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Abstract—High quality traffic for networks is urgently needed for mobile communication sys-
tems. Mobile stations frequently become unavailable due to communication errors generated by
network congestion. Traffic congestion in a network system may occur intermittently and continue
for a length of time, sometimes causing communication errors. If congestion happens during com-
munication, communication errors occur and the communication is rejected. This paper considers
the problem of reliability in mobile communication systems during congestion by using a recovery
scheme. We formulate a stochastic model of a mobile communication system which consists of mobile
stations, several base stations and a switching center. When communication errors occur, the system
makes a rollback recovery and returns to the recent checkpoint. We derive the mean time to take
checkpoint and the expected number of rollback recoveries, handoff, and successful transmissions until
communication errors occur. Further, we calculate the expected costs and discuss ways to minimize
the costs by analyzing the optimal checkpoint intervals. © 2006 Elsevier Ltd. All rights reserved.

Keywords—Mobile communication, Network congestion, Recovery schemes, Reliability, Check-
point interval.

1. INTRODUCTION

High quality traffic for networks is required for mobile communication systems. Mobile stations
frequently become unavailable due to communication errors generated by network congestion.
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A mobile communication system, which consists of mobile stations, is recovered by a rollback
technique. That is, when a communication error occurs, the rollback recovery for the mobile
station associated with such an event is executed to the most recent checkpoint, so that the system
can restore a consistent state. Recently, three error recovery schemes (LP (logging pessimistic),
LL (logging lazy), LT (logging trickle)) in mobile environments have been investigated from
various viewpoints [1,2]. We have discussed the mobile communication system with checkpointing
and rollback recovery techniques [3]. Control mechanisms for dissolving network congestion also
have been researched, e.g., [4,5]. Improved reliability of mobile communication systems involving
mobile stations is important for stable network communications even with network congestion.

This paper considers the problem of reliability in mobile communication systems during net-
work congestion by using the LP (logging pessimistic) recovery scheme. We formulate a stochastic
model of a mobile communication system which consists of mobile stations, several base stations
and a switching center. If congestion happens and is hidden, when either a mobile station or a
base station has sent a request for a message, the system interrupts its request transiently and
waits a constant time. Then, it sends the request for a message again. When communication
errors due to network congestion occur, rollback recovery for a mobile station associated with
such an event is executed to the most recent checkpoint, so that the system can recover.

In the above stochastic model, we derive the mean time to take the next checkpoint and the
expected number of rollback recoveries, handoff, and successful transmissions until communica-
tion errors occur. Using these results, we derive expected costs and optimal checkpoint intervals.
Finally, numerical examples are given.

2. MODEL AND ANALYSIS

A mobile communication system consists of mobile stations and several base stations as shown
in Figure 1.

Each base station is connected by wired links through a switching center, and one mobile station
communicates with the others by wireless links through a base station BS, (i = 0,1,2,...). A
mobile station MS moves from one cell to another and its connection changes from BS; to BS; ;.
Communications between mobile stations can be realized by such control mechanisms.

Switching center

1
1
1
]
1
Figure 1. Outline of a mobile network system.

We are concerned only about the communication behaviors of the system with mobile station
M S and base stations BS; (i = 0,1,2,...) and apply an LP (logging pessimistic) recovery scheme
to the system [1].

(1) The system begins to operate at time 0 and takes the first checkpoint for BS,. Next,
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it takes the checkpoint for BS; that manages the operation of mobile station MS,
when the transmissions between MS and BS; have terminated successfully at m
(m =1,2,...) times. The processes which are executed at MS are sent to BS,.

(2) A mobile station MS begins to move from BSg. The request time for transmissions
between MS and BS; has a general distribution A(¢) with finite mean «. Then, MS
connects with BS; as follows.

(i) Congestion in a network system occurs intermittently and is hidden. There-
fore, if congestion happens in the network, the system interrupts its request
transiently and waits a constant time w, that is,

1 t>w,
0 : t<w.

W(t) = {

(1) The time required for transmission of one message including the time to save
message logs at BS; has an exponential distribution (1 — e79) (0 < a < o0).
(3) Congestion happens in the network according to an exponential distribution (1 —
e~*) (0 < X < 00) and continues according to an exponential distribution (1—e~?)
(0 < B < o0). We define the following states of a network system.
State 0: No congestion occurs and the network system is in a normal condition.
State 1: Congestion occurs.
The network system states defined above form a two-state Markov process [6].
Thus, we have the following probabilities under the initial condition that Pyy(0) =
Py1(0) = 1, Po1(0) = Pyo(0) = 0,

_ s A oo
Poo(t)—‘—/\+ﬂ+)\+66 ,

= A B —(A+8)t
Pu®) =75+ 335° ’
Por(t)=1- Py lt),
Pp(t)y=1- P (t),

where P; ;(t) are probabilities that the network system is in State ¢ (i = 0,1} at
time 0 and State j (j = 0,1) at time t{> 0).
Communication errors occur as follows.

(i) When congestion happens in the network and either request for transmissions
between MS and BS; or handoff occurs, the rollback recovery for MS associated
with such an event is executed from that time to the most recent checkpoint.
The state of processes and message logs are sent from BS; to MS.

{(ii) The system is regenerated by rollback recovery.

(iii) The time required for rollback recovery has a general distribution V(t) with
finite mean v.
(4) When the operation of MS moves from BS; to BS;.,, i.e., when MS goes into the
area of handoff, the system interrupts its operation transiently.

(i) Handoff occurs according to a general distribution U(t) with finite mean 1/u.

(ii) The time required for handoff including the time to transmit the most re-
cent checkpoint and message logs, has a general distribution G(¢} with finite
mean 1/pu.

Under the above assumptions, we define the following states of the system.

State F: Network congestion happens.
State 2: The system begins to operate or restart.
State 3: Request for transmissions between MS and BS; occurs.
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Figure 2. Transition diagram between system states.

State 4: Communication errors occur.

State 5: Handoff occurs.

State 6: Transmission of one message succeeds.

State S: Transmissions of m messages have succeeded and the system takes the checkpoint
for BS;.

The system states defined above form a Markov renewal process [3], where S is an absorbing
state, and States 2-6 and F are regeneration points. A transition diagram between the system
states is shown in Figure 2.

By a method similar to [7], Laplace-Stieltjes (LS) transforms Q; ;(s) of transition probabilities
Q,.;(t) from State 1 (i = 2, F, 3,5) to State j (j = F, 3,4, 5, 6) are given by the following equations,

Grr(9)= [P0 dA(), 1
Gaa9) = [ e (0 dA o). 2)
Gre(s)= [P () dW (0 = P (w)e™™, 3
Gra(s) = [ € P 0) dW () = Pro(w) ™ (4)
G3.4(s) = /Ooo Ae~ (SHAILT (1) dt = :%& [1 —U(s+ A+ a)] , (5)
Qa5 (s) = /Ooo e~ Y = U(s+ A +a), (6)
Qa6 (s) = /Ooo ae” SHAFYT (1) dt = S—;‘;—M [1 ~U(s+ X+ a)] , (7)
Qsa(®)= [ G0 =Gls+ ), ®)
Qs.a(s) = /000 Ae”(HVG (2) dt = - i N [1 _G(s+ ,\)] , (9)

where Qo r(s) = Qs.r(s), @2,3(s) = Qs,3(s), and ®(t) = 1 — ®(t) represent a survival function
of any function @(t).

We derive the mean time £2 g(m) from the beginning of the system operation to the next
checkpoint. Let Hj 3(t) be the time distribution from State 2 to State 3 and Hg 3(t) be the time
distribution from State 6 to State 3. Then, we have

Hz3(t) = Qua(t) + Qar* D QF 7 * Qra(t), (10)

i=1

where Hj3(t) = Hg 3(t) and the asterisk mark denotes the Stieltjes convolution.
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Thus, the LS transform Hj s(s) of the time distribution from the beginning of operation to
the next checkpoint is

P 3 [ﬁz,a (8)1‘71(5)]m .
=G e -
where
M(t) = [Qas*Qss () x Que(t),
i=1
X)) = [Qas*Qs3®)“ ™+ [Qaa(t) + Qas* Q5.4 (t)],
i=1
Z(t)=> [Hasx M)V« [Hysx X (t)],

1

J

and ) (t) is the i-fold convolution of ®(t), ®(s) = [;° e~*td®(t), for s > 0. Note that M(t) is
a probability distribution that one transmission succeeds and X (t) is a probability distribution
that communication errors occur. Note that X (0) = M(0) = 0 and lim,_...{X(¢) + M(t)} = L.
Therefore, the mean time £z g(m) is

fz,s(m)zl%:‘w;;—s(s‘)
- Mm _— 1 ~
:(1—]\/[)Mm |:0¢+P10(w)/0 Pop (t) dA(t)"'XDa [1—G(/\)] (12)
+A}La0b+v(1_M)} m=12..),
where
a_l_f](/\_‘_a)é(/\)v
- —(7()\+a)
_ aDy
Mz)\-i-a’

and note that 0 < M < 1.
Similarly, the expected numbers of rollback recoveries caused by network congestion, of handoft
and of successful transmissions until communication errors occur are defined as follows,

Mg (m) = % (m=1,2,...), (13)
MH (m) = [%] Da, (m = 1,2,, . .), (14)
Mg (m) = (Tiw_M“) 1-M™—mM™(1-M), (m=1,2,...). (15)

3. OPTIMAL POLICY

We introduce the cost of successful transmissions until communication errors occur. Then,
we obtain the expected cost Cy per unit of time and Cyy per unit of transmission number, and
discuss optimal policies which minimize them.
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3.1. Optimal Policy I

Let c; be the cost for system operation, ¢z, the cost for handoff, ¢3, the cost for rollback recovery
of communication errors, and ¢4, the cost for successful transmissions until communication errors
occur. Then, we give the expected cost per unit of time until the next checkpoint as

€1 + coMpy (m) + [e3 + caMs (m)] Mg (m)
las (m)

Ci(m) = , (m=1,2,...). (16)

We seek an optimal checkpoint interval mj which minimizes Cy(m) in (16) for cz > ¢2 > ¢1.
From the inequality Ci(m + 1) — Cy(m) > 0, we have
1

m(1 = M™) (1 M7 > 2
4

(m=12,...). (17)

Note that an optimal m] does not depend on ¢; and c3.

Denoting the left-hand side of (17) by Li(m), Li(1) = (1 — M)%(1 + M) and Li(c0) =
lim,, oo L1{m) = oo, and hence, there exists a finite m; (1 < m{ < oo) which satisfies (16).
Further, we have

Li(m) — Li(m —1) = (1 = M™) [mM™ ! (1 - M?) + (1 - M™1)] > 0.

Therefore, we have the following optimal policy.

(i) If Lj(1) < c¢;1/c4, then there exists a finite and unique m{ (> 1) which satisfies (17).
(i) If Li{l) > ¢1/cq, then mf = 1.

3.2. Optimal Policy 11

Under the same assumptions as Policy I, we give the expected cost per unit of transmission
number until the next checkpoint as

c1 + caMpy(m) + [es + caMs(m)|Mg(m)

Cru(m) = —

(m=1,2,...). (19)

We seek an optimal checkpoint interval m{; which minimizes Cii(m) in (19), for ¢3 > ¢2 > 1.
From the inequality Cpy(m + 1) — Cii(m) = 0, we have

e (52) -] [ om0

M- Mm)2} e (20)

-m?(1 - m > — =1,2,...).
m*(1-M)M Y > (m=12,...)

4

Denoting the left-hand side of (20) by Ly{m),

Lu(l) = (IRJM){(1;4M) <1l_)‘iMc2+c;;>gl4-+(1—JVIZ)}, (21)

and Lijp(c0) = limym_co Lin{(m) = o0, and hence, there exist a finite m{; (1 < m; < oc) which
satisfies (20). Further, we have

m (1 - M)
Mm

2 Be, (12 MY 1S
e | M M )% '

Therefore, we have the following optimal policy.

(i) If Lyi(1) < ¢1/cq, then there exists a finite and unique m{;(> 1) which satisfies (20).
(ii) If Lll(l) > C]/C4, then TTL;I =1.

Li(m) - Liy(m -1) = {(1—M2'"-1) +m(l - M)M™M™-!

(22)
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Figure 3. Numerical values of optimal number mj for p/a and p/X when c2/c1 = 2,
cafe1 =5, cafer = 10, p/u = 120.
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Figure 4. Numerical values of mean time €3 g(my) for pua and p/X when cz/c; = 2,
czfc1 =5, cafe1 = 10, p/a = 10, p/u = 120, p/8 = 30.

4. NUMERICAL EXAMPLES AND REMARKS

We compute numerically optimal checkpoint intervals m; and mj; which satisfy (17) and (20),
respectively. It is assumed that handoff is caused by random factors of a mobile station and
occurs according to an exponential distribution, ie., U(t) = 1 — e~**. The time required for
handoff has an exponential distribution (1 — e #t) (0 < p < 00). The request for transmissions
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Figure 5. Numerical values of mean time #3 s(m}) for u/X and p/B when ¢z /c1 = 2,
cafc1 =5, cafer = 10, p/a = 10, p/u = 120.

between MS and BS; is constant, i.e.,

1 : t > a,
0 : t < a.

Alt) = {

Suppose that the mean time 1/g4 of handoff is a unit of time, the mean time of network
congestion is 1/A = 1800 ~ 3600, the mean time required for transmissions is 1/a = 10 ~ 480.
the mean time of handoff occurrence is 1/u = 30 ~ 1800, the mean time until the congestion
clears up is 1/8 = 10 ~ 200, the constant time is w = 30, the mean time required for rollback
recovery is v = 30 and the mean time for transmission is @ = 30. Further, we introduce the
following costs. The cost for system operation is ¢; = 1, the cost for handoff is ¢z /c; = 1,2, 5, the
cost for rollback recovery is ¢3/c; = 5,20, 50, and the cost for retransmission is ¢4 /¢y = 10 ~ 50.

Figure 3 shows m} for p/a and p/\ when ex/c; = 2, cg/c1 = 5, cafcy = 10, pfu = 120.
Figure 4 shows £ s(m{) for po and p/A when ca/c1 = 2, czfer = 5, ca/er = 10, p/a = 10,
u/u = 120, u/B = 30. Figure 5 shows fos(mf) for p/B and p/A when cp/c; = 2, c3fe; = 5.
cy/cy = 10, pfa = 10, p/u = 120. Since mj; in Figures 3-5 changes similarly to m{ for each
parameter, we omit numerical examples.

Figure 3 indicates that m| decreases with p1/a and increases with p/A. Similarly, from Figure 4,
£(m}) increases with /X and po. Moreover, from Figure 5, £(m{) increases with u/8.

‘able 1 gives optimal checkpoint intervals m};. This indicates that m]; decreases with ¢z/¢; and
¢q/c1. Further, when c4/c; is large, m{, depends relatively little on /v and becomes constant.
Moreover, optimal mj; depends relatively little on cs/c;. Similarly, mj; decreases with u/u.
Further, when A and p/a are large, m}; depends relatively little on ¢a/¢1, and c3/ci and becomes
constant.

5. CONCLUSIONS

We considered the reliability of a mobile communication system with network congestion by
adopting the recovery schemes of checkpoint and rollback. We derived the mean time to take
the next checkpoint and the expected number of rollback recoveries, handoff, and successful
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Table 1. Optimal numbers m7; to minimize Cry(m).

m
% = 1800 3 = 3600
o |a|al u ; -
1 c1 c1 u a a
30 | 60 | 120 | 30 | 60 | 120

30 5 [ 3 1 4 2

60 6 3 2 5 3

10| 30 | 7 | 4 2 |11 | s 4

600 | 7 | 4 2 |1l 7 4

2 1800 | 7 | 4 2 {1l 7 4

30 3 | 2 1 5 | 3 2

60 4 | 2 1 6 | 3 2

50 | 300 | 4 | 2 1 6 | 4 2

600 | 4 | 2 1 6 | 4 2

1800 | 4 | 2 1 6 | 4 2

2 30 5 | 3 1 8 | 4 2

60 6 | 3 2 9 | s 3

10| 30 | 7| 4 2 | 1n | s 4

600 | 7 | 4 2 L1 7 4

5 1800 | 7 | 4 2 11| 7 4

30 3 | 2 1 5 | 3 2

60 4 | 2 1 6 | 3 2

50 | 300 | 4 | 2 1 6 | 4 2

600 | 4 | 2 1 6 | 4 2

1800 | 4 | 2 1 6 | 4 2

30 4 | 2 1 6 | 3 1

60 5 | 2 1 7| 4 2

10| 300 | 6 | 4 2 |10 s 3

600 | 6 | 4 2 1] s 4

1800 | 7 | 4 2 11| 7 1

5 5 30 3 | 1 1 5 | 2 1

60 3| 2 1 5 | 3 1

50 | 300 | 4 | 2 1 6 | 4 2

600 | 4 | 2 1 6 | 4 2

1800 | 4 | 2 1 6 | 4 2

transmissions until communication errors occur. Further, we discussed analytically the optimal
cost-minimizing checkpoint intervals.

From the numerical examples, we showed that the optimal checkpoint interval increases with
time until the congestion disappears, and decreases with the frequencies of communication er-
rors, handoff, the time required for transmissions, and the processing time handoff. Further, it
decreases with the rate of costs for handoff, rollback recoveries, and for retransmissions of the
message after rollback recovery. Moreover, we discovered that the optimal interval reaches a
mostly fixed value relatively independent from the frequency of handoff when the processing time
for handoff is large. The optimal checkpoint interval which minimizes C;(m) changes similarly
to that which minimizes Cri(m) for any parameters.

Improvement and evaluation of the reliability of mobile communication systems is important
from practical viewpoints because of greatly developed day after day usage rapidly spreading
throughout various parts of the world.
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