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In this paper we define (F1, F2)-chaos via Furstenberg family couple F1 and F2. It turns
out that the Li–Yorke chaos and distributional chaos can be treated as chaos in Fursten-
berg families sense. Some sufficient conditions such that a system is the (F1, F2)-chaotic
(Theorems 4.2 and 4.4) are given. In addition, we construct an example as an application.
It is showed that the second type of distributional chaos cannot imply the first type of
distributional chaos even though the scrambled set is uncountable.
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1. Introduction

By a topological dynamical system (briefly, dynamical system or system), we mean a pair (X, f ), where X is a complete
metric space dense in itself with a metric d, and f : X → X is a continuous map from X to itself. For any nonempty subset
A ⊂ X , Ā is the closure of A and we set [A]δ = {x ∈ X | d(x, A) < δ} for any δ > 0. We also use [A]0 to denote the closure
of A. Let the diagonal Δ = {(x, x) | x ∈ X} and d2 be the product metric on the product space X × X , i.e.,

d2((x1, x2), (y1, y2)
) = max

{
d(x1, y1),d(x2, y2)

}
for any (x1, x2), (y1, y2) ∈ X × X .

Li and Yorke [2] first used the word chaos to describe the complexity of the orbits of points in a system determined by
iterations of a map. According to [2] and [3], some authors defined the chaos in the Li–Yorke sense as follows.

A system (X, f ) is chaotic in the Li–Yorke sense (or Li–Yorke chaotic), if there exists an uncountable set C ⊂ X such that
for any distinct points x, y ∈ X ,

lim sup
n→∞

d
(

f n(x), f n(y)
)
> 0 and lim inf

n→∞ d
(

f n(x), f n(y)
) = 0.

Many authors have discussions on the Li–Yorke chaotic system (see [2] and [3] etc.). The relationship between the
topological entropy and the Li–Yorke chaos was discussed in [4] and [6]. It was showed that every transitive system with a
periodic point is Li–Yorke chaotic in [7].
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Schweizer and Smítal [5] gave another definition for chaos, which is called the chaos in the distribution sense (or distribu-
tional chaos).

Let (X, f ) be a dynamical system and x, y ∈ X . For a positive integer n and real parameter t , put

Φn
xy(t) = 1

n
#
{

0 � i � n − 1: d
(

f i(x), f i(y)
)
< t

}
,

Φxy(t) = lim inf
n→∞ Φn

xy(t), Φ�
xy(t) = lim sup

n→∞
Φn

xy(t),

where #(·) denotes the cardinality. Call Φxy and Φ�
xy the upper distribution function and the lower distribution function of x

and y, respectively.
Obviously, Φxy(t) � Φ�

xy(t) for any t � 0. If there exists an interval I such that Φxy(t) < Φ�
xy(t) for all t ∈ I , we simply

write Φxy < Φ�
xy . The chaos in the distribution sense appears when Φxy < Φ�

xy for any distinct points x, y in an uncountable
set. It turns out that three mutually nonequivalent versions of distributional chaos, DC1, DC2 and DC3, can be considered.
(see [8].) Namely, if there is an uncountable set C ⊂ X such that for any distinct points x, y ∈ C ,

(1) Φ�
xy ≡ 1 and Φxy(t) = 0 for some t > 0, then the system is of the first type of distributional chaos (briefly, DC1).

(2) Φ�
xy ≡ 1 and Φxy < Φ�

xy , then the system is of the second type of distributional chaos (briefly, DC2).
(3) Φxy < Φ�

xy , then the system is of the third type of the distributional chaos (briefly, DC3).

Moreover, the relationship between the topological entropy and the distributional chaos was discussed in [9] and [10].
Recently, the notion of chaos via F was introduced (see [1] for more details) for a given Furstenberg family F . It turned

out that the Li–Yorke chaos and some version of distributional chaos can be described as chaos in Furstenberg families
sense.

The aim of this paper is to introduce the definition of (F1, F2)-chaos for two given Furstenberg families F1 and F2.
Moreover, we give some sufficient conditions for a system to be (F1, F2)-chaotic. As an application, we construct a system
and show that Furstenberg family couple is necessary for us to describe the chaotic phenomena of the system.

This paper is organized as follows. In Section 2 we introduce some results of Furstenberg families. Section 3 is devoted to
give the definitions of (F1, F2)-chaos for Furstenberg families F1 and F2. In the following section, we give some sufficient
conditions such that a system is (F1, F2)-chaotic (Theorems 4.2, 4.4). Finally, as an application of the results mentioned
above, we construct a subsystem of shift systems on symbolic spaces, showing that DC2 cannot imply DC1 even though the
scrambled set is uncountable.

2. Preliminary on Furstenberg families

In this section we recall the basic facts related to the Furstenberg families (see [11] and [1] for the details). Let Z+ be
the set of positive integers and P be the collection of all subsets of Z+ .

A collection F ⊂ P is called a Furstenberg family if it is hereditary upwards, i.e., F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F .
Let B be the collection of all infinite subsets of Z+ and κB be the collection of the subsets of Z+ with finite complement.

Obviously, both B and κB are Furstenberg families.
Furstenberg family F is said to be proper if it is a nonempty proper set of the family P . It is clear that a Furstenberg

family F is proper if and only if Z+ ∈ F and ∅ /∈ F .
Let F1 and F2 be two Furstenberg families. Then

F1 · F2 = {F1 ∩ F2: F1 ∈ F1, F2 ∈ F2}.
By recalling the definition of upper density of a subset of Z+ , we define a class of Furstenberg families via upper (lower)

density.
Let J = {n1 < n2 < · · ·} ⊂ Z+ be an infinite set. Define

μ∗( J ) = lim sup
n→∞

#( J ∩ {1, . . . ,n})
n

, μ∗( J ) = lim inf
n→∞

#( J ∩ {1, . . . ,n})
n

.

Then μ∗( J ) and μ∗( J ) are the upper density and the lower density of J ⊂ Z+ , respectively.
It is easy to check that

μ∗( J ) = lim sup
i→∞

i

ni
.

For every s ∈ [0,1], define

M(s) = {
F ∈ B: μ∗(F ) � s

}
, M(s) = {

F ∈ B: μ∗(F ) � s
}
.

Obviously, M(0) = B.
Let F be a subset of Z+ . We say F is thick if for any m ∈ N, there exists n ∈ F such that n,n + 1, . . . ,n + m ∈ F . That is,

F contains arbitrary long blocks of consecutive positive integers.
According to the definition, the following theorems (Theorems 2.1 and 2.2) are immediate.
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Theorem 2.1. The subset with upper density 1 is thick.

Theorem 2.2. Let a,b be real numbers with 1 � a,b > 0 and a + b > 1. If F , H are subsets of Z+ such that μ∗(F ) � a, μ∗(H) � b,
then μ∗(F ∩ H) � a + b − 1.

3. (F1,F2)-chaos

In this section we introduce the definition of (F1, F2)-chaos and characterize the Li–Yorke chaos and the distributional
chaos via Furstenberg family couple.

Let A be a subset of X . For any x ∈ X , write

N(x, A, f ) = {
n: f n(x) ∈ A

}
.

Let F be a Furstenberg family and A be a nonempty subset. Then x ∈ X is the F -attaching point of A if N(x, A, f ) ∈ F .
We call

F (A, f ) =
⋃

F∈F

⋂
n∈F

f −n(A)

the F -attaching set of A. Clearly, F (A, f ) is the set of all F -attaching points of A.
Let (X, f ) be a system and F be a Furstenberg family. The family F is compatible with the system (X, f ), if the set

F (U , f ) is a Gδ set for every open set U ⊂ X .
Many Furstenberg families familiar to us are compatible with any system (X, f ). According to [1], we have the following

theorem.

Theorem 3.1. (See [1].) For any t ∈ [0,1], Furstenberg family M(t) is compatible with any system (X, f ).

Let A ⊂ X be a nonempty set and F be a proper Furstenberg family. We say the point x ∈ X is an F -adherent point of
A, if N(x, [A]δ, f ) ∈ F for any δ > 0. Put

αF (A, f ) = {
x
∣∣ N

(
x, [A]δ, f

) ∈ F for any δ > 0
}
.

Let (X, f ) be a system and F1, F2 be Furstenberg families. Let A ⊂ X × X . The system (X, f ) is (F1, F2)-chaotic with
respect to A, if there exists an uncountable set K such that for any distinct points x, y ∈ K , (x, y) is both F1-adherent point
of A and F2-attaching point of X × X \ [A]δ for some δ > 0.

A system (X, f ) is (F1, F2)-chaotic, if the system (X, f ) is (F1, F2)-chaotic with respect to the diagonal Δ.
In particular, we say the system (X, f ) is (F1, F2)-δ-chaotic (δ > 0), if there exists an uncountable set K ⊂ X , for any

distinct points x, y ∈ K , (x, y) is both F1-adherent point of the diagonal Δ and F2-attaching point of X × X \ [Δ]δ .
Now, we state the strong-distributional chaos as follows.
Let (X,d) be a metric space and f : X → X be a continuous map. If there exists an uncountable subset C ⊂ X ,
(1) for some 1 > b � 0 and any distinct points x, y ∈ C ,

Φ�
xy ≡ 1 and Φxy(t) � b < 1 for some t > 0,

then we say that the system (X, f ) exhibits the second type of strong-distributional chaos (briefly, strong DC2).
(2) for some a > b � 0 and any distinct points x, y ∈ C ,

Φ�
xy(t) � a > 0 for any t > 0 and Φxy(t0) � b for some t0 > 0,

then we say that the system (X, f ) exhibits the third type of strong-distributional chaos (briefly, strong DC3).
Now we characterize the Li–Yorke chaos and the distributional chaos via Furstenberg family couple.

Theorem 3.2. Let (X, f ) be a dynamical system.

(1) Then system (X, f ) is Li–Yorke chaotic if and only if it is (B, B)-chaotic.
(2) Let a,b be real numbers with 1 � a,b > 0 and a + b > 1. Then

(a) the system (X, f ) is DC1 if and only if it is (M(1), M(1))-chaotic;
(b) the system (X, f ) is strong DC2 if and only if it is (M(1), M(b))-chaotic;
(c) the system (X, f ) is strong DC3 if and only if it is (M(a), M(b))-chaotic with respect to the set [Δ]t0 for some t0 � 0.

4. Criteria for (F1,F2)-δ-chaos

In this section some sufficient conditions such that a system is (F1, F2)-chaotic are showed. Now, let us begin with
Mycielski theorem. For more details see [12].
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Theorem 4.1 (Mycielski theorem). Let X be a complete metric space dense in itself. Suppose for every N ∈ N, R N is a set of first category
in the product space XrN and G j , j = 1,2, . . . , is a sequence of nonempty open subsets in X. Then there exists a nonempty perfect
compact C j ⊂ G j such that for every N ∈ N and any rN distinct points x1, x2, . . . , xrN ∈ ⋃∞

j=1 C j , we have (x1, x2, . . . , xrN ) /∈ RN .

Now, we give the criteria for (F1, F2)-δ-chaotic system.

Theorem 4.2. Let (X, f ) be a dynamical system and F1 , F2 be proper Furstenberg families which are compatible with the product
system (X × X, f × f ). Suppose there exists a nonempty subset W ⊂ X × X \ [Δ]λ for some λ > 0 such that both F2(W , f × f ) and
αF1(Δ, f × f ) are dense in X × X. Then the system (X, f ) is (F1, F2)-λ-chaotic.

Proof. Since W ⊂ X × X \ [Δ]λ for some λ > 0 and F2(W , f × f ) = X × X , then F2(X × X \ [Δ]λ, f × f ) is dense in X × X .
Moreover, the Furstenberg families F1, F2 are compatible with the product system (X × X, f × f ), and we have that both
F2(X × X \ [Δ]λ, f × f ) and αF1 (Δ, f × f ) are dense Gδ subsets in X × X . Therefore,

F2
(

X × X \ [Δ]λ, f × f
)⋂

αF1 (Δ, f × f )

is a dense Gδ set. By Theorem 4.1 and the definition of (F1, F2)-λ-chaos, the proof of this theorem is completed. �
Lemma 4.3. Let A, B be two subsets of X and F , F̃ be Furstenberg families. Then

αF̃ (A, f ) × αF (B, f ) ⊂ αF ·F̃ (A × B, f × f ).

Proof. Assume (x, y) ∈ αF̃ (A, f ) × αF (B, f ). For any δ > 0, choose δ1 > 0 such that [A]δ1 × [B]δ1 ⊂ [A × B]δ . Since x ∈
αF̃ (A, f ), y ∈ αF (B, f ), we have

N
(
(x, y), [A × B]δ, f × f

) ⊃ N
(
(x, y), [A]δ1 × [B]δ1 , f × f

) ⊃ N
(
x, [A]δ1 , f

) · N
(

y, [B]δ1 , f
) ∈ F · F̃ .

Thus N f × f ((x, y), [A × B]δ) ∈ F · F̃ . It follows that (x, y) ∈ αF ·F̃ (A × B, f × f ). �
Let (X, f ) be a dynamical system. For any point a ∈ X and nonempty set B ⊂ X , write d(a, B) = inf{d(a,b) | b ∈ B}. We

say that a, B are (F , λ)-distal (λ > 0) if{
n

∣∣ {
f n(a)

} × f n(B) ⊂ X × X \ [Δ]λ
} ∈ F .

In particular, if B = {b}, b ∈ X then we say that a,b are (F , λ)-distal.

Theorem 4.4. Let (X, f ) be a dynamical system and F , F̃ and G be proper Furstenberg families. Suppose that F · F and F · F̃ · G
are also proper Furstenberg families. Let a ∈ X and nonempty subset K ⊂ X be (G, λ)-distal for some λ > 0. Set

A = {
x
∣∣ for any ε > 0, there is F ∈ F s.t. d

(
f n(x), f n(a)

)
< ε for any n ∈ F

}
,

B = {
y

∣∣ for any ε > 0, there is F ∈ F̃ s.t. d
(

f n(y), f n(K )
)
< ε for any n ∈ F ′}.

If Ā = B̄ = X, then for any proper Furstenberg families F1 and F2 which are compabitiable with the product space (X × X, f × f )
and F1 ⊇ F · F , F2 ⊇ F · F̃ · G , we have that the system (X, f ) is (F1, F2)-δ-chaotic for some δ > 0.

Proof. It remains to show that αF1 (Δ, f × f ) and F2(X × X \ [Δ]δ, f × f ) are dense in X × X for some δ > 0.
Since A × A is dense in X × X and F1 ⊇ F · F , by Lemma 4.3 αF1 (Δ, f × f ) is dense in X × X . Choose ε > 0 with

λ >
√

2ε . Assume x ∈ A and y ∈ B . Then

H1 = {
n

∣∣ d
(

f n(x), f n(a)
)
< ε

} ∈ F , H2 = {
n

∣∣ d
(

f n(y), f n(K )
)
< ε

} ∈ F̃ .

Thus F1 = H1 ∩ H2 ∈ F · F̃ . By the definition of the product metric, we have

F1 = {
n

∣∣ d2(( f n(x), f n(y)
)
,
{

f n(a)
} × f n(K )

)
< ε

} = {
n

∣∣ (
f n(x), f n(y)

) ∈ [{
f n(a)

} × f n(K )
]
ε

}
.

Since a and K are (G, λ)-distal, we write

G = {
n

∣∣ {
f n(a)

} × f n(K ) ⊂ X × X \ [Δ]λ
}
.

It follows that G ∈ G , and

G ⊂ {
n

∣∣ [{
f n(a)

} × f n(K )
]
ε

⊂ X × X \ [Δ]λ−ε

}
.

Let F2 = F1 ∩ G . Then F2 ∈ F · F̃ · G and(
f n(x), f n(y)

) ∈ [{
f n(a)

} × f n(K )
] ⊂ X × X \ [Δ]λ−ε
ε
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for any n ∈ F2. Take δ = λ−ε . Then A × B ⊂ F2(X × X \[Δ]δ, f × f ). Thus F2(X × X \[Δ]δ, f × f ) is dense in X × X . Since F1
and F2 are compatible with the product space (X × X, f × f ), by Theorem 4.1, the system (X, f ) is (F1, F2)-δ-chaotic. �

Let (X, f ) be a dynamical system and F be a Furstenberg family. For any x, y ∈ X and infinite set F ∈ F , F = {n1 <

n2 < · · ·},

d
(

f F (x), f F (y)
) → 0

means

lim
i→∞d

(
f ni (x), f ni (y)

) = 0.

By Theorems 4.4, 2.2 and the properties of the Furstenberg families defined via the density, it is not hard to prove the
following corollaries.

Corollary 4.5. Let (X, f ) be a dynamical system and 1 � s > 1
2 , s + t > 1, λ > 0. Suppose a,b ∈ X are ( M(1), λ)-distal. Set

A = {
x
∣∣ there is an F ∈ M(s) s.t. d

(
f F (x), f F (a)

) → 0
}
,

B = {
y

∣∣ there is an F ′ ∈ M(t) s.t. d
(

f F ′
(y), f F ′

(b)
) → 0

}
.

If Ā = B̄ �= ∅, then the system (X, f ) is (M(2s − 1), M(s + t − 1))-δ-chaotic for some δ > 0.

Corollary 4.6. Let (X, f ) be a dynamical system and a,b ∈ X be (M(t), λ)-distal for some 1 � t > 0, λ > 0. Set

A = {
x
∣∣ there exists F ∈ M(1) we have d

(
f F (x), f F (a)

) → 0
}
,

B = {
y

∣∣ there exists F ′ ∈ M(1) we have d
(

f F ′
(y), f F ′

(b)
) → 0

}
.

If Ā = B̄ �= ∅, then the system (X, f ) is (M(1), M(t))-δ-chaotic for some δ > 0.

5. Applications

In this section we construct a system which is not (M(1), M(1))-chaotic but (M(1), M( 1√
e
))-δ-chaotic. It follows that

the DC2 does not imply the DC1 even though the scrambled set is uncountable.
Let Λ = {0,1, . . . ,n − 1} (n � 2) with discrete topology, and Σn = ΛN with the product topology. The shift σ : Σn → Σn

is defined by σ(a1a2 · · ·) = a2a3 · · · for any a1a2 · · · ∈ Σn . The system (Σn, σ ) is called the shift system on the symbolic
space Σn .

Let A = a1 · · ·an ∈ Λn, B = b1 · · ·bm ∈ Λm for some n,m ∈ N. We denote by |A| the length of the segment A = a1 · · ·an ,
i.e., |A| = n. Write AB = a1 · · ·anb1 · · ·bm . The segment A = a1 · · ·an is called a subsegment of B = b1 · · ·bm (m � n) if
bi · · ·bi+n−1 = a1 · · ·an for some 1 � i � m − n + 1, denoted by A = B|[i,n] .

Now we define a minimal system. Take A1 = 0. Let Ā1 = 1 and P1 = {A1, Ā1}. Take A2 = 01100, Ā2 = 11100. For any
n = 3,4, . . . , set

Pn−1 = {
B1 · · · Bn−1

∣∣ Bi ∈ {Ai, Āi}, 1 � i � n − 1
}
.

For any P ∈ Pn−1, P = B1 B2 · · · Bn−1, we write P̄ = B̄1 B̄2 · · · B̄n−1. Define An and Ān by

An = P1 P1 P2 · · · P2n−1 , Ān = P1 P̄1 P̄2 · · · P̄2n−1 ,

where Pi ∈ Pn−1 and note that i �= j implies Pi �= P j for any 1 � i, j � 2n−1.
Let

a = A1 A2 · · · .
According to the definition mentioned above, the following claim is immediate.

Claim 1.

(1) For any n � 1, we have a = P1 P2 P3 · · · , where Pi ∈ Pn, i = 1,2, . . . .
(2) For any n � 2,

|An+1| = | Ān+1| =
(
2n + 1

)|A1 A2 · · · An|.

Lemma 5.1. Let a = A1 A2 · · · . Then a is an almost periodic point in the system (Σn, σ ). Put Y = ω(a, σ ). We have (Y , σ ) is a minimal
system.
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Proof. Assume that a = a1a2 · · · , ai ∈ {0,1}, i = 1,2, . . . . We can prove that for any n � 1, there exists N such that a1a2 · · ·an
is a subsegment of ai+1 · · ·ai+N for any i ∈ N. Note that for any n � 2, a1 · · ·an is a subsegment of A1 A2 · · · An . Thus a1 · · ·an
is a subsegment of both An+1 and Ān+1. By Claim 1(1), a = A1 A2 · · · can be generated by the elements of

Pn+1 = {
B1 · · · Bn+1

∣∣ Bi ∈ {Ai, Āi}, 1 � i � n + 1
}
.

Take N = 3|A1 · · · An+1|. Then An+1 or Ān+1 is a subsegment of ai · · ·ai+N for any i ∈ N. Thus, a1 · · ·an is a subsegment of
ai · · ·ai+N . It finishes the proof. �
Lemma 5.2. Let a = A1 A2 · · · , b = Ā1 Ā2 · · · . Then a,b are (M( 1√

e
), δ)-distal for some δ > 0.

Proof. Assume a = A1 A2 · · · , b = Ā1 Ā2 · · · . Then

#{i | d(σ i(a),σ i(b)) � 1
212 , 1 � i � |A1 A2 A3 A4|}

|A1 A2 A3 A4| �
23

23+1
|A4|

|A1 A2 A3 A4| = 23

23 + 2
.

Therefore, for n = 5 we have

#{i | d(σ i(a),σ i(b)) � 1
212 , 1 � i � |A1 A2 A3 A4 A5|}

|A1 A2 A3 A4 A5| �
24 23

23+1
|A4|

|A1 A2 A3 A4 A5| = 23

23 + 1
· 22

22 + 1
.

In the similar way, for any n � 5, we have

#{i | d(σ i(a),σ i(b)) � 1
212 , 1 � i � |A1 A2 · · · An|}

|A1 A2 · · · An| �
2n−12n−2 · · ·2524 23

23+1
|A4|

(2n−1 + 2)(2n−2 + 2) · · · (25 + 2)|A1 A2 A3 A4 A5|
= 2n−2

2n−2 + 1
· · · · · 23

23 + 1

22

22 + 1
� 1√

e
.

By the definition of the product metric, d( f n(a), f n(b)) � λ implies ( f n(a), f n(b)) ∈ X × X \ [Δ] λ
2

⊂ X × X \ [Δ] λ
4

. Thus, take

δ = 2
1

14 ,

lim sup
n→∞

#{i | 1 � i � n, (σ i(a),σ i(b)) ∈ X × X \ [Δ] 1
214

}
n

� lim sup
n→∞

#{i | 1 � i � n, d(σ i(a),σ i(b)) � 1
214 }

n
� 1√

e
. �

Theorem 5.3. Let Y = ω(a, σ ). Then (Y , σ ) is (M(1), M( 1√
e
))-δ-chaotic for some δ > 0.

Proof. By Lemma 5.2, the point a = A1 A2 · · · and b = Ā1 Ā2 · · · are (M( 1√
e
), 1

214 )-distal in (Y , σ ). Choose λ = 1
214 . Define the

map f : Σ2 → Σ2 by f (x) = C1C2 · · · for any x = x1x2 · · · ∈ Σ2, where for any i = 1,2, . . . ,

Ci =
{

Ai, xi = 1,

Āi, xi = 0.

Then f is continuous. Let A = f (Σ2). So A ⊂ Y is a closed set and a = f (111 · · ·),b = f (000 · · ·). Since preimages of 111 · · ·
and 000 · · · are dense in (Σ2, σ ), we have

A′ = {
x
∣∣ there is an F ∈ κB s.t. d

(
f F (x), f F (a)

) → 0
}
,

B ′ = {
y

∣∣ there is an F ′ ∈ κB s.t. d
(

f F ′
(y), f F ′

(b)
) → 0

}
are dense in A. Thus, by Corollary 4.6, the system (Y , σ ) is (M(1), M( 1√

e
))-δ-chaotic. �

In the rest of the section, we shall point out that the system (Y , σ ) is not (M(1), M(1))-chaotic.

Proposition 5.4. For any P , Q ∈ Pn (n � 2), let A = P Q |[i,|A1 A2···An|] . Then A ∈ Pn if and only if i = 1 or i = |A1 A2 · · · An| + 1.

Proof. The sufficiency is evident. Conversely, we prove the necessity by induction.
If n = 2 then it is clear. Let us assume that the result holds for n = m, m � 2. Since

Am+1 = P1 P1 P2 · · · P2m , Ām+1 = P1 P̄1 P̄2 · · · P̄2m ,

where each Pi ∈ Pm (1 � i � 2m) is a given segment, we write, for any P ∈ Pm+1,

P = B1 B2 · · · Bm Bm+1 = P ′ P1 P1 P2 · · · P2m ,



F. Tan, J.C. Xiong / Topology and its Applications 156 (2009) 525–532 531
or

P = B1 B2 · · · Bm Bm+1 = P ′ P1 P̄1 P̄2 · · · P̄2m ,

where Bi ∈ {Ai, Āi}, 1 � i � m + 1 and P ′ = B1 B2 · · · Bm ∈ Pm . Thus, for any A ∈ Pm+1, set

A = P̃ P1 P1 P2 · · · P2m , or A = P̃ P1 P̄1 P̄2 · · · P̄2m ,

where P̃ ∈ Pm .
We now consider P Q |[i,|A1 A2···Am+1|] for i = k|A1 · · · Am| + 1, 0 � k � 2m + 2. If k = 0 or k = 2m + 2 then A = P or

A = Q . It is the desired result. Otherwise, note that for any 1 � i, j � 2m , i �= j implies Pi �= P j . It is easy to check that if
1 � k � 2m + 1 then A �= P Q |[i,|A1 A2···An|] for any i = k|A1 · · · Am| + 1.

Thus, the result does not hold unless k = 0 or k = 2m + 2. �
Theorem 5.5. The system (Y , σ ) is not (M(1), M(1))-chaotic.

Proof. Choose arbitrarily x, y ∈ Y , we show that either N((x, y), Y × Y \ [Δ]δ, f × f ) /∈ M(1) for any δ > 0 or (x, y) /∈
αM(1)

(Δ, f × f ) holds.
By Claim 1, a = A1 A2 · · · can be generated by the elements of Pn for any n � 1. Thus, by Proposition 5.4, for a given

n � 2 and each x ∈ Y , there exists i such that x = x1x2 · · · xi P1 P2 · · · , where x1, x2, . . . , xi ∈ {0,1}, P j ∈ Pn , j = 1,2, . . . . Let

I(x,n) = min
{

i � 0
∣∣ σ i(x) = P1 P2 . . . , P j ∈ Pn, j = 1,2, . . .

}
.

We consider the following cases:
(1) Let x, y ∈ Y be distinct points. Assume that I(x,n) = I(y,n) for any n � 2.
For any m ∈ N, choose l ∈ N with m+1

|A1 A2···Al | � 1
4 . Without loss of generality, we can assume that

x = P1 P2 . . . , y = P ′
1 P ′

2 . . . ,

where P j, P ′
j ∈ Pl+1, j = 1,2, . . . . Take n ∈ N with n > |A1 A2 · · · Al+1|. We write k|A1 A2 · · · Al+1| < n � (1 +k)|A1 A2 · · · Al+1|

for some k � 1. Thus,

#{ j | d(σ j(x),σ j(y)) > 1
2m , 0 � j � n − 1}

n
< 1 − k(|A1 A2 · · · Al| − m − 1)

(k + 1)|A1 A2 · · · Al+1|
= 1 − k

k + 1

(|A1 A2 · · · Al| − m − 1
) 1

(2l + 2)|A1 A2 · · · Al|
= 1 − k

k + 1

[
1

2l + 2
− m + 1

(2l + 2)|A1 A2 · · · Al|
]

� 1 − k

k + 1

(
1

2l + 2
− 1

2l + 2
· 1

4

)

� 1 − 1

2l+2 + 23
.

By the definition of the product metric, ( f n(x), f n(y)) ∈ X × X \ [Δ]λ implies d( f n(x), f n(y)) > λ. Thus

lim sup
n→∞

#{ j | (σ j(x),σ j(y)) ∈ X × X \ [Δ] 1
2m

, 0 � j � n − 1}
n

� lim sup
n→∞

#{ j | d(σ j(x),σ j(y)) > 1
2m , 0 � j � n − 1}

n

� 1 − 1

2l+2 + 23
< 1.

It follows that N((x, y), Y × Y \ [Δ]δ, f × f ) /∈ M(1) for any δ > 0.
(2) Let x, y ∈ Y be distinct points. Assume that I(x, N) �= I(y, N) for some N � 2.
Without loss of generality, we can assume that

x = x1x2 · · · = P1 P2 · · · and y = y1 y2 · · · = y1 P ′
1 P ′

2 · · · , (5.1)

where xi, yi ∈ {0,1}, Pi, P ′
i ∈ PN , i = 1,2, . . . . If there exists a thick set F such that xn = yn for any n ∈ F , then for

any m ∈ N large enough, there exists i ∈ F such that xi xi+1 · · · xi+m = yi yi+1 · · · yi+m = Pk Pk+1 · · · P s . By (5.1), we have
yi+1 yi+2 · · · yi+m yi+m+1 = P ′

k P ′
k+1 · · · P ′

s . According to Proposition 5.4, it is a contradiction. By Theorem 2.1, (x, y) is not

M(1)-adherent point of the diagonal Δ.
Thus, the system (Y , σ ) is not (M(1), M(1))-chaotic. �
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