges; the number of vertices
ranges from 40 to 200. The other are planar graphs where the number of vertices is
from 40 to 300. The size of an instance in Table 1 is ended with a ‘g’ for the planar
grid instances and with a ‘p’ for the planar. We have solved all the instances (up to
300 vertices) in very low CPU time and, again, the heuristic solution value very often
coincides with the optimal solution. Therefore, we are con�dent that instances arising
in practice will be successfully solved by our system.
In the following Table 1 we give the results of our experiments using the following

abbreviations:
• n; m: number of vertices and number of edges;
• CRT : best objective function value found at the root node with clique (7) and cycle
inequalities (3) only;

• SRT : best objective function value found at the root node using also the subset
inequalities (4);

• HB;OPT : objective function value of the best feasible solution found by the heuristic
and the optimal one;

• CYC; CLI; SUB: total number of cycle, clique and subset inequalities;
• MR: maximum number of rows in the matrix;
• TBC; TLS: CPU time (in s) spent by the branch and cut algorithm and by the local
search algorithm;

• BC: total number of nodes of the search tree.

Acknowledgements

We are particularly grateful to Alessandro Termignone who has implemented the C
code of the local search algorithms. We would also like to thank Giovanni Righini
for providing us an implementation of the algorithm described in [15]. The research

L. Brunetta et al. / Discrete Applied Mathematics 101 (2000) 37–51 51

of the second author was partially supported by a NATO research grant (contract
NATO CRG 971550). The research of the other authors was partially supported by a
MURST research grant. We also thank the anonymous Referees for their comments
and suggestions that improved the quality of the paper.

References

[1] V. Bafna, P. Berman, T. Fujito, Constant ratio approximations of the feedback vertex set problem
for undirected graphs, in: J. Staples P. Eades, N. Katoh, A. Mo�at (Eds.), ISAC 95, Algorithms and
Computation, 1995, pp. 142–151.

[2] R. Bar-Yehuda, D. Geiger, J. Naor, R.M. Roth, Approximation algorithms for the feedback vertex
set problem with applications to constraint satisfaction and Bayesian inference, Proceedings of the 5th
Annual ACM SIAM Symposium on Discrete Algorithms, 1994, pp. 344–354.

[3] A. Becker, D. Geiger, Approximation algorithms for the loop cutset problem, in: Proceedings of the
10th Conference on Uncertainty in Arti�cial Intelligence, 1994, pp. 60–68.

[4] S. Ceria, P. Nobili, A. Sassano, Set covering problem, in: M. Dell’Amico, S. Martello, F. Ma�oli
(Eds.), Annotated Bibliographies in Combinatorial Optimization, Wiley, Chichester, 1997, pp. 415–
428.

[5] F.A. Chudak, M.X. Goemans, D.S. Hochbaum, D.P. Williamson, A primal–dual interpretation of two
2-approximation algorithms for the feedback vertex set problem in undirected graphs, Oper. Res. Lett.
22 (1998) 111–118.

[6] V. Chv�atal, A greedy heuristic for the set covering, Math. Oper. Res. 7 (1979) 515–531.
[7] S.R. Coorg, C.P. Rangan, Feedback vertex set on cocomparability graphs, Networks 26 (1995) 101–111.
[8] R. Dechter, Enhancement schemes for constraint processing: backjumping, learning and cutset

decomposition, Arti�cial Intell. 41 (1990) 273–312.
[9] M. Dell’Amico, A. Lodi, F. Ma�oli, Solution of the cumulative assignment problem with a new tabu

search method, J. Heuristics (1997), to appear.
[10] M. Dell’Amico, M. Trubian, Solution of large weighted equicut problems, European J. Oper. Res. 106

(1998) 500–521.
[11] M. Funke, G. Reinelt, A polyhedral approach to the feedback vertex set problem, in: Proc. 5th Int.

IPCO Conf., Vancouver, 1996, pp. 445–459.
[12] F. Glover, Tabu search — Part 1, ORSA J. Comput. 1 (1989) 190–206.
[13] D.S. Hochbaum, Various notions of approximations: good, better, best, and more, in: D.S. Hochbaum

(Ed.), Approximation Algorithms for NP-hard Problems PWS, Boston, 1996, pp. 347–363.
[14] R.M. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher (Eds.), Complexity

of Computer Computations, Plenum Press, New York, 1972, pp. 85–103.
[15] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Generating all maximal independent sets: NP-hardness

and polynomial time algorithms, SIAM J. Comput. 9=3 (1980) 559–565.
[16] E.L. Llyod, M.L. So�a, On locating minimum feedback vertex sets, J. Comput. Systems Sci. 37 (1988)

292–311.
[17] F.L. Luccio, Almost exact minimum feedback vertex set in meshes and butteries, Inform. Process.

Lett. 66 (1998) 59–64.
[18] C. Lu, C. Tang, A linear-time algorithm for the weighted feedback vertex problem on interval graphs,

Inform. Process. Lett. 61 (1997) 107–112.
[19] D. Peleg, Local majority voting, small coalitions and controlling monopolies in graphs: a review, in:

Proceeding of 3rd Colloqium on Structural Information and Communications Complexity, 1996, pp.
152–169.

[20] D. Peleg, Size bounds for dynamic monopolies, Proceeding of 4th Colloqium on Structural Information
and Communications Complexity, 1997, pp. 165–175.

[21] C. Wang, E. Lloyd, M. So�a, Feedback vertex set and cyclically reducible graphs, J. ACM 32 (1985)
296–313.

